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EVAPORATION AND CONDENSATION OF A RAREFIED GAS BETWEEN ITS TWO
PARALLEL PLANE CONDENSED PHASES WITH DIFFERENT TEMPERATURES
AND NEGATIVE TEMPERATURE-GRADIENT PHENOMENON
— NUMERICAL ANALYSIS OF THE BOLTZMANN EQUATION

FOR HARD-SPHERE MOLECULES —

Yoshio Sone, Taku Ohwada, and Kazuo Aoki
Department of Aeronautical Engineering
Kyoto University, Kyoto 606, Japan
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A rarefied gas between its two parallel plane condensed phases is
considered, and its steady behavior, especially the rate of evaporation or
condensation on the condensed phases and the negative temperature-gradient
phenomenon, is studied numerically on the basis of the linearized
Boltzmann equation for hard-sphere molecules under the conventional
boundary condition and its generalization. The method of analysis is the

- finite-difference method developed recently by the authors. Not only the
temperature and density distributions and the mass and energy fluxes in
the gas but also the velocity distribution function of the gas molecules
is obtained with good accuracy for the whole range of the Knudsen number.

I. INTRODUCTION

)

Consider a rarefied gas between its two parallel plane\condensed
phases with different temperatures. The gas evaporates on the condensed
phase with higher temperature and condenses on the other. This simple and
fundamental problem of evaporation and condensation draws special
attention in connection with the negative temperature-gradient

phenomenon.l_9

The analyses of the problem are, however, based on the
Boltzmann-Krook-Welander (BKW) equation or crude assumptions. Thus, its
accurate analysis on the basis of the standard Boltzmann equation is
required but has not yet been carried out because of the complex collision
integral in the Boltzmann equation;

In this paper we try to carry out the accurate analysis of this
two-surface problem of evaporation and condensation for the whole range of
the Knudsen number on the basis of the linearized Boltzmann equation for
hard-sphere molecules. The method used in the analysis is the
finite-difference method developed in the temperature-jump problem by the
authors,lO where an efficient way of computation of the linearized

collision integral is proposed and its universal numerical data useful for
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analyzing various problems are stored. We first consider the problem
under the conventional boundary condition on the condensed phase specified
in Sec. I, for which the velocity distribution function of the molecules
leaving the condensed phase is independent of that of the incident
molecules. Then, we discuss the problem under a generalized boundary
condition suggested by the experiment by Wortberg9 and show that the
solution for the generalized condition is derived from that for the

" conventional condition by simple formulae.

I. PROBLEM AND ASSUMPTION

Consider a rarefied gas between its two parallel infinite plane
condensed phases at rest with different temperatures. Let the temperature
of one of the condensed phases [at X1 = -D/2, (D > 0); Xi is the
rectangular space coordinate system] be To(l - At) and that of the other
(at Xl = D/2) be To(l + At). We investigate the steady behavior of the
gas (the velocity distribution function, the temperature and density
distributions, and the mass and energy fluxes in the gas) for the whole
range of the Knudsen number (the mean free path of the gas molecules
divided by the distance between the condensed phases D) under the
following assumptions:

(i) The gas molecules are hard spheres of a uniform size and undergo
complete elastic collisions between themselves, and the behavior of the
gas is described by the Boltzmann equation.

(ii) In Secs. I - V, we consider the problem under the conventional
boundary condition on each condensed phase. That is, the gas molecules
leaving each condensed phase constitute the corresponding part of the
Maxwellian distribution pertaining to the stationary saturated gas at the
temperature [To(l + ATt) or'To(l - At)] of the condensed phase. 1In Sec. W,
we discuss the extention of the solution to the problem under a more
general boundary condition.

(iii) The difference of the temperatures of the condensed phases is so
small (]At| << 1) that the governing equation and boundary condition can
be linearized around a uniform equilibrium state at rest.

We summarize the remaining main notations used in this paper: Po is
the saturation gas density at temperature To; Py = RpoT0 (the saturation
pressure at TO); R is the specific gas constant (the Boltzmann constant
divided by the mass of a molecule); 20 is the mean free path of the gas
molecules at the saturated equilibrium state at rest with temperature TO;
Kn = lO/D (the Knudsen number); k = (J//2)Kn: X; = Xi/D; (2RTO)1/2§. is

i
the molecular velocity; & = (Ef)l/z: E(§) = n—slzexp(-gz):

pO(ZRTO)_S/zE(g)(l + ¢) 1s the velocity distribution function of the gas
molecules; po(l + ) is the density of the gas; To(l + 1) is the gas

-2 -
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1/2ui
velocity; po(aij + Pij) is the stress tensor (51J is Kronecker's delta);
po(zRTo)l/ZQi is the heat flow vector; po(ZRTO)l/zHi is the energy flow
vector. Further, the saturation gas pressure at temperature To(l + At) 1is
assumed to be given by po(l + BAt), where 8 is a positive constant
corresponding to the slope of the Clausius-Clapeyron curve at To.

temperature; po(l + P) is the gas pressure; (2RTO) is the flow

. BASIC EQUATION

The linearized Boltzmann equation for a steady state in the present.

spatially one-dimensional case 1s11
8¢ _ 1 _ _
lg, A £, 12
1 1 2 i i
L.(¢) = — . exp(-£% + ——L)¢(x,, E,)dE, (2a)
1 2
L,($) = — le, - &.] exp(-£)¢(x,, &.)dE, (2b)
2 2/2n I i i i 1 i
v(g) = == [exp(-t2) + (2¢ + 1) fg exp(-c2)dc] (2¢)
2/2 ¢ dy ~

where Ei is the variable of integration corresponding to gi, gi A Ei is
the vector product of gi and ﬁi, dg = d&ldﬁzdta, and the domain of
integration in Ll' L2’ and all the following integrals with respect to the

molecular velocity (;1 or Ei) is the whole molecular velocity space unless
otherwise stated.

The boundary condition for Eq. (1) on the condensed phases
(x1 = x1/2) is given as
$(1/2, £,) = (B + £2 - D)ac (¢, < 0) (3a)
? i 2 ’ 1 »

$(-1/2, &) = -(8 + £2 - Dar, (5, > 0). (3b)

The solution of the boundary-value problem (1), (3a), and (3b) exists
uniquely.12 From the uniqueness theorem and symmetry of Egs. (1) - (3b),
the solution satisfies

¢(x1, §19 gzt §3) = -¢(°x1v —gl’ gza §3)v (4)
especially the reflection condition at x, = O:

1
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¢(0s gly ;zv §3) = ‘¢(0' -gl, gzt ;3)- (5)

Further, in the same way as in Ref. 10, we can show that the solution
takes the form

2

_ _ 2,1/2
¢ = ¢(X1: gl’ gr)! gr = (§2 + ;S) .

(8)

Thus, the number of the independent variables is reduced to three.
The nondimensional macroscopic variables, o, T, uy . etc., are given
as the moments of [

@ = I¢Ed§, u = I§i¢EdZ.
T = % j(;z - %)éEdz, P=o+1,
. (7)
_ - 2 _5
Pij = 2I§1§J¢Ed2n Qi = Igig ¢Ed2 2ui’

_ 2 - 3
Hy = Igi; $EAE = Q + 3.
From the conservation equations which are derived from Eq. (1) by
multiplying it by 1, §l, or ;2 and integrating the result over the whole
molecular velocity space, we have

ui = const, P11 = 0, Q1 = const, Hl = const, (8)
where Eq. (5) 1is used for the second equation. These equations will be
used for the accuracy test of our numerical computation.

The dependence of the solution on the parameters 8 and At 1s very
simple. That is, if the solutions for two special values of B8, say 81 and
Bz, are known, then the solution for an arbitrary B8 is given by

$(8=8) = 525 —— [(8 - 8,)9(8=8,, At=1) + (8, - B)4(B=8

At=1)1. (9)
By - By

21

F. NUMERICAL ANALYSIS

The boundary-value problem (1), (3a), and (5) over the domain
(0 < x; 2 1/2) is quite similar to that treated in Ref. 10 [cf. Egs. (20),
(21), and (23) there}l. Thus, we can readily make use of the method,
scheme, and stored data of computation in Ref. 10.

We determine the solution of the boundary-value problem by pursuing
the long-time behavior of the solution of the initial and boundary-value
problem [Eq. (1) with the additional 8¢4/8t term on the left-hand side,
boundary condition (3a) and (5), and an initial condition (e.g., ¢ = 0)].
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The time-dependent problem is solved numerically by a finite-difference
method. The finite-difference scheme for the differential operator is a
standard implicit one [cf. Egs. (33), (34a), and (34b) in Ref. 10]. In
the collision integral, the velocity distribution function ¢E is expanded
in terms of a\system of basis functions such as used in the finite element
method. The basis functions are chosen in such a way that ¢E is
approximated by a sectionally quadratic function of ;1 and gr that takes
the exact value at the lattice points in (§1. ;r) [cf. Appendix A in Ref.
10]. Thus the collision integral is expressed by the product of the
collision integral matrix (Djklm in Ref. 10) and the column vector
consisting of the values of ¢E at the lattice points. The collision
integral matrix is the collision integral of the basis functions (Wlm in
Ref. 10) at the lattice points and thus is a universal matrix. We have
built the matrix for three lattice systems of different fineness in Refs.
10 and 13. Thus, we can effectively compute the collision integral not
only for the present problem but also for any problem where the molecular
velocity dependence of ¢E is gl and gr only. Further, the present method
of computation is very convenient to vectorize the program of computation
for a vector computer such as FACOM VP-400E.

In our finite difference computation, the space interval 0 < Xy < 1/2
is divided into 100 sections, uniform for k > 1, and nonuniform for k < 1
with the minimum width 0.0005 (k = 0.1) ~ 0.004 (k = 0.8) around x, = 1/2

1
and the maximum width 0.0183 (k = 0.1) ~ 0.00795 (k = 0.8) around x, = 0.

The glgr space is limited to the finite region (-4.429 < ;1 < 4.429% 0 <
;r < 4), and the region is divided into 36 uniform sections for ;r and 116
nonuniform sections for ;1 with the minimum width 0.0036 around §l = 0 and
the maximum width 0.2182 around ;1 = +4.429. Thus, there are 4329 lattice
points in §l§r space. This lattice system for glgr is finer than that
used in Ref. 10 and is called M3 in Ref. 13. The limitation of ;l and ;r
to the finite region is legitimate in view of the form of Eqs. (1) - (3),
(5), and (7), where the interaction terms of different molecular
velocities are multiplied by rapidly decaying functions, and it is

confirmed by the computation.

Y. RESULT OF ANALYSIS

The temperature and density distributions in the gas are shown in
Tables 1 and I and Figs. la, b, and ¢, where © and -t (or -0 and t) are
drawn so that the pressure P can be easily read as the difference (or
distance) of the two curves. For large 8, the temperature gradient in the
center region of the gas is in the opposite direction to that of the
maintained temperature gradient between the two condensed phases. The
possibility of the inverse temperature gradient, called negative
temperature-gradient phenomenon, was first noted in the 1limit k -+ 0 and

- 5 -
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has been discussed by various authors.l_8 Its physical mechanism is
discussed in Ref. 2; its thermodynamic discussion is given in Ref. 7. 1In

the 1limit k =+ 0, the inverse temperature gradient occurs when

B > 4.6992, (hard sphere), (10)
> 4.7723, (BKW) ,

which is derived by the asymptotic theory of the Boltzmann equation for

small Knudsen numbers.Z2:10.13-16

The 8 at the onset of the inverse
temperature gradient, BrT' for general k is given in Table M. In the
free molecular flow (k = «), the temperature-is uniform (t = 0)
irrespective of 8.

The gas velocity ul, heat flow Ql’ and energy flow H1 versus k are
shown for 8 = 2 and 12 in Fig. 2 and Table M. The results for arbitrary
8 are easily obtained by the same linear combination as in Eq. (9). The
mass and energy flows are always from the hotter condensed phase to the
colder, but a heat flow in the opposite direction is observed for large 8.
For large 8, —Hl takes its minimum at an intermediate Knudsen number, and
around 8 = 2 ~ 3, so does -u,. The value of B for which the reversal of

1
the direction of the heat flow occurs is also tabulated as B in Table 1.

rQ
It does not depend much on the Knudsen number. The asymptotic results for
small k can be obtained with the aid of the asymptotic theory:z’lo’ls’16
u, = - ClB i (cz i 038)k At Q, = - §x ii—:—féglg AT
1 1+ cok ' 1 2 1+ cok '
(11)
H = -2 °1f + legr cgblk AT 8 = 8 - - ¢t
1 2 1 + cok ’ rT rQ 4’
Cy = 4.3327, ¢, = 0.4670, Cy = -1.0224, cqy = 2.2411, Cy = -0.2128,
_l o _ _ _
(c4 = -4.6992), «x = 1.922284, c5 = C,y + K, Cg = KC4 + Cgq,

where all the terms of the asymptotic series are taken. They are also
shown in Fig. 2 and Table . The onset of the inverse heat flow generally
differs from that of the inverse temperature gradient but agrees with it
in the limit k = 0.

The velocity distribution functions ¢E at three points in the gas are
shown for k = 0.1, 1, and 10 and for 8 = 2, 12, and 8 rQ in Figs. 3 - 5.
For a given 8, the velocity distribution function ¢E/At for §1 < 0 at
x1 = 0.5 takes the same form for any k [cf. Eq. (3a)]. Thus these are
good examples to see the effect of molecular collisions. For large k, the
variation of ¢E with respect to X is small except around ;l = 0, where

the collision effect is localized, and the variation with respect to gl is

-6 -
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very steep around §1 = 0.

¥I. GENERAL BOUNDARY CONDITION

So far we discussed the problem under the conventional boundary
condition on the condensed phase, where the velocity distribution function
of the molecules leaving the condensed phase is determined by the
condition of the condensed phase and is independent of the velocity
distribution of the molecules incident on the condensed phase. The
generalized boundary condition suggested by Wortberg’s experiment9 showing
the dependence of the distribution of the leaving molecules on that of the
incident molecules on a solid surface is given as follows. The velocity
distribution of the leaving molecules is given by the sum of two terms: o,
times of the distribution stated in (ii) of Sec. I and (1 - ac) times of
the diffuse reflection distribution17, where o, (0 < o, < 1) is a constant
called condensation factor. In the present problem, from Eqs. (3a) and
(3b) and Eq. (3) in Ref. 18, it is given by

$ = (B, + &% - Da, (8, < 0, x; = 3), (12a)

1 = -1 1
B, = o8 + (1 - uc)[E + 2/n(Ax) Ig >0§1¢(§. §i)Edz],
1

$ = -(B_ + &% - Dac, (¢, >0, x; = - 3), (12b)

B = 8+ (1-a)ls + 2/k(sr) f; UL SRR
1

The conventional condition corresponds to x, = 1, and the diffuse
reflection boundary condition without evaporation and condensation
corresponds to o, = 0. The latter problem was treated in Ref. 18.

Under the assumption that o, takes a common value on both the
condensed phases, the solution of Egs. (1), (12a), and (12b) is easily
seen to have the symmetry of Egqs. (4) and (5). Thus

B, =B_=8. (13)

Noting the symmetry and comparing Egqs. (12a) and (12b) with Egqs. (3a) and
(3b), we find that the solution under the generalized boundary condition
is expressed by the solution under the conventional condition with
different 8. That is, let ¢(x1, ;i; 8) be the solution under Egs. (3a)
and (3b), and ¢a(x1, gi; Bu) the solution under Eqs. (12a) and (12b) with
a different 8 (i.e., B = Ba) and the same k. Then the relation between
(8, ¢) and (Bu, ¢a) is given by



8 1 - o

g =B "¢ 1, omant . 8(L, &.; 8)EAE], (14)
o x, o, 2 I§1>o 172 i

; B) = ¢(x 8). (15)

¢a(x1, g, o 1 ;i;

i
In view of Eq. (9), the quantity in the square brackets of Eq. (14) is a
linear functions of 8. That 1is,

[#] = a(k)B + b(k), (18)

where a(k) and b(k) are given in Table O. The ﬂa increases as x,
decreases when 8 > b(k)/[1 - a(k)]. In Table O, b(k)/[1 - a(k)] < 1.
For Ba given by Eq. (14), the same state as that under the conventional
boundary condition is realized under the generalized boundary condition. .
Thus the inverse temperature gradient or the inverse heat flow is also
found under the generalized boundary condition.

Making use of Eq. (9) to eliminate ¢ and 8 from Eqs. (14) and (15),
we have the solution for arbitrary ac (# 0) and Ba in terms of two
solutions with qifferent 8, B1 and 82, under the conventional condition as

_ S - - - - =
8o (B = Bg) = FIG-L(AB,> B - 8,)8(B = By) - (ABr B - B)8(B = )], (D)
o, b(k) (1 - )
AT ama - )’ B T—mma -y (18)

We can, therefore, obtain the necessary data for an arbitrary o, from
those given in Sec. V.

From the point of solving the problem, the solution for all the cases
including x, = 0 is obtained by a linear combination of the solutions of
two boundary value problems, say Eqs. (1), (5), and (19a) below and Egs.
(1), (5), and (19b) below. ‘

¢ =1, (;1 <0, x, =3%), (19a)

1

$ =85, (5, <0, x =

= ol

). (19b)

In the present work, we obtain the data from the solutions say, ml and ¢2
of the two boundary-value problems, Egqs. (1), (5), and (19a) and Egs. (1),
(5), and (19b). That is,

- -1, -2
¢,(8 = B )(at) ~ = (A8, + B - 3)0 (20)
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For smaller k the numerical error in the collision integral is more
important to the solution. This effect for small k can be reduced by
solving the problem in two steps: 1) solve 0J (J =1 or 2) and compute

corresponding u ii) consider $J:

1
$J = QJ(new) - 2§1u1(old). (21)

where QJ(new) is the final solution QJ to be solved and ul(old) is the
preliminary uy solved in the.first step; derive the equation and
boundary condition for $J; and then solve 3J, from which OJ(new) is
obtained.

As the accuracy test of our numerical computation, we examine the

constancy of u, Pll’ and H1 [Eq. (8)] for &, and ¢ The results are:

1 2°
-5 -5 -4
V(ul) < 3.6 x 10 %, IPlll < 5.4 x 10 %, V(Hl) < 2.2 x 10 °,
(22)
V(ul) = max(ul(xl)) - min(ul(xl)), V(for each ¢J and k).

The computation was carried out by FACOM VP-400E at the Data
Processing Center, Kyoto University.
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(a) B = 2
(b) 8 = 12
(c) B8 = BrT :

4.692 (k=0.1)
5.863 (k=1)
6.227 (k=10)

rT

Fig. 1. Temperature and density distributions.
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Fig. 2. ul, Ql' and Hl' O, A, and O indicate the numerical results.
The curves for small k indicate the analytical results {Eq. (11)] by
the asymptotic theorylo’la'ls. The straight lines for large k indicate
the results for the free molecular flow.
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