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Abstract

The largest common subgraph problem (LCSG, for short) asks to
find a common connected subgraph of the given two graphs $G_{1}$ and $G_{2}$ ,
with the largest number of edges. In this paper, we develop polynomial
time algorithms for LCSG when both $G_{1}$ and $G_{2}$ are trees.

1 Introduction

Given two graphs $G_{1}$ and $G_{2}$ , the largest common subgraph prob-
lem ($LCSG$, for short) asks to find a common connected subgraph of
both $G_{1}$ and $G_{2}$ , with the largest number of edges. These problems ap-
pear in detection and recognition of the largest connected substructure
possessed commonly by a plural number of chemical structures in the
structure-activity studies, where exploring functional groups or partic-
ular structural fragments common to organic molecules which have the
same biological or pharmacological function is one of the significant is-
sues. Several computational methods for the problem of finding largest
common substructures in two or more molecules were suggested (see e.g.,
[2, 4, 9, 10]). Generally, however, their algorithms arisen in such applica-
tion are quite time-consuming as they are performed in exaustive manner
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based on atom-by-atom (i.e., vertex-by-vertex) comparisons. It is true
that chemical structure diagrams are closely related to the graphs in their
representation. Thus more efficient algorithms are now actually required
for the LCSG problem in systematization of the computer-assisted design
in chemistry.

LCSG in general graphs is obviously NP-complete as Hamiltonian cir-
cuit problem, which is known to be NP-complete [1], can easily be re-
duced to this problem where $G_{1}=C_{|V|}$ (a cycle on $|V|$ vertices) and
$G_{2}=G(=(V, E))$ . Efficient algorithms may, however, exist for some
special cases.

In this paper, we develop polynomial time algorithms for LCSG when
both $G_{1}$ and $G_{2}$ are trees.

2 LCSG Over a Rooted Tree

In this section, a polynomial time algorithm for LCSG is developed
when both $G_{1}$ and $G_{2}$ are rooted trees $(T_{1}, r_{1})$ and $(T_{2}, r_{2})$ , where $r_{1}(r_{2})$

is the root of $T_{1}(T_{2})$ . For each vertex $v$ in $(T, r)$ , let $(T(v), v)$ denote
the subtree of $(T, r)$ whose root is $v$ and spanned by all the descendants
of $v$ . We first introduce procedure $LCS$ for obtaining the largest common
subtree $(T, r)$ of two rooted trees $(T_{1}, r_{1})$ and $(T_{2}, r_{2})$ where $r$ corresponds
to both $r_{1}$ and $r_{2}$ , respectively.

Procedure $LCS((T_{1}, r_{1}),$ $(T_{2}, r_{2}),$ $N((T_{1}, r_{1}),$ $(T_{2}, r_{2})))$

Input: Rooted trees $(T_{1}, r_{1})$ and $(T_{2}, r_{2})$ .
Output: The number $N((T_{1}, r_{1}),$ $(T_{2}, r_{2}))$ of edges of the largest common

subtree $(T, r)$ of $(T_{1}, r_{1})$ and $(T_{2}, r_{2})$ where $r$ corresponds to both $r_{1}$ and
$r_{2}$ , respectively.

begin (Initialization)
For each leaf $l_{i}$ of $(T_{1}, r_{1})$ and $l_{j}’$ of $(T_{2}, r_{2})$ ,

$N((T_{1}(l_{i}), l_{i}),$ $(T_{2}(l_{j}’), l_{j}’))arrow 0$ .

end

begin
Let $v_{1},$

$\ldots,$
$v_{d}$ and $w_{1},$ $\ldots$ , $w_{d’}$ be sons of the roots $r_{1}$ and $r_{2}$ , respectively.

Recursively call procedure $LCS((T_{1}, r_{1}),$ $(T_{2}, r_{2}),$ $N((T_{1}(v_{i}), v_{i}),$ $(T_{2}(w_{j})$ ,
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$w_{j})))$ for $i=1,$ $\ldots,$
$d,$ $j=1,$ $\ldots,$

$d’$ , and construct a bipartite graph $G=$

$(V_{1}, V_{2}, E, c)$ , where $V_{1}=\{(T_{1}(v_{i}), v_{i})|i=1, \ldots, d\},$ $V_{2}=\{(T_{2}(w_{j}), w_{j})|j=$

$1,$
$\ldots,$

$d’$} $,$

$E=\{((T_{1}(v_{i}), v_{i}), (T_{2}(w_{j}), w_{j}))|i=1, \ldots, d, j=1, \ldots, d’\}$ and the
weight $c((T_{1}(v_{i}), v_{i}),$ $(T_{2}(w_{j}), w_{j}))$ of each edge $((T_{1}(v_{i}), v_{i}),$ $(T_{2}(w_{j}), w_{j}))$ is

$N((T_{1}(w_{i}), w_{i}),$ $(T_{2}(v_{j}), v_{j}))+1(i=1, \ldots, d, j=1, \ldots, d’)$ .
$N((T_{1}, r_{1}),$ $(T_{2}, r_{2}))arrow the$ value of the maximum weight matching [7] of
$G$ .

end $\square$

Note 2.1. Throughout this paper, we introduce algorithms for ob-
taining the number of edges of the largest common subtree. It is easy,
however, to modify such algorithms so that the actual largest common
subtree is obtained, although we omit the details. $\square$

Lemma 2.1. Procedure LCS correctly finds the number $N((T_{1}, r_{1})$ ,
$(T_{2}, r_{2}))$ of the largest common subtree $(T, r)$ of $(T_{1}, r_{1})$ and $(T_{2}, r_{2})$ , here
$r$ corresponds to both $r_{1}$ and $r_{2}$ , in $O(n_{1}^{2}n_{2})$ time, where $n_{1}(n_{2})$ is the
number of vertices in $(T_{1}, r_{1})((T_{2}, r_{2}))$ .

(Proof) We shall prove this lemma by induction on $h$ , where $h$ is the
height of the tree which is heigher than or equal to the other among
$(T_{1}, r_{1})$ and $(T_{2}, r_{2})$ . This lemma is trivial when $h=1$ . Soppose that
this lemma holds when $h\leq H-1$ , i.e., $N((T_{1}(v_{i}), v_{i}),$ $(T_{2}(w_{j}), w_{j}))$ ob-
tained by procedure LCS is the number of the largest common subtree
of $(T_{1}(v_{i}), v_{i})$ and $(T_{2}(w_{j}), w_{j})$ for each pair $(T_{1}(v_{i}), v_{i})$ and $(T_{2}(w_{j}), w_{j})$ ,
where $v_{1},$ $\ldots$ , $v_{d}$ and $w_{1},$ $\ldots$ , $w_{d’}$ are sons of the roots $r_{1}$ and $r_{2}$ , respec-
tively. Without loss of generality, we assume that the height of $(T_{1}, r_{1})$

$\leq$ the height of $(T_{2}, r_{2})$ , i.e., the height of $(T_{2}, r_{2})$ is $H$ . Let $(T, r)$ be
the largest common subtree of $(T_{1}, r_{1})$ and $(T_{2}, r_{2})$ where $r$ corresponds to
both $r_{1}$ and $r_{2}$ , and let $(T’, r_{1})((T", r_{2}))$ be the subtree in $(T_{1}, r_{1})((T_{2}, r_{2}))$

isomorphic to $(T, r)$ . We consider a bipartite graph $G=(V_{1’}, V_{2}, E, c)$ ,
where $V_{1}=\{(T_{1}(v_{i}), v_{i})|i=1, \ldots, d\},$ $V_{2}=\{(T_{2}(w_{j}), w_{j})|j=1, \ldots, d’\}$ ,
$E=\{((T_{1}(v_{i}), v_{i}), (T_{2}(w_{j}), w_{j}))|i=1, \ldots, d,j=1, \ldots, d’\}$ and the weight
$c((T_{1}(v_{i}), v_{i}),$ $(T_{2}(w_{j}), w_{j}))$ of each edge $((T_{1}(v_{i}), v_{i}),$ $(T_{2}(w_{j}), w_{j}))$ is

$N((T_{1}(v_{i}), v_{i}),$ $(T_{2}(w_{j}), w_{j})))+1(i=1, \ldots, d,j=1, \ldots, d’)$ .

Consider the set of edges $M=\{((T_{1}(v_{i}), v_{i}),$ $(T_{2}(w_{j}), w_{j}))|(T_{1}(v_{i}), v_{i})$ and
$(T_{2}(w_{j}), w_{j})$ corresponds to the same subtree of $(T, r)$ } $(\subset E)$ . Then $M$
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must be the maximum weight matching of $G$ as, otherwise, let $M’$ be a
matching of $G$ whose value is greater than that of $M$ and we can construct
a larger common subtree of $(T_{1}, r_{1})$ and $(T_{2}, r_{2})$ from $M’\subset E$ , where $r$

corresponds to $r_{1}$ and $r_{2}$ . This, however, contradicts the fact that $(T, r)$

is the largest common subtree of $(T_{1}, r_{1})$ and $(T_{2}, r_{2})$ , proving that the
common subtree obtained by the algorithm is also the largest one when
$h=H$ , as desired. Thus we have proved this lemma by induction.

The time complexity is now analyzed. Note that the most time-
consuming part is the maximum weight matching. We assume here that
$h_{1}\leq h_{2}$ where $h_{1}(h_{2})$ is the height of $T_{1}(T_{2})$ . The maximum weight
matching is solved at vertices within distance $h_{1}$ from $r_{2}$ in $T_{2}$ and at each
vertex $v$ whose degree is $k_{2}$ matched with vertex in $T_{1}$ whose degree is $k_{1}$ ,
the maximum weight matching is solved in $O(k_{1}^{2}k_{2})$ time by a well-known
primal-dual type algorithm (see e.g., [7]). Thus the time complexity in
total is

$\sum O(k_{1}^{2}k_{2})=O(n_{1}^{2}n_{2})$ . $\square$

Now we turn to LCSG where the root of common subtree may corre-
spond to any vertex in $(T_{1}, r_{1})((T_{2}, r_{2}))$ .

Note 2.2. The root $r$ of the largest common subtree $(T, r)$ must corre-
spond to at least one of $r_{1}$ (of $(T_{1},$ $r_{1})$ ) or $r_{2}$ (of $(T_{2},$ $r_{2})$ ) as:

Let $(T’, v_{1})((T’’, v_{2}))$ be the subtree isomorphic to $(T, r)$ in $(T_{1}, r_{1})$

$((T_{2}, r_{2}))$ and consider path $s_{1}$ in $(T_{1}, r_{1})$ ( $s_{2}$ in $(T_{2},$ $r_{2})$ ) from $v_{1}$ to $r_{1}$

(from $v_{2}$ to $r_{2}$ ) and, without loss of generality, we assume that $s_{1}\leq s_{2}$

holds. Let $s’$ be the path in $(T_{2}, r_{2})$ from $v_{2}$ to an ancestor $v’$ of $v_{2}$ ,
whose length is $s_{1}$ . Then by appending $s_{1}(s’)$ to $(T’, v_{1})((T", v_{2}))$ , we
have a larger common subtree of $(T_{1}, r_{1})$ and $(T_{2}, r_{2})$ , contradicting the
assumption. $\square$

Based on Note 2.2, we have the following algorithm LCRT for obtaining
the largest common subtree of $(T_{1}, r_{1})$ and $(T_{2}, r_{2})$ .

Algorithm LCRT$((T_{1}, r_{1}),$ $(T_{2}, r_{2}),$ $N$)
Input: Rooted trees $(T_{1}, r_{1})$ and $(T_{2}, r_{2})$ .
Output: The number $N$ of edges of the largest common subtree $(T, r)$

of $(T_{1}, r_{1})$ and $(T_{2}, r_{2})$ .
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Step 1. For each vertex $v$ in $(T_{1}, r_{1})$ call $LCS((T_{1}(v), v),$ $(T_{2}, r_{2})$ ,
$N((T_{1}(v), v),$ $(T_{2}, r_{2})))$ .

Step 2. For each vertex $v$ in $(T_{2}, r_{2})$ call $LCS((T_{2}(v), v),$ $(T_{1}, r_{1})$ ,
$N((T_{2}(v), v),$ $(T_{1}, r_{1})))$ .

Step 3.

$N arrow\max\{ \max N((T_{1}(v), v), (T_{2}, r_{2})), \max N((T_{2}(v), v), (T_{1}, r_{1}))\}$
$v$ in $(T_{1},r_{1})$ $v$ in $(T_{2},r_{2})$

Step 4. Halt. $\square$

Theorem 2.1. Algorithm LCRT solves LCSG over rooted trees in
$O(n_{1}^{2}n_{2}^{2})$ time, where $n_{1}(n_{2})$ is the number of vertices in $(T_{1}, r_{1})((T_{2}, r_{2}))$ .

(Proof) The correctness is based on Note 2.2 and that of procedure
LCS, hence that of Lemma 2.1.

Step 1 in algorithm LCRT is performed in $O(n_{1}n_{1}n_{2}^{2})=O(n_{1}^{2}n_{2}^{2})$ time
and Step 2 of algorithm LCRT is executed in $O(n_{2}n_{1}^{2}n_{2})=O(n_{1}^{2}n_{2}^{2})$ time
by Lemma 2.1. Thus the time complexity of this algorithm in total is
$O(n_{1}^{2}n_{2}^{2})$ . $\square$

3 LCSG over an Undirectred Tree

In this section, we develop a polynomial time algorithm for the
largest common subtree $T$ of undirected trees $T_{1}$ and $T_{2}$ . Let $(T_{1}, r_{1})$

$((T_{2}, r_{2}))$ be a rooted tree obtained from $T_{1}(T_{2})$ by choosing an arbitrary
vertex $r_{1}$ in $T_{1}$ ( $r_{2}$ in $T_{2}$ ) as a root. Then a rooted tree $(T, r)$ isomorphic
to rooted subtrees $(T’, v’)$ in $(T_{1}, r_{1})$ and $(T$“, $v$

“
$)$ in $(T_{2}, r_{2})$ , both cor-

responding to $T$ , are also the largest common subgraphs of $(T_{1}, r_{1})$ and
$(T_{2}, r_{2})$ . Conversely, let $(T, v)$ be the largest common subtree of $(T_{1}, r_{1})$

and $(T_{2}, r_{2})$ and $T’$ be the corresponding undirected tree obtained from $T$

by neglecting the direction of edges and by not specifying any vertex as
a root. Then $T’$ is also the largest common subtree of $T_{1}$ and $T_{2}$ . Based
on this observation, we have the following algorithm LCUT whose time
complexity is $O(n_{1}^{2}n_{2}^{2})$ where $n_{1}(n_{2})$ is the number of vertices in $T_{1}(T_{2})$ .

Algorithm LCUT
Input: Undirected trees $T_{1}=(V_{1}, E_{1})$ and $T_{2}=(V_{2}, E_{2})$ .
Output: The number $N$ of the edges of the largest common subtree of

undirected trees $T_{1}=(V_{1}, E_{1})$ and $T_{2}=(V_{2}, E_{2})$ .



Step 1. Choose arbitrary vertices $r_{1}$ of $T_{1}$ and $r_{2}$ of $T_{2}$ , respectively, and
construct rooted trees $(T_{1}, r_{1})$ and $(T_{2}, r_{2})$ . Execute algorithm LCRT$((T_{1}$ ,
$r_{1}),$ $(T_{2}, r_{2}),$ $N$).

Step 2. Halt. $\square$

4 Concluding Remarks

We can easily apply algorithm LCUT developed in this paper to
the recognition of the largest common substructure of two chemical com-
pounds with tree structures by specifying which vertex (edge) of $T_{1}$ may
correspond to which vertex (edge) of $T_{2}$ according to the definition of
structural similarity (see e.g., [10]) which is most suitable for the purpose
of each research. Although applicability of the present algorithm is lim-
ited to acyclic molecules, it would be possible to apply it to wider class
of molecules which have isolated simple rings by abstracting or devising
the graph representation of their structures.

Finding some other special cases in which LCSG can be solved effi-
ciently, providing good heuristic algorithms for general graphs and devel-
oping algorithms to find the largest common subgraph of more than two
graphs (see e.g., [9, 10]) seem to deserve further research. The algorithms
developed in this paper may be useful for these purposes.
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