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On the Pullback of a Differential Operator
and its Application

BEX-H (£ 2 (Takakazu Satoh)

Freiburg Siegfried Bocherer

Juk - # Uy IE (Tadashi Yamazaki)
1. Introduction

In [4], Garrett showed nice decomposition of a pull back of
Siegel’s Eisenstein series. We generalize his result to the space of
vector valued modular forms of weight detk®Sym‘.~ In this case,
there is no Siegel’s Eisenstein series in the sense that constant
term of vector valued modular forms vanish. (Cf. Weissauer[8, Satz
1]1.) To avoid this difficulty, we construct, in the section 2, a
differential operator whose pullback sends modular forms to smaller
degree ones. Next, we construct Poincaré series of vector valued
modular forms of weight detk®Sym'. These result together with
coset decomposition by Garrett [4, Sect. 2-3] yields a desired

pullback formula.

Notation

We put I, = Sp(n,Z). Let p be a representation of GL{n,C)
with a representation space W. Let H, be the Siegel upper half
plane of degree n. The W-valued C™modular form J of degree n

and of weight p is a C™function from H, to W satisfying

Because of the first author’s misestimation of time to write this
paper, the second and the third authors did not check the
manuscript. All of the inaccuracies and other faults are due to
the first author although, needless to say, the effective results
are consequence of cooperation among three.
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(f1,M)(2) = £(2)

for all ZeH, and Mel', where

s1,(4 B = olczeny )

for (‘2, g]eSp(n,R). The space of all such functions is denoted by
M:( W). When p is a representation detk®Sym‘ of GL(n,C), we write

| and M:(W) as |,,, and M}:“(W), respectively. We note M:,,';,(W)

P

= {0} unless nk=! mod 2. We. put
Mk"'n(W) = { feM:"’n(W) | f is holomorphic on #, (and its cusp)}

and

Seva(W) = { feM, , (W) | f is a cuspform. }

We omit the subscript ',n’ when there is no fear of confusion. For
a vector space W, we denote by w® its I-th symmetric tensor
product. We identify W(o) with C. Let x = (xl,...,xn) | be a row
vector consisting of n indeterminates. Through out this paper, we
put V = Cx®...06Cx,. We identify V'Y with C[xl,...,xn]“) where the

subscript (!) stands for homogeneous polynomials of degree I. Then

GL(n,C) acts on y® by

(gv)(x) = detg®v(xg)

for ge€GL(n,C) and ve v, This is isomorphic to detk®Sym‘ and we
always wuse this realization. We also identify' C”(HH,V“)) with

C”(Hn)[xl,...,xn]“).
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2. Differential Operator

Let Z = (ij) be a variable on H,. For an integer 21 and an

f € Cw(HH,V(“), we put

1 2

Nf = [—f;(lmz)'lf] [x].
and

8, = kNf+Df. | (2.1)

2 08z,

148 ..
Here, as usual, A[x] = x4 ** and g - {——'J—Q—] . Then, Df,
Y/ 1<ijsn

Nf and & ,f are 2. yalued functions. For an integer 20, we put

. k(k+1)...(k+1-1) (1>0)
L
1 (1=0).

Note 4!l = (—1)"(—A-n+1)["]. We also have

(2l _ < n! [r] Lln-r]
(A+B) = ,Zz:o———r!(n—r)!A B

and

A (n=0)
0 aap)(-A) N a-2m) T - { " (2.2)

n

ori(n-r)! 0 (n#0).

maps MZ,’H(V“)) to MZ (v"*®).  For

Lemma 2.1. The operator §&,,,

+2,n

each integer 20, we have

r . .
S = I (k+ 1+ =)t (11'] N'D™ (2.3)
i=
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Proof. The former part follows from [9] and
(ImM<2>)" = (Im2)  [ez+d]-2i(cz+d) e,
where M= [g S)EFH. Note
D((m2) ' [x) = 4= ((Im2) ' [x])?.
Since D is a derivation and N is essentially a multiplication,
DN' = —IN"4N'D. (2.4)

Using induction on r, we have (2.3). O

It is remarkable that the differential operator acting on

MZ,}H(V“)) depends only on £+I. We note (2.1) and (2.3) do not

explicitly contain n. Let G'j(t) be a formal prWer gseries of ¢
defined by
; =t
Gj(t) = Eo—[!}mﬁj.

IN O :
G(t) = e L —xD
5() i=0 11
In what follows, we put n = p+q where p and g are positive

integers. Let ¥ = Cxl@...EBCxp and V, = Cx

119...OCx, be two sub-

spaces of V. We note V1“) and Vz(” are subspaces of v which are
stable under the GL(p)xGL(q). Let X be any map
X:A - CM(HH,V“)) for any set A. We define two maps Xt:A -

C™(H,, Vlm) and X :4 - C(H, Vz(‘)) by
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i

(X(@))(Fyeis%,) = (X(8))(%,000,%,,0,...,0)

and

(Xl(c_z))(xp”,...,xn) (X(a))(O,...O,xpﬂ,...,x ).

n

Let d be the pullback of diagonal embedding d:prHq - H,.

Now, for each 120, define an operator
L":Hol(#,,C) - Hol(H,xH,,V?*")

inductively by

] 2 %

o t i hat o A Y hat t 1 i, (3)
R b e T o | D ey L AR X
i=0 1t kM oo At (k+ )P oAt (e+ )Y (2.5)

Lemma 2.2.
) 1 * 1 Y -2,

L= —pd L D,D)"(D-D,-D (2.6
KA 052vslu!(l—2y)!(2—j—l)["]( 1 i=Dy) )

Proof. Since DT and Dl commute,

=0 l!k[” i=0 l!k“]
- T _%__1' z ! Tl (DT+DL)P2“(DTDL)” t".
r=0 k 1spsr/2 p!(r-2u)tk

Since (2.5) uniquely determines L“), we have. only to verify that

(2.6) satisfies (2.5). The coefficient of t* of right side is
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1
T L
0cjei/2 0cpei-2i P (1=2j-p)!

1
X Z.,._, o Nl [i-n
osusj ! (j-u){k+l-p-2)" (-k-1+p+21+2)

1 (D+D)°(D,D)(D-D,-D) 4.
Using (2.2), we see this is ;0% O
Note the direct sum decomposition
v (rev)® - éon(a)'Vz“_a)

where =+ is a symmetric tensor product. We denote by n: the
projection Vo y .y For  feMap(#,, V"), define =z.f by

(= N(2) = = (F(2)).

Lemma 2.3.

l+28 e 1]
a2,k = °),k%a
1+2 _ ¢
7y Sk T %(2),4%a

Lemma 2.4. Let fEM: (V“)). Then

y b

d'z.f e My, (MM, . ("),
These are standard.
Proposition 2.5. Let feMk,O,n(C). Then
LYr e M, (oM (). (2.8)
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Proof. We use induction on 1. For (=0, this proposition certainly

' L(N,+N,)
holds because L - d. Let >0. Multiplying de®™ = e "V on
both sides of (2.5), we have
00 1] 00 0 X 0 X
t i t X t A )
'y —0i8h = L| D -5 8 Yot 8, | L
o 1T E T o ar (ke )T Lo a1 (ke )T R0
Hence there are constants CUGEC such that
d'sts = LYY | T e sie Lty (2.9)
kf - f 7=1laz0 ,],la k+2(l.})1 k+2(3-4)4 ‘ *
By Lemma 2, (L“)f)(Z)e VIU)-Vz(”. Hence
(1)
L'f (a=l)
ALY (2.10)
0 (a#l).
2
We apply =, on (2.9).
[
* 204 _ (3) 21 a Jj-a (-J)
dz’8,f = L7f+ Ela{? Cia"s ® ke2a-ptS k2ol L
_ g, 42 5 L2420 D)
B s )E §C,J,a k+2(z N kr20-1% 1-2a J
(¥ J J (l 27)
- f+1<J§‘/201 2J,J81(+21 4J18k+21 411 S
by (2.10). Hence
] ] 00 ]
LOf € My, (MOOML, (1)

by induction hypotheses and Lemma 4. By definition, L“)f is a

holomorphic function on prHq. O

Remark 2.8. When p=g=1, (2.6) together with (2.8) gives a new
proof of linear relation of fourier coefficients of Siegel modular

forms of degree two, which is firstly proved by Maass[7]. Qur
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proof does not use the theory of Jaccobi forms. (Cf. Eichler and
Zagier[B].)‘ Adding a certain term to D, we obtain differential
operator écting on the space of Jaccobi forms. For this operator,
(2.4) remains to be valid. Hence Proposition 2.5 still holds with
this operator. More specifically, let (Zl,...,ln) be a variable on C”

and put
o _[(a &
1124 ag,’ " ar |-

To obtain the differential operator acting ovn Jaccobi forms of index

m, we replace D by
1 8, 1 (1 '“[ a]( a)
br = ['27?52 ‘4—,;[557) 7t )\ ag ) 7))

3. The Kernel Function.

This section is devoted to obtain explicit form of the vector
valued Poincaré series. For a symmetric positive definite matrix S,
we denote by /S the unique symmetric positive definite matrix
satisfying & = J?Z. As is in the previous section; let V =
Cx,9®...6Cx,. Let y=(y,...,¥,) be an another row vector consisting

of indeterminates and put U = CyléB...@Cy . The inner product

My
|

™My
Q

n
a;x;, L byx;
i=1 i=1

induces a inner product of VU) defined by

(al...a}lsl.'.sl) = g
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where @ BJ. e V™ and t runs over the symmetric group of degree
I. It is also denoted by ( , ). This is invariant under the action
of unitary matrices by Sym'. We extend this inner product

¥y V“)—>C to the map V“)-U(”x V“)—> U“) complex linearly by
(vyu,v,) = (v,v,))u

for a monomial u of y,...,¥,. 1f aevV® and BEV“)'U(”, we under-
stand (a,B) to be (B,a). We fix an isomorphism ¢ from V to U
defined by o(x;) = ¥, which induces an isomorphism (also denoted

Q)

by o) from v to U Note

(v, (9" = a(v)

for any ve Y, Put OPry = det.k®Sym'. We define the Petersson

inner product of f, gEM:,z,n( V' by

(f;g)k,; = Jr - (pkﬁ('/l-m_z)f(z)’pk,z(h/m)g(z))detﬂmZ)—n-ldZ

whenever this integral converges. We again extend it to the map
(o Vi My, OV 0ymy (Ve e, vy Ut
Define Poincaré series by

P (2w v, 0y = JZ pk,,(z—W)'l(x‘y)‘)lk,,M,

n

where we regard (xty)‘ as a V. yW-valued constant function.

Proposition 3.1. Let m = dimsS (V“)) and Jf,...,f, be orthonormal

k i, n

basis of S (V“)). Then,

k, 4, n
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Pk,"n(Z, W; V(‘), U(‘)) "= "Ck’l’n ilj:i(z) .O‘('f:j( W)) (3.1)
Jj=

where

n(n-k+1)-i+1 .nk+l7zn(n+1)/2 nﬁl 1_'(21(—2 n+2j-1)(2 k-—n+j—2)“]

=2 K+-1 o (k-n-1% ) (2 k+jti-n-1)

Ck, Ln

Proof. The equation (3.1) is equivalent to
(A2), Py n(Z W V0,0 = 0o (A(W))

for all fESk‘H(V“)). Let S, be the generalized unit circle of

degree n:
S, = {8="SeM(n,C) | E-55>0)}.
Then the similar computation to Klingen [6, Sect.1] gives

(F(2), Py n( 2w V0,0,

= 2T T Yy a0 (ST S (F(W))

where

Vorn = J o (E-88)dS.

Sp

Changing variable S by tUSU, we see

I/Ja,l,n:'oa,l( U_l)wa,l,npa,l( U)

for any unitary matrix U. Since P,; 1is - an irreducible
representation of U(n,C), the operator #¥,, is a homothety b‘y the

Schur’s lemma. That is, there exists a constant c,,
N c il

n a,ln

satisfying ¥
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= ca,,,nld. Hence the proposition follows from

L2 )/2 nﬁl ]—,(2a+2j+1)(n+j+2a)l1]

1 (a+ )T (I+n+j+2a+1) (3.2)

C“!‘J" - a+n+l
We compute Catn®

[} l
ca,l,n - (wa,l,nxl G )

f det(E-S5S)*((E-88)[x])" ds

Sn

1

t

We set S=[Sl V]. By Hualb, Sect.2.3], especially by Theorem
v z

2.3.2 there,

7 J det(E-5,5- ‘vv)*((E- 5,8~ 'vv)[ %))’

c — —— — dvds
% hn a+l (1+v(E-S5;5,- trv) Tty a? : !

1-5,51- tvv>0

- a—-f det(Z- Sfﬂ“”f (1-7 'u)?**%(s (E-'uu) %) duds,,
E-5)5>0 1-7 tu>0

where &, = JE-55%. Put

wa,l,n = J‘ (I_Etu)asyml(E”tUE)dU,
1-7 tu>0
uec?
Using Schur’s lemma again, there exist a constant d,,, satisfying
Poin = dy,,1d. Then,
j (1-u ‘u)** (s (B-'uu) 5 ) du
1-7 tu>0
( §‘ t‘) — d (& = )‘
P2a+2,4,n-151751) T Qag42,4,0-11517 51
i }
d2a+2,l,n-1((E_S151)[xl])
Therefore,
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7
Cain = a+1 Cn—l,a+l,ld2a+2,l,n—1' (3.3)

The value of d

a',’n;is calculated as follows:

da,l,n = ((pa,l,nxl’x])

,
= | (1-u ‘u)*((E-"uu)[x]) du
1-7 tu>0
uec?

= (1-% £3)5(1- t2-th) ' dt, -+ - dt,,

’ 2n 2 J=1 J

1- ¥ t7>0

J=1"

n I'(a+1) L1

F(a+l+n+1)( n+a) 34

By Hua[5, (2.2.6)],
7T
Cant = GO 35

Summing up (3.3)-(3.5), we obtain (3.2). O

4. The Pullback Formula

In this section, we prove a vector valued version of the
Garrett’s Pullback formula. Let p and g be positive integers. To

keep notation simple, we put

xA. = (xl,...,xp_l.),

x, = (xp—r+1""’xp)’
x, = (xpﬂ,...,xp*q_r);
X, = (xp+q-r+1"”’xp+q)
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and

<
il

B CxléB...GBCxp,

<
i

S Cxp_HléB...@Cxp,

<t
il

D CxpEB...éBCx

p+q’

<
!

» = C ©...6Cx,, ,

xp+q-r+1

for an integer r with Os<rs<min(p,g). Let ¢ be an isomorphism from

Vé‘) to VI()‘) induced from o(x For feC”(Hr,V;‘)) we

p-r+.i) = Xprg-r+j
define o(f) by (a{/))(z) = ¢(f(z)). Let Pn,r be the subgroup of 7,
consisting of an element whose entries in last n+r rows and first
n~-r columns vanish. The Siegel’s Eisenstein series E:(Z) of weight
k and of degree n is

ENZ) = 1 2).
+(2) gePfo\fn( |k,0‘g)( )

For kzn+1l, this converges absolutely and uniformly on any compact
set in H,. Let U and V be any representation space of Oir and

O xin respectively. Assume UcCV and
k
pk,l,n[él' g]u = det4d pk"-’,(D)u

for all AeGL(n-r,C), DeGL(r,C) and wue€elU. For such a pair (U,V),
we define the Klingen type Eisenstein series E(f,V)eMk,hn( V)

attached to fes, , (U) by

E(f,V)(z) = T ((frrpl,,8)(2).

g€ Pn,r\ I‘n

Here pr:H —H_is a projection defined by

_13_
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where 2z is of size r.
Lemma 4.1. Let (é’ g)efn and ZeH,. Let k>0 and >0 be integers.

Then

L(det(cz+D)™) = a, (det(cz+D) ™ )((0 0 x, x,)(cz+D)" 'C(x, x, 0 0))'

where

e = (59 (4.1)
where (C = [t?\v{ ](\){] with M = (8 1(\){] (We understand that C = 0

for r=0.) Then,

t :
ak,lpk,l(E_MWBMZB)(xB (2, M)) (r>0),
LV (11 4088) (2 W) =

. 0 (I"_‘O):

t .t
2 Zy Wy Wy

where 7 = { ]er and W = [ ]qu.

Zy  Zg Wy W3

Proof. Straightforward (but long). O

Let S be the symmetric square operator aéting on Sk,"n( V“)),

which is defined by

Sf = T ) VAP

M 0
ger\r, [ 0 m1 Tn

_14_
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where M runs over all non-singular integral matrices of size n in
elementary form. By Garrett{4, Prop. in Sect. 4], a common
eigenfunction of all Hecke operator is an eigenfunction of S.

M_oreover, by [1, (6)], its eigenvalue A(S) is
(k) 8(2k-21)"'D(k-n)
i=1

where Z(s) is the Riemann =zeta function and Df(s) is the standard
L-function of /. For simplicity we put Nk,hn = dimSk',,n(V“)) for

nzl.

Proposition 4.2. Let p,'q>l‘ be intégers and ZGHP, Wqu. Let
kzp+g+l and {22 be even Iintegers. For 1<rsmin(p,q), let

{J‘}’r}lsjw“r be an orthonormal basis of common eigenfunction. Then,

(LY EE* ) (zZ, W)

min(p,q) Niin W )
= ag L Cyp B AU E Vi) (D EGO(S;,),Vep) (W)
r= J=

where € is an operator defined by (8f)(z) = _jT—_Z—)

Proof. Let gy be as in (4.1). By the same computation as in

Garrett[4, Sect. 5]

(%) L
,Z L (1|k'0gﬁ)lk"g0(zlw)
8ol

t \i -
L pk,l,r(z3+ wy) (xp %) lk,l,pg |k,l,qM

-k
= a“detMv [
. gerr

M 0

where ]:1 = [0 M—l}. By Proposition 3.1, this is

-k A AD -
ak'ldetM Pk,“(za,-wa, V',V )Ik,l,qM



199

Neir.

= a, detM“c,, . L 7, () (007,01 g M) (W)

Hence, as in [4, Sect. 5], we have

it

(LY EP* (2, W)

min(p,q) Nk,l,z' P re
@ s Coan & L O30 <3 9 BV - 1(2)
r=1 J=1 £ ePp,r\rp.
x L ((Beo(;Npril .8 ) (W)
£ €Pq,r\lq
min{p,q) Nk,l,r ) ()
@i L Chpn T AU B Vi) (D) E@O(S,,), Ve (W)
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