

Tryoto diliversity research illiorination repository	
Title	CFT on \$ /mathbb{P}^1\$ and Monodromy Representations of the Braid Groups
Author(s)	Kanie, Yukihiro
Citation	数理解析研究所講究録 (1989), 700: 64-84
Issue Date	1989-08
URL	http://hdl.handle.net/2433/101479
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

CFT on \mathbb{P}^1 and Monodromy Representations of the Braid Groups

(Talk at Research Institute of Mathematical Sciences,

Kyoto Univ., July 19,1988)

Yukihiro Kanie

Mie University, Fac.of Education, Dept.of Math.

§0. From the differential equations of N-point functions of vertex operators in the conformal field theory on \mathbb{P}^1 , arise the monodromy representations of the braid group B_N . In the meeting of last year, I reported that these monodromy representations give "all" irreducuble representations of the Hecke algebra $H_N(q)$ of type A_{N-1} (obtained by H.Wenzl[W]) associated with the affine Lie algebra of type $A_n^{(1)}$. In this meeting, I will report that associated with the affine Lie algebras of type $B_n^{(1)}$, $C_n^{(1)}$ and $D_n^{(1)}$, the monodromy representations of the group B_N give "all" irreducible representations of the Birman-Wenzl-Murakami algebra, the q-analogue of Brauer's centralizer algebras. Very important is Jimbo-Miwa-Okado's

calculations[JMO], and in the case of type $C_n^{(1)}$ the representations are equivalent to the ones obtained by J.Murakami[M].

§1. Let g be the simple Lie algebra of type X_n , and $\hat{g} = g \otimes \mathbb{C}[t,t^{-1}] \oplus \mathbb{C}c$ be the affine Lie algebra of type $X_n^{(1)}$. Fix an integer $\ell \geq 1$ and introduce the number $\kappa = \ell + g$, where g is the dual Coxeter number of \hat{g} .

Denote by P_+ the set of dominant integral weights of g and by P_{ℓ} the set of elements $\lambda \in P_+$ satisfying $(\theta,\lambda) \leq \ell$, where θ is the maximum root. For a weight $\lambda \in P_{\ell}$, we denote by V_{λ} the irreducible representation of g of highest weight λ , by \mathcal{H}_{λ} the integrable representation of \hat{g} of highest weight $\ell \wedge \ell_0 + \lambda$ and by $\ell \wedge \ell_0 + \lambda$ the (fixed) highest weight cyclic vector of V_{λ} and \mathcal{H}_{λ} .

The Virasoro algebra also acts on \mathcal{H}_{λ} by the Sugawara forms L(m), $m \in \mathbb{Z}$, and the space \mathcal{H}_{λ} is graded by means of the eigenspace decomposition w.r.t. the operator L(0):

$$\mathcal{H}_{\lambda} = \sum_{\mathbf{d} \in \mathbb{Z}_{>0}} \mathcal{H}_{\lambda}(\mathbf{d}) , \quad \mathcal{H}_{\lambda}(\mathbf{d}) = \{ \mathbf{v} \in \mathcal{H}_{\lambda}; \quad L(0)\mathbf{v} = (\Delta_{\lambda} + \mathbf{d})\mathbf{v} \} ,$$

where $\Delta_{\lambda} = \frac{(\lambda, \lambda + 2\rho)}{2\kappa}$ and ρ is the half sum of positive roots of g. Note that $\dim \mathcal{H}_{\lambda}(d) < \infty$ and $\mathcal{H}_{\lambda}(0) \stackrel{\cong}{=} V_{\lambda}$.

There are dual right g and \hat{g} -module V_{λ}^{\dagger} and $\mathcal{H}_{\lambda}^{\dagger}$ of V_{λ} and $\mathcal{H}_{\lambda}^{\dagger}$, and the nondegenerate invariant bilinear form $\langle \ | \ \rangle$ on $V_{\lambda}^{\dagger} \times V_{\lambda}$ and $\mathcal{H}_{\lambda}^{\dagger} \times \mathcal{H}_{\lambda}$ with the normalized condition $\langle \lambda | \lambda \rangle = 1$ where $\langle \lambda |$ is a fixed highest weight vector of $V_{\lambda}^{\dagger} = \mathcal{H}_{\lambda}^{\dagger}(0)$ and $\mathcal{H}_{\lambda}^{\dagger}$.

A triple $\mathbb{V}=\begin{pmatrix}\lambda\\\mu_2\mu_1\end{pmatrix}$ of weights in P_{ℓ} is called a vertex and is drawn as

$$v = \mu_2 \xrightarrow{\lambda} \mu_1$$

A multi-valued, holomorphic function

$$\Phi(z) : V_{\lambda} \otimes \mathcal{H}_{\mu_1} \longrightarrow \hat{\mathcal{H}}_{\mu_2} = \prod_{d \in \mathbb{Z}_{>0}} \mathcal{H}_{\mu_2}(d)$$

on $\mathbb{P}^1 \setminus \{0, \infty\}$ is called a vertex operator of type $\binom{\lambda}{\mu_2 \mu_1}$ (sometimes called of weight λ), if it satisfies the following:

(Gauge Condition)
$$[X(m), \Phi(z)(u \otimes \cdot)] = z^m \Phi(z)(Xu \otimes \cdot)$$

$$(X \in g, m \in \mathbb{Z}, u \in V_{\lambda});$$

(Eq.of Motion)
$$[L(m), \Phi(z)] = z^m \{z \frac{d}{dz} + (m+1)\Delta_{\lambda}\} \Phi(z),$$

where $X(m)=X\otimes t^m$ and the number Δ_{λ} is called the *conformal* dimension of the vertex operator $\Phi(z)$.

Denote by rel(v) the space of all vertex operators of type v, and introduce the space

$$\operatorname{\mathcal{V}ex}(\lambda) = \sum_{\mu_1, \mu_2 \in P_0} \operatorname{\mathcal{V}ex}(\begin{pmatrix} \lambda \\ \mu_2, \mu_1 \end{pmatrix})$$

of all vertex operators of weight λ .

Introduce the subalgebra $f_{\theta} = \mathbb{C}\langle X_{\theta}, [X_{\theta}, X_{-\theta}], X_{-\theta} \rangle \stackrel{\sim}{=} sl(2;\mathbb{C})$ of g and the subspace $\mathcal{V}(\mathbb{V})$ of $\operatorname{Hom}_{g}(\mathbb{V}_{\lambda} \otimes \mathbb{V}_{\mu_{1}}, \mathbb{V}_{\mu_{2}})$ defined by

$$\mathcal{V}(\mathbf{v}) = \bigcap \operatorname{Ker} \pi_{\mathbf{i}_{\mathbf{Q}}}(\mathbf{j}, \mathbf{j}_{\mathbf{1}}, \mathbf{j}_{\mathbf{2}})$$

where the intersection is taken over the set $\{j, j_1, j_2 \in \frac{1}{2}\mathbb{Z}_{\geq 0}; j+j_1+j_3>\ell\}$, and $\pi_{\mathfrak{t}_{\theta}}(j,j_1,j_2)(\varphi) \in \operatorname{Hom}_{\mathfrak{t}_{\theta}}(\mathbb{W}_j \otimes \mathbb{W}_{j_1}, \mathbb{W}_{j_2})$ is defined as

$$\pi_{\mathfrak{f}_{\theta}}(\mathtt{j},\mathtt{j}_{1},\mathtt{j}_{2})(\phi) = \operatorname{proj}_{\mathtt{W}_{\mathtt{j}_{2}}} \circ \phi \big|_{\mathtt{W}_{\mathtt{j}} \otimes \mathtt{W}_{\mathtt{j}_{1}}} \quad (\phi \in \mathtt{Hom}_{\mathtt{g}}(\mathtt{V}_{\lambda} \otimes \mathtt{V}_{\mu_{1}},\mathtt{V}_{\mu_{2}}))$$

where W_j,W_{j₁},W_{j₂} are t_θ-simple submodules of V_λ,V_{μ_1},V_{μ_2} with spin j,j₁,j₂ respectively.

By Equation of Motion, Φ is expressed as a formal

Laurent series

$$\Phi(z) = \sum_{m \in \mathbb{Z}} \Phi(m) z^{-m-\hat{\Delta}(v)}$$
,

where $\hat{\Delta}(v) = \Delta_{\lambda} + \Delta_{\mu_1} - \Delta_{\mu_2}$ and $\Phi(m)$ is homogeneous of degree m, i.e.

$$\Phi(\mathbf{m}): V_{\lambda} \otimes \mathcal{H}_{\mu_{1}}(\mathbf{d}) \longrightarrow \mathcal{H}_{\mu_{2}}(\mathbf{d}-\mathbf{m}) \qquad \text{for any d.}$$

The principal branch of $\Phi(z)$ is taken such as the value of $z^{-\hat{\Delta}(v)}$ is positive for $z \in \mathbb{R}_+ = \{z \in \mathbb{R}; z > 0\}$ and uniquely continued to the region $\mathbb{C}_+ = \{z \in \mathbb{C}; \text{Im} z > 0\}$, and we refer this for the value of $\Phi(z)$ on \mathbb{C}_+ .

For any vertex operator $\Phi \in \mathcal{V}e_{\ell}(v)$, its initial term $\varphi = \Phi(0) \Big|_{V_{\lambda} \otimes \mathcal{H}_{\mu_{1}}(0)} = \operatorname{proj}_{V_{\mu_{2}}} \cdot z^{\hat{\Delta}(v)} \Phi(z) \Big|_{V_{\lambda} \otimes V_{\mu_{1}}} \text{ belongs to}$ $\mathcal{V}(v). \text{ Under this correspondence,}$

Theorem 1. The space Per(v) of N-point functions of type v is isomorphic with the space P(v) of initial terms of type v.

Call v $LCG(\ell-constrained\ Clebsch-Gordan)$ vertex, if $\mathscr{V}(v)\neq 0$, and denote by (ℓCG) the set of all ℓCG vertices.

For each $\varphi \in \mathcal{V}(v)$, denote by Φ_{φ} the vertex operator with the initial term φ .

Notes. i) Even if we assume that $\lambda \in P_+$ and $\mu_i \in P_\ell$, $\mathcal{V}(\begin{pmatrix} \lambda \\ \mu_2 & \mu_1 \end{pmatrix}) \neq 0 \text{ implies that } \lambda \in P_\ell \ .$

- ii) Operator product expansions of currents $X(z) = \sum_{m \in \mathbb{Z}} X(m)z^{-m-1}$ ($X \in g$) and the energy-momentum tensor $T(z) = m \in \mathbb{Z}$ $\sum_{m \in \mathbb{Z}} L(m)z^{-m-2} \text{ with vertex operators allow the extension of } m \in \mathbb{Z}$ the vertex operators $\Phi(z)$ of type $\begin{pmatrix} \lambda \\ \mu_2 \mu_1 \end{pmatrix}$ to the operators $\Phi(z) : \mathcal{H}_{\lambda} \otimes \mathcal{H}_{\mu_1} \longrightarrow \hat{\mathcal{H}}_{\mu_2}$ by means of contour integrals.

 (Nuclear Democracy)
- iii) By the same arguments as in §3, the analytic continuation of a vertex operator Φ of type $\begin{pmatrix} \lambda \\ \mu_2 \mu_1 \end{pmatrix}$ along the path γ_0 gives a vertex operator of type $\begin{pmatrix} \lambda \\ \mu_1 \mu_2 \end{pmatrix}$, where

$$\gamma_0(t) = z e^{\pi \sqrt{-1}t}$$
 , $t \in [0,1]$, $z \in \mathbb{R}_+$.

This gives an isomorphism C_{γ_0} of $\operatorname{Fer}\left(\frac{\lambda}{\mu_2\mu_1}\right)$ to $\operatorname{Fer}\left(\frac{\lambda}{\mu_1\mu_2}\right)$ and the corresponding isomorphism

$$\mathbf{C}_{\gamma_0} \colon r {\lambda \brack \mu_2 \mu_1} \longrightarrow r {\lambda \brack \mu_1 \mu_2}$$

is given by

$$C_{\gamma_0} = e^{\pi \sqrt{-1} \hat{\Delta}(v)} T$$
,

where T is the transposition:

A vertex operator $\Phi(z)$ of type $\mathbb V$ is also considered as an operator from $\mathcal H_{\mu_1}$ to $\hat{\mathcal H}_{\mu_2}$ parametrized by $\mathbb V_\lambda$, i.e.

$$\Phi(\mathbf{u};\mathbf{z})(\mathbf{v}) = \Phi(\mathbf{z})(\mathbf{u}\otimes\mathbf{v}) \qquad (\mathbf{u}\in\mathbb{V}_{\lambda}, \ \mathbf{v}\in\mathcal{H}_{\mu_{1}}).$$

§2. It is convenient to introduce the spaces $\mathcal{H} = \sum_{\lambda \in P_{\underline{\ell}}} \mathcal{H}_{\lambda}$ and $\hat{\mathcal{H}} = \sum_{\lambda \in P_{\underline{\ell}}} \hat{\mathcal{H}}_{\lambda}$ and consider vertex operators as linear operators of \mathcal{H} to $\hat{\mathcal{H}}$. The vacuum $|0\rangle$ of \mathcal{H}_{0} is called a Virasoro vacuum, since $L(m)|0\rangle = 0$ for $m \ge -1$. Note that $V_{0} = \mathbb{C}|0\rangle$.

For an N-ple $\Lambda=(\lambda_N,\cdots,\lambda_1)$ of weights in P_{ℓ} , denote $V_{\Lambda}=V_{\lambda_N}\otimes\cdots\otimes V_{\lambda_1} \quad \text{and} \quad V_{g}^{\vee}(\Lambda)=\operatorname{Hom}_{g}(V_{\Lambda},\mathbb{C}) \ .$

For any vertex operators $\Phi^{i}(z_{i})$ of weight $\lambda_{i}(1 \le i \le N)$,

$$\langle 0 | \Phi^{N}(z_{N}) \cdots \Phi^{1}(z_{1}) | 0 \rangle$$

is the coefficient of |0> the iterated application $\Phi^N(z_N)\cdots\Phi^1(z_1)|0> \text{ to the vector }|0>, \text{ and this is a}$ $V_g^V(\Lambda)\text{-valued formal Laurent series in }z_N,\cdots,z_1\text{ called the }N\text{-point function of weight Λ and is denoted by <math display="block">\langle\Phi^N(z_N)\cdots\Phi^1(z_1)\rangle. \text{ Denote by $\operatorname{\it Per}(\Lambda)$ the space of all }N\text{-point functions of weight Λ.}$

The space $V_g^{\vee}(\Lambda)$ is decomposed as

$$\begin{aligned} \mathbf{V}_{\mathbf{g}}^{\vee}(\mathbf{A}) &= \sum_{\mu} \mathbf{V}_{\mathbf{g}}^{\vee}(\mathbf{A})_{\mu} , & \mu = (\mu_{\mathbf{N}-1}, \cdots, \mu_{1}) \in (P_{+})^{\mathbf{N}-1} ; \\ \mathbf{V}_{\mathbf{g}}^{\vee}(\mathbf{A})_{\mu} &\leftarrow \frac{\mathbf{C}_{\mathbf{A}}}{\cong} & \operatorname{Hom}_{\mathbf{g}}(\mathbf{V}_{\lambda_{\mathbf{N}}} \otimes \mathbf{V}_{\mu_{\mathbf{N}-1}}, \mathbf{V}_{\mathbf{0}}) \otimes \cdots \otimes \operatorname{Hom}_{\mathbf{g}}(\mathbf{V}_{\lambda_{\mathbf{i}}} \otimes \mathbf{V}_{\mu_{\mathbf{i}-1}}, \mathbf{V}_{\mu_{\mathbf{i}}}) \\ & \otimes \cdots \otimes \operatorname{Hom}_{\mathbf{g}}(\mathbf{V}_{\lambda_{\mathbf{1}}} \otimes \mathbf{V}_{\mathbf{0}}, \mathbf{V}_{\mu_{\mathbf{1}}}) , \end{aligned}$$

where the identification $C_{\mathbf{A}}$ is given by

$$\begin{split} \mathbf{C}_{\pmb{\Lambda}}(\varphi_{\mathbf{N}} \otimes \cdots \otimes \varphi_{1}) &(\mathbf{u}_{\mathbf{N}} \otimes \cdots \otimes \mathbf{u}_{1}) \\ &= & <0 \, | \, \varphi_{\mathbf{N}}(\mathbf{u}_{\mathbf{N}} \otimes \varphi_{\mathbf{N}-1}(\cdots \otimes \varphi_{2}(\mathbf{u}_{2} \otimes \varphi_{1}(\mathbf{u}_{1} \otimes | 0 >) \cdots) > \\ &= & <0 \, | \, \varphi_{\mathbf{N}}(\mathbf{u}_{\mathbf{N}}) \circ \cdots \circ \varphi_{1}(\mathbf{u}_{1}) \, (| \, 0 >) \quad , \\ \\ \text{for } \varphi_{\mathbf{i}} \in & \text{Hom}_{\mathbf{g}}(\mathbf{V}_{\lambda_{\mathbf{i}}} \otimes \mathbf{V}_{\mu_{\mathbf{i}-1}}, \mathbf{V}_{\mu_{\mathbf{i}}}) & \cong & \text{Hom}_{\mathbf{g}}(\mathbf{V}_{\lambda_{\mathbf{i}}}, \text{Hom}(\mathbf{V}_{\mu_{\mathbf{i}-1}}, \mathbf{V}_{\mu_{\mathbf{i}}})) \\ &(1 \leq \mathbf{i} \leq \mathbf{N}; \quad \mu_{\mathbf{N}} = \mu_{0} = 0) \, , \quad \text{and} \quad \mathbf{u}_{\mathbf{N}} \otimes \cdots \otimes \mathbf{u}_{1} \in \mathbf{V}_{\pmb{\Lambda}}. \end{split}$$

Introduce the subspace $\mathscr{V}(\Lambda)$ of $V_{\mathbf{g}}^{\vee}(\Lambda)$ defined, through $\mathbf{C}_{\Lambda},$ by

$$\mathcal{V}(\Lambda) = \sum_{\mu} \mathcal{V}(\Lambda)_{\mu} , \qquad \mu = (\mu_{N-1}, \dots, \mu_1) \in (P_{\ell})^{N-1} ;$$

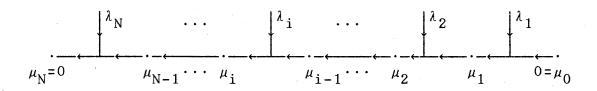
where

$$\mathcal{V}(\Lambda)_{\mu} = \mathcal{V}(\mathbb{V}_{N}(\mu)) \otimes \cdots \otimes \mathcal{V}(\mathbb{V}_{1}(\mu)) \otimes \cdots \otimes \mathcal{V}(\mathbb{V}_{1}(\mu)) \subset \mathbb{V}_{g}^{\vee}(\Lambda)$$
 and

$$\mathbf{v}_{\mathbf{N}}(\boldsymbol{\mu}) = \begin{pmatrix} \lambda_{\mathbf{N}} \\ 0 & \mu_{\mathbf{N}-1} \end{pmatrix}, \dots, \quad \mathbf{v}_{\mathbf{i}}(\boldsymbol{\mu}) = \begin{pmatrix} \lambda_{\mathbf{i}} \\ \mu_{\mathbf{i}} & \mu_{\mathbf{i}-1} \end{pmatrix}, \dots, \quad \mathbf{v}_{\mathbf{1}}(\boldsymbol{\mu}) = \begin{pmatrix} \lambda_{\mathbf{1}} \\ \mu_{\mathbf{1}} & 0 \end{pmatrix}.$$

Then the space $\mathscr{V}(\Lambda)$ is isomorphic to $\mathscr{V}e_{\imath}(\Lambda)$ of N-point functions of weight Λ as follows: to each φ = $C(\varphi_N \otimes \cdots \otimes \varphi_1) \in \mathscr{V}(\Lambda)$, assign the N-point function

$$\Phi_{\varphi_N \otimes \cdots \otimes \varphi_1}(z) = \langle \Phi_{\varphi_N}(z_N) \cdots \Phi_{\varphi_1}(z_1) \rangle \in \mathcal{P}er(\Lambda) .$$



Now introduce a system KZ(Λ) of differential equations on Hom_g(V_{Λ} , \mathbb{C})-valued functions $\Phi(z)$ on $X_{N} = \{z = (z_{N}, \cdots, z_{1}) \in \mathbb{C}^{N}; z_{1} \neq z_{j} \ (i \neq j)\}$

$$KZ(\Lambda) \qquad \left(\kappa \frac{\partial}{\partial z_{i}} - \sum_{\substack{k=1 \ k \neq i}}^{N} \frac{\Omega_{ik}}{z_{i}^{-z_{k}}}\right) \Phi(z) = 0 \qquad (1 \le i \le N)$$

due to Knizhnik-Zamolodchikov[KZ], where

$$\Omega_{ik} = \sum_{a=1}^{\dim g} \rho_i(X^a) \rho_k(X_a)$$
,

 ho_i denotes the g-action on the i-th component of ${\rm Hom}(V_{\Lambda},\mathbb{C})$ and $\{X_a^a\}$ and $\{X_a^a\}$ are dual bases of g.

Further introduce an additional ℓ -constraint condition, i.e. a system $\ell C(\Lambda)$ of algebraic equations

$$\mathcal{L}C(\Lambda) \sum_{|\mathbf{m}_{\mathbf{i}}|=L_{\mathbf{i}}} {L_{\mathbf{i}} \choose \mathbf{m}_{\mathbf{i}}} \prod_{\mathbf{k}\neq\mathbf{i}} (z_{\mathbf{k}}-z_{\mathbf{i}})^{-\mathbf{m}_{\mathbf{k}}} \Phi(z) (X_{\theta}^{\mathbf{m}_{\mathbf{N}}} u_{\mathbf{N}}, \cdots, |\lambda_{\mathbf{i}}\rangle, \cdots, X_{\theta}^{\mathbf{m}_{\mathbf{1}}} u_{\mathbf{1}}) = 0,$$

for any $\mathbf{u}_{\mathbf{k}} \in \mathbf{V}_{\lambda_{\mathbf{k}}}$ $(\mathbf{k} \neq \mathbf{i})$, where $\mathbf{m}_{\mathbf{i}} = (\mathbf{m}_{\mathbf{N}}, \cdots, \hat{\mathbf{m}}_{\mathbf{i}}, \cdots, \mathbf{m}_{\mathbf{1}}) \in (\mathbb{Z}_{\geq 0})^{N-1}$, $|\mathbf{m}_{\mathbf{i}}| = \sum_{\mathbf{k} \neq \mathbf{i}} \mathbf{m}_{\mathbf{k}}$, $\mathbf{L}_{\mathbf{i}} = \ell - (\lambda_{\mathbf{i}}, \theta) + 1$ and $\mathbf{L}_{\mathbf{i}}$ is the multinomial coefficient.

Remark. The system $KZ(\Lambda)$ of differential equations is completely integrable because of the infinitesimal pure braid relations among the operators Ω_{ik} (see [A]). The system $\&C(\Lambda)$ is compatible with the system $KZ(\Lambda)$.

Any N-point function of weight A satisfies the systems

of $KZ(\Lambda)$ and $\ell C(\Lambda)$. Hence

Theorem 2.

i) For any N-ple A of weights in P_{ℓ} , any N-point function $\langle \Phi^N(z_N) \cdots \Phi^1(z_1) \rangle$ of weight A is absolutely convergent in the region \mathcal{R}_N , and is analytically continued to a multivalued holomorphic function on X_N , where \mathcal{R}_N is defined by

$$\mathcal{R}_{N} = \{ z = (z_{N}, \dots, z_{1}) \in \mathbb{C}_{+}^{N}; |z_{N}| > \dots > |z_{1}| \} \subset X_{N}.$$

ii) The solution space of the joint system $KZ(\Lambda)$ and $LC(\Lambda)$ is isomorphic with $Ye_{\Lambda}(\Lambda)$, hence with $Y(\Lambda)$.

Note. If $\mathbb{V} = \begin{bmatrix} \lambda \\ \mu & 0 \end{bmatrix} \in (CG)$, then $\mu = \lambda$, $\hat{\Delta}(\mathbb{V}) = 0$, and $\mathcal{V}(\mathbb{V}) \cong \operatorname{Hom}_{\mathbf{g}}(\mathbb{V}_{\lambda}, \mathbb{V}_{\lambda}) = \mathbb{C}\mathrm{id}$.

If $\mathbb{V} = \begin{pmatrix} \lambda \\ 0 \end{pmatrix} \in (CG)$, then $\mu = \lambda^+$, $\hat{\Delta}(\mathbb{V}) = 2\Delta_{\lambda}$, and $\ell(\mathbb{V}) \cong \operatorname{Hom}_{g}(\mathbb{V}_{\lambda} \otimes \mathbb{V}_{\lambda^+}, \mathbb{C}) = \mathbb{C}\nu$, where the $anti-weight \ \lambda^+$ of λ is defined as $-\lambda^+(=w_0\lambda)$ is the lowest weight of \mathbb{V}_{λ} and ν is normalised as $\nu(|\lambda\rangle \otimes w_0 |\lambda^+\rangle)=1$, where w_0 is the longest element of the Weyl group of g.

3-point functions are essentially nothing but vertex

operators. The assignation to $\varphi \! \in \! \mathcal{V}(\left[\begin{matrix} \lambda \\ \mu_2 & \mu_1 \end{matrix}\right])$ the element $\nu \! \otimes \! \varphi \! \otimes \! \mathrm{id} \; \in \; \mathcal{V}(\mu_2^{\scriptscriptstyle +}, \lambda \, , \mu_1) \; , \\$

 $v \otimes \varphi \otimes id(|u\rangle \otimes |v\rangle \otimes |w\rangle)$

$$= \nu \left(|\mathbf{u}\rangle \otimes \varphi (|\mathbf{v}\rangle \otimes |\mathbf{w}\rangle \right) \qquad \left(|\mathbf{u}\rangle \otimes |\mathbf{v}\rangle \otimes |\mathbf{w}\rangle \in \mathbb{V}_{\mu_{2}^{+}} \otimes \mathbb{V}_{\lambda} \otimes \mathbb{V}_{\mu_{1}} \right),$$

gives the isomorphism between them. Hence the space $\operatorname{\textit{Pei}}(\left(\frac{\lambda}{\mu_0}, \frac{\lambda}{\mu_1}\right))$ of vertex operators is isomorphic with the space $\operatorname{\textit{Yer}}(\mu_2^+,\lambda,\mu_1)$ of 3-point functions. More precisely, the classical sector $\operatorname{proj}_{\mathbb{V}_{2}} \circ \Phi_{\varphi}(\mathbf{z}) \big|_{\mathbb{V}_{\lambda} \otimes \mathbb{V}_{\mu_{1}}}$ of the vertex

operator $\Phi_{\omega}(z)$ is given by

$$\lim_{\substack{z_{\text{t}} \nearrow \infty}} \lim_{\substack{z \\ \text{s}} \searrow 0} z < \Phi_{\nu}(z_{\text{t}}) \Phi_{\varphi}(z) \Phi_{\text{id}}(z_{\text{s}}) >.$$

§3. Denote by $\operatorname{Fer}(\mathbf{v}_2) \circ \operatorname{Fer}(\mathbf{v}_1)$ the space of compositions $\boldsymbol{\varphi}^2(\mathbf{z}_2)\boldsymbol{\varphi}^1(\mathbf{z}_1)$ of vertex operators $\boldsymbol{\varphi}^i$ of type \mathbf{v}_i . Then

$$\sum_{\mu \in P_{\ell}} \operatorname{rer}\left(\begin{pmatrix} \lambda_2 \\ \mu_t \end{pmatrix} \right) \circ \operatorname{rer}\left(\begin{pmatrix} \lambda_1 \\ \mu \end{pmatrix} \right) \cong \operatorname{rer}(\Lambda) \cong \operatorname{r}(\Lambda) ,$$

where $\Lambda = (\mu_{t}^{+}, \lambda_{2}, \lambda_{1}, \mu_{s})$.

The composition $\Phi^2(z_2)\Phi^1(z_1)$ is determined by the classical sector $\operatorname{proj}_{V_{\mu_{+}}} \cdot \Phi^{2}(z_{2}) \Phi^{1}(z_{1}) |_{V_{\mu_{c}}} \epsilon$

 $\operatorname{Hom}_{\mathbf{g}}(\mathbf{V}_{\lambda_{2}} \otimes \mathbf{V}_{\lambda_{1}} \otimes \mathbf{V}_{\mu_{\mathbf{S}}}, \mathbf{V}_{\mu_{\mathbf{t}}})$ and it is given by

$$\lim_{\substack{z_{\mathsf{t}} \nearrow \infty}} \lim_{\substack{z_{\mathsf{s}} \searrow 0}} z_{\mathsf{t}} < \Phi_{\nu}(z_{\mathsf{t}}) \Phi^{2}(z_{2}) \Phi^{1}(z_{1}) \Phi_{\mathrm{id}}(z_{\mathsf{s}}) > .$$

Hence by Theorem 2, the composition $\Phi^2(z_2)\Phi^1(z_1)$ is absolutely convergent in the range $\Re_2 = \{(z_2,z_1)\in \mathbb{C}_+^2; |z_2|>|z_1|>0\}$, so by the analytic continuation it defines the holomorphic (multivalued) function valued in $\operatorname{Hom}(V_{\lambda_2}\otimes V_{\lambda_1},\operatorname{Hom}(\Re_{\mu_s},\hat{\Re}_{\mu_t}))$ on the complex manifold $\operatorname{M}_2 = \{(z_2,z_1)\in (\mathbb{C}\setminus\{0\})^2; z_1\neq z_2\}$.

Denote by $\Phi^2(u_2;z_1)\Phi^1(u_1,z_2) = C_{\gamma}(\Phi^2(u_2;z_2)\Phi^1(u_1,z_1))$ its analytic continuation along the path γ :

$$\gamma(\mathsf{t}) = \left\{ \frac{z_2^{+z_1}}{2} + \mathrm{e}^{\pi \sqrt{-1} \mathsf{t}} \ \frac{z_2^{-z_1}}{2}, \ \frac{z_2^{+z_1}}{2} - \mathrm{e}^{\pi \sqrt{-1} \mathsf{t}} \ \frac{z_2^{-z_1}}{2} \right\}, \quad \mathsf{t} \in [0,1]$$

for $(w,z) \in \mathcal{R}$, then the corresponding analytic continuation

$$\mathsf{T} < \Phi_{\nu}(\mathsf{z}_{\mathsf{t}}) \Phi^{2}(\mathsf{z}_{\mathsf{1}}) \Phi^{1}(\mathsf{z}_{\mathsf{2}}) \Phi_{\mathsf{id}}(\mathsf{z}_{\mathsf{s}}) >$$

satisfies the systems KZ(TA) and ℓ C(TA) as a $\operatorname{Hom}(V_{\lambda_1} \otimes V_{\lambda_2}, Hom(\mathcal{H}_{\mu_s}, \hat{\mathcal{H}}_{\mu_t}))$ -valued function, where T is the transposition operator: $\operatorname{Hom}(V_{\lambda_2} \otimes V_{\lambda_1}, A) \longrightarrow \operatorname{Hom}(V_{\lambda_1} \otimes V_{\lambda_2}, A)$,

$$(\mathsf{T}\varphi)\,(\mathsf{u}_1\otimes\mathsf{u}_2)\ =\ \varphi(\mathsf{u}_2\otimes\mathsf{u}_1) \qquad (\mathsf{u}_2\otimes\mathsf{u}_1\in \ \mathsf{V}_{\lambda_1}\otimes\mathsf{V}_{\lambda_2})\,,$$

and TA = $(\mu_{\rm t}^{*}, \lambda_{1}, \lambda_{2}, \mu_{\rm s})$. Hence the analytic continuation

along γ gives an isomorphism between the spaces of compositions of vertex operators:

Theorem 3. (Commutation Relations)

For Λ = $(\mu_{\rm t}^*,\lambda_2^{},\lambda_1^{},\mu_{\rm s}^{})$, C(A) = C $_{\gamma}(\Lambda)$ is an isomorphism :

Remark. The isomorphisms $C_{\gamma}(\Lambda)$, $\Lambda \in P_{\ell}^{4}$ enjoy the braid relations: For any $N \ge 1$, μ_{t} , $\mu_{s} \in P_{\ell}$, introduce the space

$$\mathcal{V}(\mathrm{N}\,;\boldsymbol{\mu}_{\mathsf{t}}\,,\boldsymbol{\mu}_{\mathsf{s}}) \; = \; \sum_{\boldsymbol{\lambda}_{1}}, \cdots, \boldsymbol{\lambda}_{\mathrm{N}} \in P_{\boldsymbol{\ell}} \; \mathcal{V}(\boldsymbol{\mu}_{\mathsf{t}}^{\star}\,,\boldsymbol{\lambda}_{\mathrm{N}},\cdots,\boldsymbol{\lambda}_{1}\,,\boldsymbol{\mu}_{\mathsf{s}}) \;\; .$$

Define the operators C_i (1 \leq i \leq N-1) on $\mathcal{V}(N; \mu_t, \mu_s)$ such that

$$\mathbf{C}_{\mathbf{i}} \ \mathcal{V}(\boldsymbol{\mu}_{\mathsf{t}}^{*}, \boldsymbol{\lambda}_{\mathsf{N}}, \cdots, \boldsymbol{\lambda}_{1}, \boldsymbol{\mu}_{\mathsf{s}}) \ \boldsymbol{\subset} \ \mathcal{V}(\boldsymbol{\mu}_{\mathsf{t}}^{*}, \boldsymbol{\lambda}_{\mathsf{N}}, \cdots, \boldsymbol{\lambda}_{\mathbf{i}}, \boldsymbol{\lambda}_{\mathsf{i}+1}, \cdots, \boldsymbol{\lambda}_{1}, \boldsymbol{\mu}_{\mathsf{s}})$$
 and

$$\begin{split} & \text{C}_{\text{i}} \left(\phi_{\text{N}} \otimes \cdots \otimes \phi_{1} \right) \\ & = \phi_{\text{N}} \otimes \cdots \otimes \phi_{\text{i}+2} \otimes \text{C} \left(\mu_{\text{i}+1}, \lambda_{\text{i}+1}, \lambda_{\text{i}}, \mu_{\text{i}-1} \right) \left(\phi_{\text{i}+1} \otimes \phi_{\text{i}} \right) \otimes \phi_{\text{i}-1} \otimes \cdots \otimes \phi_{1} \end{split}$$

$$\begin{split} \text{for } & \phi_{\text{N}} \otimes \cdots \otimes \phi_{1} \in \ \mathcal{V}(\mu_{\text{t}}^{+}, \lambda_{\text{N}}, \cdots, \lambda_{1}, \mu_{\text{S}}) \left(\mu_{\text{N}-1}, \cdots, \mu_{1}\right) \\ & = \ \mathcal{V}(\left[\begin{matrix} \lambda_{\text{N}} \\ \mu_{\text{t}} & \mu_{\text{N}-1} \end{matrix}\right]) \otimes \cdots \otimes \mathcal{V}(\left[\begin{matrix} \lambda_{\text{i}} \\ \mu_{\text{i}} & \mu_{\text{i}-1} \end{matrix}\right]) \otimes \cdots \otimes \mathcal{V}(\left[\begin{matrix} \lambda_{1} \\ \mu_{1} & \mu_{\text{S}} \end{matrix}\right]). \end{split}$$

Then

$$C_i C_{i+1}C_i = C_{i+1} C_i C_{i+1}$$

as isomorphisms of $\mathcal{V}(\mathrm{N};\boldsymbol{\mu}_{\mathrm{t}},\boldsymbol{\mu}_{\mathrm{s}})$ to itself.

§4. The composition $\Phi^2(u_2;w)\Phi^1(u_1;z)$ is singular at w=z and its behaviour near w=z is described as follows.

For Λ = $(\mu_t^*, \lambda_2, \lambda_1, \mu_s)$, the space $V_g^{\vee}(\Lambda)$ has another decomposition

$$\mathbf{V}_{\mathbf{g}}^{\vee}(\mathbf{A}) \xleftarrow{\cong} \sum_{v \in P_{+}} \mathbf{Hom}_{\mathbf{g}}(\mathbf{V}_{\lambda_{2}} \otimes \mathbf{V}_{\lambda_{1}}, \mathbf{V}_{v}) \otimes \mathbf{Hom}_{\mathbf{g}}(\mathbf{V}_{v} \otimes \mathbf{V}_{\mu_{\mathbf{S}}}, \mathbf{V}_{\mu_{\mathbf{t}}}) ,$$

where the identification F is given by

$$F(\varphi_2 \otimes \varphi_1)(u_2 \otimes u_1 \otimes u_s) = \varphi_1(\varphi_2(u_2 \otimes u_1) \otimes u_s) \qquad (u_i \in V_{\lambda_i}, u_s \in V_{\mu}),$$

For $\varphi_2 \in \mathcal{V} \begin{pmatrix} \nu \\ \mu_t \mu_s \end{pmatrix}$ and $\varphi_1 \in \mathcal{V} \begin{pmatrix} \lambda_2 \\ \nu & \lambda_1 \end{pmatrix}$, a "vertex operator" $\Phi_{\varphi_2 \otimes \varphi_1}^f(z) \text{ of } \mathcal{H}_{\mu_s} \text{ to } \hat{\mathcal{H}}_{\mu_t} \text{ parametrized by } V_{\lambda_2} \otimes V_{\lambda_1} \text{ defined by } V_{\lambda_2} \otimes V_{\lambda_1} \otimes V_{\lambda_2} \otimes V_{\lambda_2} \otimes V_{\lambda_1} \otimes V_{\lambda_2} \otimes$

$$\Phi_{\varphi_2 \otimes \varphi_1}^{\mathbf{f}}(\mathbf{u}_2 \otimes \mathbf{u}_1; \mathbf{z}) = \Phi_{\varphi_1}(\varphi_2(\mathbf{u}_2 \otimes \mathbf{u}_1); \mathbf{z}) \qquad (\mathbf{u}_i \in V_{\lambda_i}).$$

Theorem 4. (Short range expansion or Fusion rule)

i) Near w=z ((w,z) $\in \mathcal{R}_2$)),

$$\Phi^2(\mathbf{u}_2;\mathbf{w})\Phi^1(\mathbf{u}_1;\mathbf{z}) = \sum_{v \in P_{\ell}} (\mathbf{w} - \mathbf{z})^{-\hat{\Delta}(\mathbf{w}_1)} \left[\Phi^{\mathbf{f}}_{\psi_v}(\mathbf{u}_2 \otimes \mathbf{u}_1;\mathbf{z}) + O(\mathbf{w} - \mathbf{z}) \right]$$

$$\sim (w-z) \frac{\sum_{v \in P_{\ell}} (w-z)^{\Delta_{v}} \Phi_{\psi_{v}}^{f}(u_{2} \otimes u_{1}; z)}{\sum_{v \in P_{\ell}} (w-z)^{\Delta_{v}} \Phi_{\psi_{v}}^{f}(u_{2} \otimes u_{1}; z)},$$

where $\psi_{v} \in \mathcal{V}(\begin{pmatrix} \lambda_{2} \\ v & \lambda_{1} \end{pmatrix}) \otimes \mathcal{V}(\begin{pmatrix} v \\ \mu_{t} \mu_{s} \end{pmatrix})$, and O(w-z) is holomorphic near w=z an vanishes at w=z:

The value of $(w-z)^{-\hat{\Delta}(w_1)}$ is chosen as it is positive for $(w,z) \in \mathcal{R}_2 \cap \mathbb{R}^2$.

ii) For Λ = $(\mu_{\rm t}^{\star}, \lambda_2^{}, \lambda_1^{}, \mu_{\rm s}^{})$, the fusion gives an isomorphism

$$\mathbb{F}(\Lambda): \mathscr{V}(\Lambda) \overset{\simeq}{=} \sum_{\mu \in P_{\ell}} \mathscr{V}(\begin{pmatrix} \lambda_2 \\ \mu_{\mathbf{t}} \end{pmatrix}) \otimes \mathscr{V}(\begin{pmatrix} \lambda_1 \\ \mu \mu_{\mathbf{s}} \end{pmatrix}) \longrightarrow \sum_{\nu \in P_{\ell}} \mathscr{V}(\begin{pmatrix} \lambda_2 \\ \nu \lambda_1 \end{pmatrix}) \otimes \mathscr{V}(\begin{pmatrix} \nu \\ \mu_{\mathbf{t}} \mu_{\mathbf{s}} \end{pmatrix})$$

defined by

$$\mathbf{F}(\mathbf{A})\left(\varphi^{2}\otimes\varphi^{1}\right) = \sum_{v\in P_{\emptyset}}\psi_{v} \qquad \left(\varphi^{2}\otimes\varphi^{1}\in\mathcal{V}\left(\begin{bmatrix}\lambda_{2}\\\mu_{\mathsf{t}}\mu\end{bmatrix}\right)\otimes\mathcal{V}\left(\begin{bmatrix}\lambda_{1}\\\mu\mu_{\mathsf{s}}\end{bmatrix}\right)\right),$$

where ψ_{ν} are the ones obtained in i) for $\Phi^{i} = \Phi_{\sigma}^{i}$.

Theorem 5.

For Λ = $(\mu_t^*, \lambda_2, \lambda_1, \mu_s)$, the following diagram commutes:

$$r(\mathbf{A}) \xrightarrow{F(\mathbf{A})} \sum_{v \in P_{\ell}} r(\begin{Bmatrix} v \\ \mu_{t} \mu_{s} \end{Bmatrix}) \otimes r(\begin{Bmatrix} \lambda_{2} \\ v & \lambda_{1} \end{Bmatrix})$$

$$\downarrow^{\mathbf{C}_{\gamma}} \qquad \qquad \downarrow^{\mathrm{id} \otimes \mathbf{C}_{\gamma_{0}}}$$

$$r(\mathbf{T}_{\mathbf{A}}) \xrightarrow{F(\mathbf{T}_{\mathbf{A}})} \sum_{v \in P_{\ell}} r(\begin{Bmatrix} v \\ \mu_{t} \mu_{s} \end{Bmatrix}) \otimes r(\begin{Bmatrix} \lambda_{1} \\ v & \lambda_{2} \end{Bmatrix})$$

Remark. The equation $KZ(\Lambda)$ in the limit $z_4 \nearrow \infty$, $z_1 \searrow 0$ is reduced to a differential equation (reduced KZ-system) $RKZ(\Lambda)$ on $V_g(\Lambda)$ - functions of one variable $\xi = z_3 \nearrow z_2$. The equation $RKZ(\Lambda)$ has only regular singularities at $\xi = 0, 1, \infty$. The isomorphisms $C_{\gamma}(\Lambda)$ and $F(\Lambda)$ are essentially nothing but the connection matrices from the space of its solutions regularized at $\xi = 0$ to the spaces of solutions regularized at $\xi = \infty$ and $\xi = 1$ respectively.

§5. Naturally arises a problem to determine the

isomorphisms $C_{\gamma}(\Lambda)$ and $F(\Lambda)$, but it is very difficult to carry out for all cases. We succeeded (last year) in the case where \hat{g} is an affine Lie algebra of type $A_n^{(1)}$ and $\Lambda = (\mu_t, \square, \square, \mu_s)$, where \square means a Young diagram consisting of one node and represent the vector representation of $g=\mathfrak{sl}(n+1,\mathbb{C})$.

Now let \hat{g} be an affine Lie algebra of type $A_n^{(1)}$, $B_n^{(1)}$, $C_n^{(1)}$, $D_n^{(1)}$, and P_+^0 be the set of weights $\lambda \in P_+$ such that the simple g-module V_{λ} can appear in some tensor products of the vector representations V_{\square} of g=sl(n+1; \mathbb{C}), $v(2n;\mathbb{C})$, $v(2n;\mathbb{C})$,

For each $\tau \in P_{\mathfrak{g}}$, introduce the space

$$\begin{split} \boldsymbol{\mathcal{V}}_{N}(\tau) &= \sum_{\boldsymbol{\mu}} \boldsymbol{\mathcal{V}}_{N}(\tau)_{\boldsymbol{\mu}} \ , \\ \boldsymbol{\mathcal{V}}_{N}(\tau)_{\boldsymbol{\mu}} &= \boldsymbol{\mathcal{V}}(\begin{pmatrix} \boldsymbol{\square} \\ \boldsymbol{\tau} & \boldsymbol{\mu}_{N-1} \end{pmatrix}) \otimes \cdots \otimes \boldsymbol{\mathcal{V}}(\begin{pmatrix} \boldsymbol{\square} \\ \boldsymbol{\mu}_{1} & \boldsymbol{\mu}_{1-1} \end{pmatrix}) \otimes \cdots \otimes \boldsymbol{\mathcal{V}}(\begin{pmatrix} \boldsymbol{\square} \\ \boldsymbol{\mu}_{1} & \boldsymbol{\mu}_{1-1} \end{pmatrix}) , \end{split}$$

where the summation is taken over the set $P_{\ell}^{N-1} \ni \mu = (\mu_1, \cdots, \mu_{N-1})$. Then $\ell_N(\tau)$ is the subspace of $\ell(N; \tau, 0)$ which is invariant under the operators $C_i(1 \le i \le N-1)$.

The braid group B_N with N-strings of $\mathbb C$ has a system $\{b_i;1\le i\le N-1\}$ of generators with the fundamental relations:

(BR)
$$\begin{cases} b_i b_j = b_j b_i & (|i-j| \ge 2) \\ \\ b_i b_{i+1} b_i = b_{i+1} b_i b_{i+1} & (1 \le i \le N-2). \end{cases}$$

These generators \textbf{b}_{i} are represented by the curves on \mathbb{C} defined by

$$b_{i}(t) = [N, N-1, \dots, i + \frac{1}{2}(1 + e^{\pi\sqrt{-1}t}), i + \frac{1}{2}(1 - e^{\pi\sqrt{-1}t}), \dots 2, 1]$$
 $t \in [0, 1],$

We now define a monodromy representation π_N^{τ} of B_N on the space $\mathcal{P}_N(\tau)$ as $\pi_N^{\tau}(b_i) = C_i$ (1 $\leq i \leq N-1$). The we get the main theorems.

Theorem 6.

If g is of type \mathbf{A}_n , then the monodromy representation $\mathbf{r}^{1/(n+1)}\pi_N^\lambda \quad \text{in } \mathbf{f}_N(\tau) \text{ factors through the Iwahori-Hecke}$ algebra $\mathbf{H}_N(\mathbf{r})$, where $\mathbf{r} = \exp(\frac{\pi\sqrt{-1}}{\ell+n+1}) \,.$

Note. The algebra $H_N(r)$ is defined by generators $\{\tau_i^{-1}, \tau_i^{-1}(1 \le i \le N-1)\}$ with the defining relations: $\tau_i^{-1} = \tau_i^{-1} \tau_i^{-1} = 1 \quad , \quad \tau_i^{-1} = (r - r^{-1}) \quad (1 \le i \le N-1) \quad ,$ $\tau_i^{-1} = \tau_i^{-1} \tau_i^{-1} = \tau_{i+1}^{-1} \tau_{i+1}^{-1} \quad \text{and} \quad \tau_i^{-1} = \tau_j^{-1} \quad (|i-j| \ge 2) \, .$

Theorem 7. If g is the simple Lie algebra of type B_n , C_n or D_n . Then the monodromy representation π_N^λ in $\mathscr{V}_N(\tau)$ factors through the Birmann-Wenzl-Murakami algebra $C_N(g;r)$

where
$$r = \exp(\frac{\pi\sqrt{-1}}{\ell+g})$$
, $g(B_n) = 2n-1$, $g(C_n) = n+1$, $g(D_n) = 2n-2$; $C_N(B_n;r) = C_N(r^{-n-1/2},r)$, $C_N(C_n;r) = C_N(r^n,r)$ and $C_N(D_n;r) = C_N(r^{-n},r)$.

Note. The algebra $C_N(a,r)$ is defined by generators $\{\tau_i,\tau_i^{-1},\epsilon_i\,(1\leq i\leq N-1)\}$ with the defining relations: $\tau_i\tau_i^{-1}=\tau_i^{-1}\tau_i=1\ , \qquad \tau_i\epsilon_i=\epsilon_i\tau_i=-(a^2r)^{-1}\epsilon_i\ , \qquad (1\leq i\leq N-1),$ $\tau_i^{-1}=\tau_i^{-1}=(r-r^{-1})(1-\epsilon_i) \qquad (1\leq i\leq N-1),$ $\tau_i^{-1}\tau_i^{-1}=\tau_i+1\tau_i\tau_{i+1}, \quad \epsilon_i\epsilon_{i+1}\epsilon_i=\epsilon_i, \quad \epsilon_{i+1}\epsilon_i\epsilon_{i+1}=\epsilon_{i+1},$ $\tau_i^{\pm 1}\epsilon_{i+1}\epsilon_i=\tau_{i+1}^{\mp 1}\epsilon_i\ , \quad \tau_{i+1}^{\pm 1}\epsilon_i\epsilon_{i+1}=\tau_i^{\mp 1}\epsilon_{i+1}\ ,$ $\epsilon_i\epsilon_{i+1}\tau_i^{\pm 1}=\epsilon_i\tau_{i+1}^{\mp 1}\ , \quad \epsilon_{i+1}\epsilon_i\tau_{i+1}^{\pm 1}=\epsilon_{i+1}\tau_i^{\mp 1} \qquad (1\leq i\leq N-2),$ $\tau_i^{-1}\tau_j=\tau_j^{-1}\tau_i, \quad \epsilon_i^{-1}\tau_j=\tau_j^{-1}\epsilon_i, \quad \epsilon_i^{-1}\epsilon_j=\epsilon_j^{-1}\epsilon_i \qquad (1\leq i\leq N-2),$

The proof is carried out by the explicit calculation of a differential equation of 4-point function in a very special case and the algebraic arguments for the algebras $H_N(\mathbf{r})$ and $C_N(\mathbf{a},\mathbf{r})$.

References

[A] K.Aomoto, Gauss-Manin connection of integral of difference products, J.Math.Soc.of Japan, 39-2(1987),

191-208.

- [BW] J.S.Birman and H.Wenzl, Braids, link polynomials and a new algebra, preprint.
- [JMO] M.Jimbo, T.Miwa and M.Okado, Solvable Lattice Models related to the Vector Representation of Classical Simple Algebra, CMP, 116(1988), 507-525.
- [KZ] K.G.Knizhnik and A.B.Zamolodchikov, Current Algebra and Wess-Zumino models in two dimensions, Nuclear Physics, B247 (1984),83-103.
- [M] J.Murakami, The representations of the q-analogue of Brauer's centralizer algebras and the Kauffman polynomial of links, preprint Osaka Univ(1988).
- [TK] A.Tsuchiya and Y.Kanie, Vertex operators in conformal field theory on \mathbb{P}^1 and monodromy representations of braid group, Advanced Studies in pure Math., 16 (1988), 297-372.
- [W1] H.Wenzl, Hecke algebras of type A_n and subfactors, Invent. math., 92(1988), 349-383.
- [W2] H.Wenzl, On the structure of Brauer's centralizer algebras, Ann. of Math., 125(1988), 173-193.