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CFT on Pl and Monodromy Representations

of the Braid Groups

(Talk at Research Institute of Mathematical Sciences,

Kyoto Univ.,July 19,1988)

Yukihiro Kanie

Mie University, Fac.of Education, Dept.of Math.

§0. From the differential equations of N-point
functions of vertex operators in the conformal field
theory on Pl, arise the monodromy representations of the
braid group BN. In the meeting of last year, I reported
that these monodromy representations give "all"
irreducuble representations of the Hecke algebra HN(q) of
type AN—l (obtained by H.Wenzl[W]) associated with the

(1)

affine Lie algebra of type An . In this meeting, I will

report that associated with the affine Lie algebras of

(1) Cél) and D;l)

n , the monodromy representations of

type B

the group B give "all" irreducible representations of the

N

Birman-Wenzl-Murakami algebra, the gq-analogue of Brauer’s

centralizer algebras. Very important is Jimbo-Miwa-Okado’s
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calculations[JMO]}, and in the case of type Cgl) the
representations are equivalent to the ones obtained by

J.Murakami [M]}.

§1. Let g be the simple Lie algebra of type Xn’ and & =
g@@[t,t-lj ® Cc be the affine Lie algebra of type Xél).

Fix an integer ¢»1 and introduce the number k={+g, where g

is the dual Coxeter number of g.

Denote by P; the set of dominant integral weights of ¢

and by P, the set of elements lGF; satisfying (90,4)<%,

2
where 8 is the maximum root. For a weight 1 ePl, we denote
by V. the irreducible representation of g of highest

)

weight 1, by %#. the integrable representation of g of

A
- highest weight QAO+1 and by 1> the (fixed) highest weight

and #..

cyclic vector of Vl )

The Virasoro algebra also acts on #. by the Sugawara

A

forms L(m);meZ, and the space #., is graded by means of the

A

eigenspace decomposition w.r.t. the operator L(0):

®, = 2 £, (d) %l(d) = {ve¥,; L(O)v = (A1+d)V} )

1 i
deZzO
where AA = LAL%%EBL and:p is the half sum of positive
roots of g. Note that dimﬁl(d)<m and %1(0) S Vl
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There are dual right g and a—module Vi and %i of VJ and

%l, and the nondegenerate invariant bilinear form < | > on

Vika and %axﬁl with the normalized condition <111> = 1

where <1| is a fixed highest weight vector of V=% (0) and

AR
.
£
A triple v = [ A ] of weights in P, is called a vertex
Ho by 2
and is drawn as
!1
vo= Ha ‘ |

A multi-valued, holomorphic function

o(z) : V,08, ——— 2 = N % (d)
By Ko deZ_, Ko

on Pl\{O,m} is called a vertex operator of type [Mlﬂ ]
271
(sometimes called of weight 1), if it satisfies the

following:

(Gauge Condition) [X(m), ®(z)(u®-)] = z ®(z)(Xus-)

(Xeg,mez,uevl);

(Eq.of Motion) [L(m), ®(z)] = 2"{257 + (n+1)a, }o(2),



A

dimension of the vertex operator ®(z).

where X(m):X@tm and the number A, is called the conformal

Denote by #e+(v) the space of all vertex operators of

type v, and introduce the space

vea(d) = 2 fea([ﬂ lu ])

of all vertex operators of weight 1.

Introduce the subalgebra fgz €<X9,[X ,X_GJ,X_ > =

0 ¢
5s[{2;C) of g and the subspace 7(v) of Hom (V.®&V ,V )
R )
defined by
7{v) = n Ker nfe(J,leJz)

where the intersection is taken over the set {j,jl,jze

1 o L. .
52,05 J+31+J3>2}, and T (J;JI;JZ)(w) € Hom

W.eW. ,W.
5 (W.oW, W, )

t 1 J2

8

is defined as

ﬂ:f (J:JI’JZ)((P) = projwj

. (@eHomg(VasVu V. ))

°Q
wjewj 1 Ho

2 1

~-simple submodules of V,,V ,V

where W‘j,‘Wj ’Wj are { I uy' oy

1 J2 9
with spin j,jl,jz respectively.

By Equation of Motion, ® is expressed as a formal

67



Laurent series

o(z) = 3 o(m) z mAY)
meZ
where A(v) = A1+AM —AM and ¢(m) is homogeneous of degree
1 2
m, i.e.
é(m): V.8% (d) —— # (d-m) for any d.
| Ly Ho '

The principal branch of ®{(z) is taken such as the value

of z (V) 44 positive for zeR _={z€R; z>0} and uniquely

continued to the region €+={ze€; Imz>0}, and we refer this

for the value of ®(z) on C+.

For any vertex operator 0€¥es{v), its initial term ¢ =

A

Alv)

@(0)|V1®% (0) = Projy -z ®(z) lVAGV belongs to
#q Ha #q
#(v)>. Under this correspondence,
Theorem 1. The space fe@(v) of N-point functions of

type v is isomorphic with the space ¥(v) of initial terms

of type v.

Call v QCG(Q—constrained Clebsch-Gordan) vertex, if

#(v) = 0, and denote by (4CG) the set of all LCG vertices.



For each ¢e€#{v), denote by ®¢ the vertex operator with

the initial term ¢.

Notes. i) Even if we asuume that l€P+ and uith,

?([ A ])#0 implies that AieP
ﬂz Ml 2

ii) Operator product expansions of currents X{(z) =

-m-1

S X(m)z (Xegq) and the energy-momentum tensor T(z) =

mezZ

S L(m)z_m_2 with vertex operators allow the extension of
meZ

1

] to the operators
Hatq

the vertex operators ®(z) of type [

b({z): % ®%H _— by means of contour integrals.

Ly Hy

{ Nuclear Democracy)

iii) By the same arguments as in §3, the analytic

continuation of a vertex operator ® of type [ﬂl# ] along
271

the path 70 gives a vertex operator of type [HAM ], where
172

en/—lt

yo(t)z z , te[0,1] , zelR+

This gives an isomorphism C .of Vg@[ A } to Vea[ A }
¥ Hzﬂl ﬂz

0 My

and the corresponding isomorphism

vy 7ltn) = 7l
Yo HoHly Hyto

69



70

is given by

c - en‘/-l A(W)T ,
70
where T is the transpbsition:
T : Hom(V, 8V \Y —— Hom(V &V, ,V

(Te) (udv)=g(veu).

A vertex operator o(z) of type v is also considered as

an operator from ¥ to # parametrized by V i.e.

l’
d(us;z)(v) = #(z)(usv) (uev

veX ).
U

?
1 1

§2. It is convenient to introduce the spaces ¥ = 3 ¥
LeP, .
[}
and # = > %1 and consider vertex operators as linear
AGPQ

operators of ¥ to #. The vacuum |0> of %0 is called a

i

Virasoro vacuum, since L{(m)}0> = 0 for m>2-1. Note that V0

= 10>

For an N-ple A=(1 -,11) of weights in P denote

N’" ,Q,’

. v
=V =
\' ® ®V11 and Vg(A) Homg(VA,C)

For any vertex operators @1(21) of weight Ai(lsisN),
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'<01@N(ZN)'°--®1(zl)lO>

is the coefficient of |0> the iterated application
@N(ZN)-°~~®1(21)10> to the vector 10>, and this is a

V;(A)—valued formal Laurent series in z -+,z, called the

N
N-point function of weight A and is denoted by

N '~~¢1(z

1

1)>. Denote by #e4+(A) the space of all

N-point functions of weight A.

The space V;(A) is decomposed as

v _ v _ N N-1 |
VQ(A) - %VQ(A)W H W—(HN_11‘ 7“1) E(p+) H
v CA
V. (&) e——— Hom (V, eV yVp)e: - -eHom (V, eV Vo)
s Bz $ AN HN-1 SR T T e

8--~®Homg(V11®V0,Vu )y

where the identification CA is given by

CA(¢N®-'-®¢1)(uN®---®u1)

Oloy(uy®ey (- -89,(u, 8¢, (u;810>)--)>

1"

COtgplug)er-reop (u ) (10>)

for ¢.€ Hom (V. &V \% % Hom (V
! o' Ay nyq] “i) ! Ay i-1 M4

®---8u,€eVv .

(1<i<N; uN=u0=O), and Uy 1€V,
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Introduce the subspace #(A) of V;(A) defiped, through

CA’ by
_ - (p yN-1 |
f(A) - 51/2(&)& ? ﬂi“(ﬂN_l)"'iﬂl) E(P_Q) ’
where
POA) = Plvgu)) e ef (v, (k) @ - -er(vy(u)) c V (&)
and
1 A. ]
- N e = 1 PN = 1
VN(&)—[O “N_l]’ ’ Vl(ﬂf) [Ml nui__]_]’ ’ Wl(!ﬂ) [u]_ O]-

Then the space 7(A) is isomorphic to %e+(A) of N-point
functions of weight A as follows: to each ¢ =

C(@NQ--o®¢1)ef(A), assign»the N-point function

0 (z) = <®¢ (z - @ (Zl)> € Ter(A)

oNE ey N ®q

Now introduce a system KZ(A) of differential equations
on Homg(VA,C)—valued functions #®{(z) on X,k = {z:(zN,~~-,zl)

N, .
eC; zi¢zj (i=j)}
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N Q. |
kz(A)  [xZ - 3 ] 2(z) = 0 (1<i<N)
i k=1 “i "k
k=i

due to Knizhnik-Zamolodchikov[KZ], where

dimg- a
a=1
pi denotes the g-action on the i-th component of Hom(VA,C)

and {Xa} and {Xa} are dual bases of g.

Further introduce an additional g¢-constraint condition,

i.e. a system QC(A) of algebraic equations

Li -mk mN ; m1
.Q.C(A) 2 [ ] T (Z —Z.) (I)(Z)(X Uy oy A2y, X u,) = 0,
_ m. Tk Y1 g "N i 6 1
Im. |=L. i k=i
i i
(1<igN)
for any u, €V (k#i), where m.=(m,,, - m., --,m Ye(Z )N_1
k lk ! i N’ L | >0 !
Ly
Imil = E_mk , Li = Q—(Ai,9)+1 and [m.] is the multinomial
k=i i
coefficient.

Remark. The system KZ(A) of differential equations is
completely integrable because of the infinitesimal pure
braid relations among the operators'Qik (see [A]). The

system §C(A) is compatible with the system KZ(A).

Any N-point function of weight A satisfies the systems

_10_
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of KZ(A) and QC(A).AHence

Theorem 2.

i) For any N-ple A of weights in PQ, any N-point

function <®N(z --®l(zl)> of weight A is absolutely

N

convergent in the region %N' and is analytically continued

to a multivalued holomorphic function on X where %N is

Nl
defined by

N, _ .
-',zl)€€+, | z I>--~>lzll} c X

N N

ii) The solution space of the joint system KZ{A) and

QC{A) is isomorphic with 7er(A), hence with P(A).

Note. If vy = [#AO} € (CG), then u = 1 , A(v) = 0 , and

) = Cid.

{v) = Homg(Vl,Vl

If v = [Olu]e (CG), then g = 1%, A(v) = 2a and #(v) =

A’
g(VAQVl”G) = Cv, where the anti-weight 1% of 1 is
defined as -1*(=w01) is the lowest weight of V

Hom
1 and vy is
normalised as V(li>®w0|1*>):1 , where Yo is the longest

element of the Weyl group of g.

3-point functions are essentially nothing but vertex
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A

operators. The assignation to ¢ef([u lu ])vthe element
; 2 "1
v@e®id € P (uhH dspy)s
pRER1Id{ Iu>®|v>8|w>)
sv(luwee(|v>e|w>) [1u>®|v>®|w>eV -8V, 8V ],
, Ho A~ uy

gives the isomorphism between them. Hence the space

fe@([ A ]) of vertex operators is isomorphic with the
2 ~1

space fe4(u§,l,u1) of 3-point functions. More precisely,

of the vertex
1

the classical sector projV B ®¢(Z)lV Qv
' H 2 /1 M

operator @w(z) is given by

2A
. . Ko
lim lim = <¢v(zt>@w(z)¢id(zs)>'
Zy A zS\O ,

§3. Denote by Ver(vy) -Tea(vy) the space of compositions

mz(zz)Ql(zl) of vertex operators 0" of type Vi Then

ﬂzpﬂfei([”izﬂ])0%64([“Ais]) T vealA) = (A ,

where A = (“1’12’11’“s>'

The composition @2(22)®1(zl) is determined by the

. . 2 1
classical sector‘prOJV i (22)0 (Zl)!V €
Ky Ky
Ho V., 8V, 8V \4 and it i i b
mg( 12 11 “g’ ﬂt) is given by



2A
lim 1in 2, F <o (2.)0%(z.)0 (2 ) 0. (2 )>
im im t q)v Zt Zz Zl Qld ZS .

z NO
Zt/'w S\.

Hence by Theorem 2, the composition @2(22)®1(zl) is
absolutely convergent in the range %2= {(zz,zl)eﬁf;
]zzl>|z1|>0}, so by the analytic continuation it defines
the holomorphic (multivalued) function valued in

Hom(V., ®V. ,Hom(® ,@ })) on the complex manifold M, =
12 }{1 My THy 2

{(z,,2)€ (CNOD)?; 2z =z,].

2 . 1 _ 2 . 1
Denote by @ (uz,zl)¢ (u1,zz) = C._ (0 (u2,22)® (ul,zl))

I4

its analytic continuation along the path =v:

ZatZ — Z.—Z z,.+2Z —y Zo—Z
()= [ 22 1, /-1t 22 L az 1 n/ATt 22 1]’ te[0,1]

for (w,z)e®, then the corresponding analytic continuation

T <o (z,)0°(z,)0 (z,)0, (z,)>

satisfies the systems KZ(TA) and QC(TA) as a Hom(V) ®Vl ,
1 2

Hom(%u ,@M })-valued function, where T is the trans-
s t

yA) —— Hom(V, V., ,A),

position operator: Hom(V, @V
£ Aq 12

2 Aa

1
(T¢)(u1®u2) = w(uzeul) (u2®u1€ V11®V12),

and TA = (u%,ll,lz,us)..Hence the analytic continuation
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~1

along y gives an isomorphism between the spaces of

compositions of vertex operators:

Theorem 3. (Commutation Relations)

For A = (u;,lz,ll,us), C(A) = Cy(A) is an iéomorphism

CY(A): 7(A) : 7(TA)
| |
A ' A A A
uzpﬂf([utzu])sf([u is]) ———_—_»szﬂw([#ilu])@f([u is])

Remark. The isomorphisms CV(A)' A(EP4 enjoy the braid

[

relations: For any N21, ut,ﬂSGP introduce the space

9"

V(N;”t’“s) = 2 10('“;:’11\1’.."2'1’#3)

11,"’AN€PQ

Define the operators Ci (1<i<N-1) on’f(N;ut,uS) such
that
+ i . 2 0 "‘ * a . .
Ci V(Mt;AN, ’llaﬂs)‘c f(ﬂtle) )li!1i+1) ’ll’ﬂs)
and
Ci(0y®: - 80,)

= oN® 005,080y dyyyo iy 1)(0;,109;)00; 1889,
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LY A * PR S :

for oN® 8¢, € ?(Mtlez ’ll’us)(u vy )

N-1 1
1 1. )
=1/-=([ N ])@---W’([ 1 ])e-~w([ ! ]).
He Hn-1 P | Ky Hg
Then
c. C. .C. = C, C. C.

i Ti+l171 i+l 7i Ti+l

as iéomorphisms of f(N;ut,nS) to itself.

84. The composition mz(uz;w)ml(ul;z) is singular at w=z

and its behaviour near w=z is described as follows.

For A = (u%,lz,ll,us), the space Vg(A) has another

decomposition
v =
V' (A) e——m 3 Hom (V. ®V. ,V )®Hom (V &V ,V ) ,
s F VGP; 8 A2 11 v 8 vV Hg Ay

where the identification F is given by

F(¢2®¢1)(u2®u18us) = ¢1(¢2(u2®u1)®us) (uievl.,usevu),
. : 1
A

For wzef[ﬂvu ] and ¢1GW[V i ], a "vertex operator”
t7s 1

f ~
(z) of % to % parametrized by V., &V defined by
¢2®¢1 MS ﬂt 12 11
@f (u,®u,;z) = & (¢ (Q ®u, );z) (u.ev. ).
0,80, 2771 o, P21 2% i€,



Theorem 4.(Short range expansion or Fusion rule)

i) Near w=z ((wW,z)€R,)),

v -A(w,)
o?(upimel(ugsz) = 3 (wez) 1 [of (upeujiz) + O(w-z)
veprP v

)

-(a, +a, )

A A
~ (w-2z) 1 2 S (w-2z) v (Df (u,®u,;z) ,
y 2%y
veF& 14
A

where WVGV({V i ])@f([uuu }), and O(w-z) is holomorhic
1 t%s

near w=z an vanishes at w=z:

x‘ A .
f 2 % ! ~E(wy (1)) |
_ ~ 2 (w-z) -

Hye i Hg uePQ Hye

The value of (w-2z) is chosen as it is positive for (w,z) €

2
ﬁan .
ii) For A = (u%,lz,ll,us),'the fusion gives an isomorphism

i
L3 el )

i

F(A):7(A)S 3 r([utzﬂ])ef([ul; ]) — zp v
S Ve

HEP, )

defined by

F(A)(¢Ze0)) = S ¥ (o700’ 7|,
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where wv are the ones obtained in i) for &% = @@i

Theorem 5.

For A = (u%,lz,ll,us), the following diagram oommutes:

#(A) ﬂl...+ S 1’([”:” ])ar([vlil])
s

VGPQ

lc lidac
Y ?O

P(TA) ———— 3 7¢(
veP

Remark. The equation KZ(A) in the limit z4/m; 21\0 is

reduced to a differential equation (reduced KZ-system)

3/22. The

equation RKZ(A) has only regular singularities at t=0,1, .

RKZ(A) on Vg(A)- functions of one variable ¢=z

The isomorphisms Cy(A) and F(A) are essentially nothing
but the connection matrices from the space of its
solutions regularized at =0 to the spaces of solutions

regularized at g¢=« and g=1 respectively.

§5. Naturally arises a problem to determine the



isomorphisms Cy(A) and F(A), but it is very difficult to

carry out for all cases. We succeeded (last year) in the

(1)

case where a is an affine Lie algebra of type An

(ﬂt,U,D,uS), where o means a Young diagram consisting of
one node and represent the vector representation of
g=s(n+l,C).

(1) R(1)

Now 1let & be an affine Lie algebra of type An » B

1) 1)

}

Cé , D; , and Fe be the set of weights leP; such that
the simple g-module Vl can appear in some tensor products
of the vector representations VD of g=sl(n+1;C), o(2n;C),

sp(2n;c¢),0(2n+l;¢) respectively.

For each rgf&, introduce the space

(o) = 3 7o)

=

o o

(o) = r(| o7 | o or([,

T uN_l])eu uiui_l] 0])’

1

where the summation is taken over the set Pg-la B =

(ﬂl,---,uN_l). Then VN(t) is the subspace of #(N;t,0)

which is invariant under the operators Ci(lsisN—l).

The braid group BN with N-strings of € has a system
{bi;lsisN—l} of génerators with the fundamental relations:
bibj = bjbi (1i-j1=22)

b.b

iPi41Pi= Pi41PiPyyq (1=isN-2).

- 18 -

and A =

81
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These generators bi are represented by the curves on (
defined by

™Ity iw Ligien/olt

. 1
bi(t)z{N,N—l,oo‘,1+ =(1+ 5

5 Yy 2,1}

te[0,1],

T
N of BN on

the space ?N(t) as né(bi) = Ci (1<igN-1). The we get the

We now define a monodromy representation n

main theorems.

Theorem 6.

If g is of type An’ then the monodromy representation

rl/(n+1)n§ in fN(t) factors through the Iwahori-Hecke
algebra H _(r), where r:exp(ElEz—)
N ' g+n+1’"°

Note. The algebra HN(r) is defined by generators

{ti,rgl(lsisN—l)} with the defining relations:

-1_ -1 -1 -1 .
TiT, T ti=1 y TiooTy S (r - ) (1<i<N-1) ,

TiTis1Ti T Ti41%i%i+1 2 oTyTy o= oryTy (1i-gi1=2).

Theorem 7. If g is the simple Lie algebra of type Bn’

C or D_. Then the monodromy representation m,

n n Ny in 7g(x)

factors through the Birmann-Wenzl-Murakami algebra CN(g;r)
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where r:exp(n/_l), g(B ) = 2n-1, g(Cn) = n+1l, g(Dn) =

L+ g n
2n-2; CN(Bn;r) = C

s -n
and CN(Dn,r)- CN(r ,r).

Note. The algebra CN(a,r) is defined by generators

{ti,tgl,ei(lsisN—l)} with the defining relations:

-1 -1 o E. = € = -(azr)'le

Tyt 7Ty YTt Tifi T 54T T i
-1 -1 .
TiooTy (r r )(1 ei) {(1<i<N-1),
TiT 41T T i1 T T €iCi418iT85r E541858541 T €541
:18 e. = 7l e +1 . e _ 71
Ty e85 T Tis1®i o0 Ti41%4%i41 T Ty 441 v
+1 _ ¥l 1 _ F1 -

Ei€i41%i T €iTis1 0 Ei418iTi41 T Ei1 Ty (1<i<N-2),
titj = tjtiy‘ﬁitj = tjei, Siej = Ejei {(1i-j122),

The proof is carried out by the explicit calculation
of a differential equation of 4-point function in a very
special case and the algebraic arguments for the algebras

HN(r) and CN(a,r).
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