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“The initial-boundary value problem for

a nonlinear degenerate parabolic equation

mHE =5 (H+fEKXK%) Isamu Fukuda

# O OE& (BRH#HEXY) Masayoshi Tsutsumi

1.Introduction and main results.

Let a < b and 2 > 0. We consider nonnegative solutions of

the initial-boundary value problem

2 o
ut—uuxx—hluxl (a < x < b, t>0) (1. 1)
u(a,t)=u(b, t)=0 (t > 0) . (1.2)
u(x,0)=u0(x) (a < x < b) ' (1.3)

where initial data uU satisfy

(4. 1) uDEWI'm(a,b) and uD(x) 2 0 (a £ x

A

b)

In order to construct a solution to the problem (1.1)-(1.3),
it might be natural to employ the well-known viscosity method: Let

¢ > 0 and let ue(x,t) be an unique classical solution of the

initial-boundary value problem for the uniformly parabolic

equation:

u ,=(u +¢e)u -R{uz E (a < x < b, t>10) (1.1)
et 3 EXX £X €

u (a,t)=u_ (b, 1)=0 (t >0 (1.2)
€ 3 3

u (x,0)=u,(x) . (a < x < b) : (1.3)
] 0 . 3
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We call u. the . viscosity solution.of the problem (1.1)—(1.3)

if u{x,t) = 1lim u (x,%t).
e=0 ¢

Let us consider solutions with compact support and define

the interface {, (t) by
§+(t)=tsup{ +x: ou(x,t) > 0 } for t > O
Differentiating u({_(t),t)=0 with resbect to t and using eq.

(1.1), we easily see that the interface { (t) satisfies formally
dg, (t) :
1t =Aux(§i(t),t) , (1.4)

provided ux(§+(t),t)¢0. Thus we might expect that the support of

solutions shrinks if u‘(§+(t),t)¢0. Indeed, for 2 >—%— wve have a

special weak solution of the form

1 22
I = 2. L ZA-1
u(x, t)=(T,-t) [Co- S5~ (Tp~t) 1, (1.5)

where TD and BD are positive constants such that

A A

r—

(—,/2(2?\—1)[]0T027‘_1, /2(2a-1)cUT02?‘"1)c [a,b]
and [-]+ = max(-,0)

Apparently its support shrinks to one point. But this
conjecture is not true for viscosity solutions. In [1], Bertch,
Dal Passo and Ughi show that every viscosity soiution of the
Cauchy problem for (1.1) has a property that

supp u(t)=supp ug foer t > 0 . (1.6)

It is a striking result. If 2 < 0, equation (1.1) is called

the pressure equation, related to the porous medium equation and
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the support of solutiens spreads out as.time goes , as is

suggested by the interface equation(l.4).

Another curious

property of eq.(1.1) is the nonuniqueness -

phenomenon which was discovered by Dal Passo and Luckhaus . [2]
(x = 0), Ughi [5] (2 = 0) and Bertch, Dal Passo and Ughi [1] (2 2 0).
The existence of our special weak éolution u also suggests the
ponuniqueness phenomenon.
 ¥We now défiﬁe weak solutions of fhe problem (1.1)-(1.3) as
follows:
Jefrinrition 1. ‘A nonnegaive function »uELm:([D,w):WI’N[a,b])
is called a weak solution of (1.1)-(1.3) if for any T > 0
2 . .
utEL (la,b]=[0,T])
and for all t 2 O
b b
cudx,t)y(x,t)dx = uD(x)w(x,U)dx_
X . _ A ‘
trb
+ {u(x,s)¢t(x,s)—u(x,s)ux(x;s)wx(x.s)?(k+1)!ﬁ%(x,s)]Zw(x,s)}dxdt
0va '

for any function ¢EGZ’1{[a,b]X[U,w)) with compact support in (a,b),

Note that uwel®([0,=):W " ([a,b])) with u €L?([a,b]x[0,T])

t

for any T > 0 implies that u is continuous in x and t.
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In this paper we establish the global existence of (weak)
solutions of (1.1)-(1.3) and investigate the uniqueness of

solutions. We propose a new uniqueness class of solutions which

isg
different from {11, {[2] and [5].
As to the existence theorem, we have
Thearem 1. Let ug, satisfy (H1). Then the problem (1.1)-(1.3)

has at least one weak solutioen.

Theorem 2. Let A >—%— . Assume that u, satisfies (H1) and
uD(x) uU(x)
(H2) lim ———— < » and lim ——< «
xla (v a)? xIb oy @

Then u satisfies

qux(x,t)i < '%f (1.8)

% 2,
and, in particular, uel ([§,»):W ([a,b]l)) as well as

utELw([S,w):Lm([a,b])) for any § > 0. Moreover, if we assume

that uU is semiconcave, that is,

’
u £ C in Vi
Oxx

for some constant C, then u is also semiconcave almost everywhere,
that is,

uxx(x,t) £ G for a.e. (x,t)e[a,b]lx(0,%)

where C is also a positive constant.
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Rempark 1. - In theorem 2 the hypotheses (H1) can be weakened

as: follows:

(H1) uoeL‘”([a,b]), u g (x) 2 0 a.e.

tollorary /1. Under the aséumbtion (Hl% and (H2), the problem

(1.1)-(1.3) has at least one weak solution which has properties in

Theorem 2.

Concerning the uniqueness and continuous-dependence-on-data

of solutions, we have

Theorem 3. Let u and v be two weak solutions coresponding to

the initial data ug, and Vg o respectively. Assume that u and v

are semiconcave almost everywhere. Then the inequality

lu(x, t)-v(x,t)ldx £ eCt luo(x)—vo(x)ldx

holds valid for any t > 0 and a positive constant c.

Corollary 2. Let u, satisfy (Hl)w ,(H2) and be semiconcave.

Then the problem (1.1)-(1.3) has an unique weak solution u which

is also semiconcave and depends on initial data continuously in

Ll (a.b).
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" Remark 2. "Our special solution (1.5) is not semiconcave.
Uniqueness theorem does not hold valid for the problem (1.1)-(1.3)

with initial data

1 21
_ TA-1,.2_ 1 2. ZA-1T
ug =T by~ gy * (T 1,

which does not satisfy (H2).

2.Proof of Theorem 1.

~Before proving Theorem 1, we shall obtain a priori estimates

of u .
¢
Lewma 7. = let uo‘;satisfy (H1). Then
“ueﬂ © 1. ® £ C (2. 1)
L ([0,=):W f ([a,bl))
and
w N
p-1 2
(u (x,t)+e)lu (x,t)] u (x,t) dx $§ C (2.2)
3 £X £EXX
0vYa

for any p 2 1, where and in the sequel C denotes various positive

constants independent of .

Proof. The maximum principle gives
0 £ u (x,t) € max u (x) . ' (2.3)
3 asxshbh O



Multiplying (1.1) by — (lu (X,t)ip-iu ) and
£ p e X £X X
integrating by parts on [a,b], we have
b n
1 d . p+i p-1 2
— e | U dx + (u +¢)|
pip+1) dt ] 'Tex! S £ )"uaxi Yexx dx
a ’ a
.‘\ ' ) , D - ) .:'\ ‘
r—= 1ty (a, )% _(a.t) - lu b, )1 %0 (b, t) =
p+1 iy 3¢ p+1 £X £X

0
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(2.4)

Here and from now on we abbreviate X and t variablies ‘in the

integrand. Since u_ is nonnegative, Wwe easily see that

£ £

u ta,t) 2 0 and u (b.t) £ 0 .
£ X _ X

Hence integrating (2.4) from 0 te i, we obtain that, any p

h tpb
pet | 12
a0 Tdy o+ fu.+e) u Py dxdt
X g £X £ XX
3%

fent

k]
o~
+
o
~—
cr
P

a

h
1 +1
§ —— u P dx
p{p+1} 0X
a
form which it follews that
: < £ a + 0
“Jsx\t)i,p+1 < "qu' p+l for any t > 0
L (a,b) L (a,h)
and
x b
, . ,p-1 2 v \ v
iu,+€)lu,xlp u'xw dxdt £ C*ugx;p : .
0Ya - - L {a,h)

From (2.5) we easily have (2.1).

(34

(2.

(2.

wl

99

~—
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Lemma 2. Let 0 < ¢ <50 vhere €0 is a fixed number. For any

U ; . < C (2.7)
El L ([a.b)x{0.T])

where C is a positive constant independent of «¢.

Praaof, Using (1.1)E and integrating by parts, we get
TNb Tpb T
2 9
u2 dxdt = (u +s)“u2 dxdt -2 £ X {u (b.t)z-u (a,t) " }Vdt
et £ - EXX 3 X X ,
0Vva 07 0

rh
(L ;\+2\2)J\J\ u? dxdt
3 : £X
g “a
: ) Tph
< (:uea 0 / +50)d[.J\ (u€+s)uixx dxdt-

oo aTiu, 10, s(Lan®) e-atia 1t .
L ([a,b]x[B,%)) T L ([a,blx[0,®))

From (2.1) and (2.2) with p =1, we can easily obtain (2.7).
Proof of Theorem 1. From (2.1),(2.3) and (2.7), we see that

“ .
there exists a nonnegative function uELm({U,w):G([a,b])ﬁW"m{a,h})

with uteLz([a,b}x[D,T]) (for any T > 0) and we can extract a

subsequence of {ue}, which is denoted by {u6 }, such that, as
' i

ei.—aﬂ,



U, =——>u strongly
i
uE X-_———h u weakly
i
and
—_—
u, oy u, weakly

In order to show that u

it suffices to show that, for

and this implies

u > u
eix 4 X

From (2.1) and (2.2), we have

g(uf) | s 2iy

XX 12 (la,b]x[0,T])

We also have

"(u?)Yt* 0 . < ¢!
©NT LU0, T (a, b))

(u?)
£

star in Lm([a,bXXEG,W))

in L%([a,b]x{0,T])
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is a weak solution of (1.1)-(1.3),

any T > 0

“in Ll([a,b]XIU.T])‘ ,

strongly in LZ([a,b]XIU,T])

2 .
uexxﬂle\(K 2
3 X'y

: < C
Y18 (1a, bl %[0, T1)

72N

(fa,b]=[0,T])

By virtue of Aubin’s compactness theorem (see J.L.Lions [4]), we

may assume that

2

(ue.)x = Zugiue_x-_> 2uuX =
i i i

Hence we may also assume that

u u —_— 3 uu_ a.e. in
e, £.X X

i 1

from which it follows that

(u2)K strongly in LE([a;b]X[U,T]).

a.e. in {a,b]x[0,x)

fa,b] <[0, =)

(2.8)



{u ) 0

s = a.e. in E={x€{a,h];d=o} (see

since

Kinderlehrer-Stampacchia [3],p53) and

u, — a.e. in cE={x€[a,b};u>o}

In view of Lebesgue’s bounded convergence theorem we can easily

obtain

T(b b
1 dxdt = 1u?] dxdt . (2.9)
m X

B
L
83

o

On the other hand, from (2.1) we may assume that umx converges
to u veakly in Lz([a,b]X[D,T]). Hence

. 2
. [
U —— u strongly in L7 (la,blx[0,T]) (2.10)

This completes thé proof of Theorem 1.

'3.Proof of Theorem 2.

Lemma 2. Let g satisfy (Hl)w and (H2) . Then, for any.

i

fu (a, t)i
£

IIA

JE C (3.1)

and

A

Je ¢C | ,_ (3.2)

fu (b, t)I.
E .

_ 1o~



?raaf. We oniy show that (3.31). .hold valid. From (H2) we

see that for some § > 0 and C, > 0

pont

2
0 £ u,(x) g Cl{(x-a)“+J: (x-a)}  for any xe(a,a+3}) £3.3)

0

Let T > 0 be fixed. For any (x,tlé[a,qfﬁ}XIU,T] set

T(x.t) = A{(x-a) 2+ [T (x-a)} | (3. 4)

where A is chosen so large that

A2 51 (3.58)
and
A(52+{5 §) 2 max u (x,t) . (3.8)
: aé\ga+§ e . C ' v
02t£T
_ 2, 1 - . . .
Note that u€eCl {((a,b)x[0,T]). Direct-calculation gives
— - .= 2
U,-(T+e)u +i{(U)
t X X

92 2 )
= 2(22-1)A (x-a) + 2(2A—I)A2J? (x-a) + 2e¢A(AA-2)

2 0 in  (a,a+8)x(0,T) , (3.7)
provided that 4 2 -é— and that A is so large that
?\A'? > G

By virtue of (3.3)-(3.7) we apply the maximum principle to

ohbhtain
0 S u (x,t) & T(x,1t) in [a,a+§]x[0,T]
L
Hence
u (a+h,t)-u_(a,t) u(a+h)
§ S u (a,t)= lim — < lim— = A/7 .
3 h;0 h h.0 h

Thus we have (3.1).
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Lemms {. inder the same assumption
I i
| g — f > .
U " or ant t 0 (3.8)
Moreover, if u £ C then
Oxx 2
i £ C , (3.
$XX 3 3.9)
where 83 is a constant.
uet
Praof. Putting p= , we have
uo o+
p.=(u +e)p_ +2(1-u__p +pZ (X, 1) (a,b)x(D, =)
1 £ XX EX X ) ' )
p(a,t)=p(b,t)=0 te (0, %)
S ll 2
T 0x 4
(x,0)=u - — Xe (a,
p! ) Oxx —— x€(a.b)

The standard comparison theorem yields that

lsing (l.li)£ , we easily see that

02 - —e (3.10)
EXX 1
¥e put a=u, . to obtain that
q.=(u +e)a _+2(1-)u_q +(1-22)q° (3.1
t £ XX ) £X X '

As for the houndary conditions, we utilize (1.1)6 "to get
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A 2 L
q(a,t)=-?-iu’x(a,t)! . q(b.t)=-7'!uhx(b,t)i2 (3.12)

for any t >0. In view of Lemma 3, we see that

=? - ¢ . .
0S aa,t) § iC°, 0 S a(h,t) s ic2 (3.13)
Hence the comparison theorem yields that, if % >-€?
(x,1t)=u (x,t) £ S
G Y 2 T D

for some constant C > 0.

1 .
S S PO PO ;-—g— and | (3.11)-(3.13) yield zha;

U (x,t) £6C ' ©(3.14)
£XX 3
L2 . .
where C? = max (4iC ,62 ) is independent of .
Preaf of Theorem 2. Because of Lemma 4, we see that {usxx}

is bounded in Lw([a.b}X[8,w)) for every § > 0. Hence we can

assume that
u ——\ weakly star in ~Lm([a,b]X[5,w))
and

e {x, )
X X :

A
z:+l("7

for any (x,t)ela,bix{§,w),
if u, & C, from (3.14) we have

LN O A for any (x,t)€{a,b]lx[0,x).

This completes the proof of Theorem 2.
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4., Proof of Theorem 3.
Let u and v be two weak soluions of (1.1)-(1.3) with

initial data uU and Vg , respectively. Let T > 0 be fixed -

and put w(x,t) = u(x,t) ?v(x;t) and wg(x> = ug(x) - VU(X).

Then we have

o
o

vix, )y (x,T)dx = {x)¥(x,0)dx

Yo

W Als)
: 2 .2
o+ {w&t-(uux—vvx)&x-(a+1)(qug ‘vxl )w}dxdt | (4. 1)

for any wecz’l([a,b]x{G,w)) with compact support in <(a,b).

For each ne 4 define

. it - < g
n
g (x) = ns it s} §—L
n n
-1 if s < ——L
-1
and
W={g ((u®-v2)0,8 ko ko )hp %o } 9.8
*“n k' m v I v ¢k m
where o and g, are the standard molifiers with respect to x
and t, fespectively; 6%(-%—) where 6683((a,h)) with 0 £ 8§ £ 1

and J(x)=1 in a neighborhood of 0 (we may assume O0€¢({a,b)) and
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8 (t)EC ((0,%))  such that 0 $ 8 £ 1 and 8 (t) tends to the
m 0 mn m

indicator function of {si,szj

(0 < s, < s ) as m = » Then

Weﬂg((a,b)x(ﬂ,m))’.and v(x,t) 2 0 for any (x,t)e(a,b)x(0,x).

Substituting ¥ for a test function v in {(3.1), we have

e

w¥ _-(uuw -vv )V -(i+1) (lu i2-§v EZ)W}dxdt4. (4.2)
t X X X X X

From thLZ({a,bEX{U,T}) for any T > G and WEC;((a,b)X(U,M)) we

4

get

Letting v and i tend to infinity; we can easiiy see that

T - - 1 - 1 -
xl(h,m,n) I,(k,m,n) 43(h.m,n)

2
TNh
- 2 2 A
z wtek@mgn((u v )Skam)dxdt
07
TMb
. 2 2 . ,
-{- (uu_-vv_){g ((u-v )¢ 8 )} dxdt]
X X n £ M X
0Ya
Tph
- =1q7 } }2_5r |2 -o/12_2 =
[-(a+1) (,ux; v )Okomon\(d v )8k6mdxdt] 0 (4.3)
0va : '
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As n tends to infinity, we find Il(k.m,n) tends to

Iph

{k,m) = wt@kam sgn((u—v)ekum)dxat o (4.4)

since sgn((uz-vz)SLB ) = sgn((u-v)6,8 )
‘ £ m £ M

Moreover, @m(t)=ﬂ near 0 and T ,then we have .

Ipb ' Tnh :
i/ - ! { C
Jf‘[ \|w6k8mi)tdxdt =w9k[(8m)tdxdt
0%a 0

a

Tnh o
—J\J\ ~w8kl(8,m)tdxdt (4.3)
0Ya

As for Iz(k,m,n), using‘chain rule, we get

land

Il(k,m)

: Tnb :
_ o2 222
Iz(k,m,n) = 2Jf.J\(qu VVX) gn((u v )8k8m)6k8m dxdt
0“a ‘

nb

/ 2 2 2 2.2
- (uux—vvx) gn((u -y )Bksm ) (u ' -v )Gmﬂk(ﬁk)xdxdt

pb

2 2 2
- - 3y - {
(uuX vv ) gn((u v )ﬂkﬂm )‘Bmek(ﬁk)xdxdt
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Since the first term onthe right hand side is nonpositive and

. C
(8 P e ki
t o k)x' S % we have
{9(k,m,n) ES {%(th + vﬂ3m+ wi o+ v ) G ot IV i 2)
- L L L L 1 X1
where Lp=Lp([a.b]X[U,T]) (p=2,%). Since .ui _, ivi ., ‘u
X x X' .2
L L LT
and 'v( g Aare bounded, we get
I (k.m,n) § = (4.6
o (Kymyn) & = (4.6)
where [ depends on rul o, v , u ~and v !
o] x X .2 X ,2
L L L L
Since S n((uz-vg)ﬁ § ) = sgn(wh,d ) letti —_—
g L g LD etting n
we see that [,(k,m,n) tends to
rhb .
~ \ | .2 , 2
[,(k,m) = -(i+1) (lu_i"=lv_17)6,8 sgn(wf 8 rdxdt
3 ' X X K m K™ m
07a
Recaliing that u and v _ are semiconcave, we have
XX XX
Tph
~ ' .
I.(k,m) = =-{(i+1) (iwh. 8 |) (u +v )dxdt
3 k'm "x X X
0%a
Tph
-(i+1) (u—v)(ux-vx)(ﬁk)xﬁm Sgn(wﬁkem)dxdt
0”7a
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g (i+1) fwh j(u  +v  Hdxdt
XX XX

kem’

Tpb _ .
+ (h+lzjiJ\(!u{+{vi)(!u P+lv 1) 1(8,) tdxdt
X X k' x
0 a ~
b o
s C J\“[ lwo, 6 |dxdt + —— . (4.7)
K m k
0 Ya

Hence eq. (4.3) with (4.5), (4.6) and (4.7) implies that

;wO,Smidxdt +-Q- (4.8)

k k

In (4.8) letting k,m-—> x, we find that

5W(x,32)|dx - {W(x,sl){dx s C fw(x,s)|dxds

£ .
for any sland S, ( 0 < Sy < Sy ).

As 32=t and s1 tends to 0, we have

b b t nb

‘wi(x,t)idx - Ewg(x)!dx £ G iw(x,s)ldxds

a a 0 Ya

from which it follows that, for any t 2 O
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b

lwi(x,t)ldx s e (4.9)

This completes the proof of Theorem 3. foroliary 2 is easily

obtained fr0m3(4,9).
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