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Bounds for Global Solutions of Some Semilinear Parabolic Equations

By
Mitsuharu OTANI (X & X #)

Department of Mathematics, Faculty of Science, Tokai University

1. Introduction. In this note we are concerned with the asym-

ptotié behavior of global solutions of the initial boundary value

problem (E)N (or (E)D) for the semilinear parabolic equation

(E) [ (1) ‘ut(x,t) - Au(x,t) = f(x,u(x,t)), (x,t)e .nx{0,00),

(2) u(x,0) =u (x), xea,
with the Neumann boundary condition

(3) u(x,t)/gn = 0, (x,t)e 30x[0,00),
( or the Dirichlet boundary condition

(4) u(x,t) = 0, (x,t)e 20x0,00). )

Here &} is a bounded domain in EQI with smooth boundary 3£ and
f 1is a-continuous function from ILle to Rl._’It is well known
that if £ is superlineér in u, then (E) has solutions which
blow up in finite time. So it would be natural to ask whether
(E) has a glébal solution which blows up at éo or not.

This kind of problem was first studied by [7,8) for an abstract
equation of the form .u, + eq}(u(t)) - Qq?(u(t))‘= 0 in‘a real

Hilbert space, where @q} are subdifferentials of lower semi-

@

continuous convex and homogeneous functionals ql (i=1,2) on H.

As an application of a result of [7], it is shown in [8] that
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every global solution of (E)_. with f(x,u) = Iulp_zu is

D
uniformly bounded in H(l)(ﬂ) with respect to time t, provided
that p < 2%, 2*=00 for N=1,2; 2* = 2N/(N-2) for Nz3.

Ni-Sacks-Tavantzis [6] also studied (E), for the case where
p-2

, is convex and f{x,u) = |u|” “u and showed that if 2<pc<

2 + 2/N, then every positive global solution of (E)_. is uniform-

D
ly bounded in L¥()) with respect to t and that if 2*ép (NZ3),
then (E)D has a global solution u such that Iu(t)lﬁn._,oo as

t — +00 .

Cazenave—LionS~[2] treated more general nonlinear terms f(x,u) =
fo(u) satisfying
| 1, 1 1.
(o) foeC((R;lR),
. -1 1
(£) | (1) £ wlg cilul + ¢, lul’™™ Tuer™, p < 2%,

u
(ii) ufo(u)g (2+¢) Fo(u),vueﬁl, >0, Fo(u)= S fo(t)dt,

o)
and showed that every global solution of (E)D is bounded in
L,) uniformly in [t, c@) for any t»O. Furthermore this bound

depends only on t and the Hi@l}—norm of uo; provided that

2<p<2,, 2, =00 for N=1; 2, =2 +12/(3N -4) for N z 2.

*

Giga [4] removed this resteiction on p for positive solutions,
i.e.,he showed that if p< 2%, then the L*() bound for every

positive global solution depends only on the L) -norm of ug-

For all these studies, it seems that there is no result for

the Neumann problem (E), in this direction in spite of its impart-

N

ance. In studying (E) it must be noted that the methods in

N 3

[2,4,6] rely much on the Dirichet boundary condition, so do not

work for (E)N.
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The main purpose of this note is to show that "phase'plane"
method introducedin [7,8] works also forA (E)N. However, in
order to apply this method to (E)N, we have to remove two major
restrictions in [7,8J,i.e., conditions that @?l is coercive
and '3?2 is homogeneous. As a matter of course, in cafrying
out this, we need much more careful consideration in the phase
space than in [7,8]. In this note we are concerned with the

following nonlinearity of £ :

~f(.,.) 1is a continuous function from n,x!Rl into lRl

and -there exist constants Ki( i=0,1,2,3) and numbers

pec(2,2%¥),§>0 and ¢» 0O such that

(f) (1) If(x\,u)l < K (1+ ulP™1 v(x,u)e&xml

2

\ (i) uf(x,u)

u

(ii) F(x,u) =§ f(x,t)dt = Kl |u12+g— K V(x,u)e Qlel,
o

=z (2+¢)F(x,u) - X

3 V(x,u)é .ﬂ,"lRl.

Then our main results are stated as follows.

Theorem I. Let (f) Dbe satisfied and u be a global solution

of (E)y (or (E) ) such that wue Vz W22((0,00;L%(V) N

Lfoc([o,oo); Hz(ﬂ.)). Then there exists a positive constant C_ =
c,( luolHl, K. K, Ky, Kg, 8, €, I0])  such that
(5) sup |u(t)| 5 £ Co

t=z0 L ’
(6) sup Ju(t)| ; <+eo,

t=0 H
(7) There exists a number T such that sup |u(t)] < C_,

1 1 ="0
t=T H
1

(8) tsupo lu(t).]'-Hléco, provided that pg¢(2,2,), 2,= o for N=1

=

and 2, = 2+12/(3N-4).

-3-
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Theorem IL. Let (f) be satisfied and u be a global solution
[e0) o0
. fgh
of (E)N( or (E)D) such that u € L) and ue Lloc([o,u»,L (@))

1,2 .2 2 2 .
N wloc((o,aﬂ, L u]))(xLloc((o’aj’ H() ). Then t@ere exists a

positive constant Cl = Cl(luo'f?’Ko’I%f‘Kz’KS’J’ E,lfﬂ) such that
(9) sup J|u(t)| «<oo,
t =20 L™

(10) There exists a number T such that sup 'Iu(t)l.wg Cl’

1
1:ZT1 L

provided that pe(2, 2,).

(11) sup Ju(t)| < C,
L

t=0
Remark 1. (1) Assertions in Theorems I and II hold true also for
Robin problem (E)R, i.e., (E) with more general boundary condi-
tion :

(3)! g—g(x,t) + o (x)ulx,t) =0, (x,t)e gn{0,), créL‘”(an).

can be applied for (E) with

The following arguments for (E) R

N
slight modifications.

(2) Conditions (f)o does not allow f to cqntain linear or
sublinear parts, but condition (f) allow it. For example,
f(x,u)=|ulq_2u‘+ Iulp—zu with 1<qg_2<p satisfies (f)
but not (f)o.

(3) 1If ¢ satisfies condition (f) , then so does g(x,u) =f(x,u)
+ U. Indeed it is clear that g satisfies (o)-(il) of (f),

and since

ug(x,u) = u2+-uf(x¢ﬂ g_u24-(2+6)F(x¢ﬂ -K

3’
(2-+8/2)(u2/2+ F(x,u)) + €¢F(x,u)/2 - gu2/4 - KB’
(2+€/2) gu (x, ) at + e(K, [ul2*9 k. —u?/2)/2 -
+ ng, .+E lu - 2—1.1 - 3

—4-
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and K1 Iulz+(S - K2 - |u[2/2 is bounded below, g(x,u) also

satisfies (ii) of (f) with ¢ and K3 replaced by £/2 and
]

some K3‘.

2. Proofs of Theorems. We shall give here proofs only for

Neumann problem (E)N , which are.more complicated than those for
(E)]:> and also valid for (E)D.

Instead of (1), let us here consider its equivalent :

(1) | u, - AU + u =u + f(x,u) = g(x,u) (x,t) € nx[0,00).

As was seen in (3) of Remark 1, g also satisfies (f). We use
the same Ki , & énd ¢ for g as before. In what follows,'
(«,.) and |.]| denote the inner product and norm of LZ(.Q.).
We also denote by I.Ir and ||-|]| the LF() norm and gt ()

norm respectively. Now we introduce several functionals on Hl(,().)

A(u)

< Cvul®+ 1ul®) = Fllull?

‘ u{x)
- G(u) = 5 S g(x,t) dt dx ,
0’0 ‘
- J(w) = A(w) - G(u),

- ju) = (gl-,u(+)),u(.)) - 2A(u)

and subsets of Hl(.ﬂ.) :

~ Sa= {ueHl(.ﬂ.); jlu) = a} ) aeRl.

Then, by virtue of (ii) and (i) of (f), we obtain

I | 2+5

¥
Ulolg

u € Hl(ﬂ.) , (0] is the volume

(12) G(u) z K
‘ of (L .)
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(13) 3w z €G(u) - 2J(u) -K, Vuen!l @),

(14)  A(u) z (1+&/2)G(u) - Kg/2 - a/2 -VueSa .

Furthermore, by (i) of (f) and Sobolev's inequality

lulp < CbIIuH , there exists a constant d_ such that d,z K

and G(u) = do ( A(u)p/2 +1 ), whence follows

3

(15)  A(w) =z ([G(u) /dy -1 ] +)'2/p, where [a] ' = max ( é, 0).

( Note that d is a constant depehding only on K> K3 , D, L
and embedding constant Cb.) Introducing a new parameter

o= (2+¢) do— K3 vy 0 and takihg account of (14) and (15),

we can draw the follqwing Fig. 1] which illustrates how So’ S
and lines J(u) =J(uo) and J(u) = - d, are located in the

( G(u) ,A(u))- phase plane.

We here claim the following proposition.

) Proposition 1. Let u be a global solution of (E)NA belonging
‘ to V. Then we have
(1) J(u(t)) is monotone decreasing in t,
(1) J(u(t)) z -4, 'tz0,
) (Tlu(012a g Juy) +
t = o o’
o .
(iv) Ju(e)l ¢ ¢, Ytzo,
t+1 5 ‘
(v) g G(u(s))“ds =C_ Ytz o0,
t
t+1 4 .
(vi) g lu(s) 1% as ¢ t z0,
t

!
|
ﬂ where C_ 1is a constant depending only on K, (i=0,1,2,3),¢,49,
|

d and J(u.).
’ o o 6
|
|
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Q;:A<u>=<1+—§->s(u> - 52
S K
© QdZA(u)=(l+-%)G(u)—j2—3—°§(
Alu) S J(w=3(u)
J(u)=-4d
QLSS g ©
|
i - 2
: A(u):(G(u)/do—l'P ]
. —
7! | / ! i{ |
g ;f s
! R
| [ // ny
I[‘i 1}; i:’f"; ()
’5 l( ! i ; ‘i [ :‘ :, 7
Mﬁ'”f; do’l””udzlszf
- I thi i “th
S [ S,
> 0

| A= (2+¢) d, - K,
a,= (2+8)(J(uy) + d ) /e

d,= (2 J(uo) + (2+¢) do)/E’

dO= dO( KO, Ks’ P, "‘r\“] ’ Cb)
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Proof of Proposition 1. Multiplying (1)' by uy and u, we
have

(16) lu (t)l + 5? J(u(t)) = for a.e. te(0,),

(17) —%—%E hl(t)|2'= jlu(t)) for a.e. te[0,00).

Then assertion (i) 1is a direct consequence of (16), and it .

follows from (12),(13),(17) and (i) that

1d ,
(18) fE-a—lu(t)l z eGu(t)) - 2J(u ) - K,
z €K Inl';/zlu(t)la‘y— ek I - 2J(u) -K
- 1 2 o] 3°
Suppose that J(u(tb)) < - do for some t_, then in view of

(i) and Fig. 1, we find that Jj(u(t)) 2=« >0 for all t zt .

Hence (17) and (18) assure that there exists t1>-O such that

-d/2 2+d

(19) %E Iu(t)l2 z eK, [ lu(t) | for a.e. t =zt

l!
which implies that |u(t)| blows up in a finite time. This is
a contradiction. Thus (il) is verified. Consequently integrat-
ion of (16) over [0O,00) gives (ii). = Suppose now that there
exists a tl>»0 such that

g/2 2+5

eKllm‘f lu(ty | z eK,lal+ 23(u) + K

37
then by (18), |u(t)| is monotone increasing in the neibourhood

of t,. Consequently (19) holds for a.e. tzt

1 1 this again

leads to a contradiction. Thus we obtain a priori bound :

(20) sup lu(t)| = K, = [{4 €K, lal +43(u) + 2K} |m<§/2 / ek 1/(2+6)
tz0
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Since dlu(t)jz/dt = 2 ( u(t),ut(t)) < zlu(t)llut(t)l, assertion
(v) 1is derived from (ii),(iv) and integration of (18) over
[t, t+1] . Assertion (W) follows from (v) and the fact that

J(u(t)) ¢ J(uo) or A(u(t)) ¢ B(u(t)) + J(uo). ’ Q.E.D.

Before proceeding to the proof of Theorem I, we prepare the

following lemmas.

Lemma 1. Let r,qe(l,00] and m be a non-negative integer.
Then

a l-a y m,r- q
< évcluwmmluu ueW 7 (N) NL™)

ful
holds for any numbers ae¢ [0,1] and se[l,00] satisfying

/s = a(l/r -m/N) + (1-a)/a,

where C 1is a constant depending only on N, r, gq,m and a.
For a proof of this lemma, see Friedmann [3].

Lemma 2. Let (i) of (f) be satisfied and u be a global
solution of (E)N belonging to V. Then there exists a positive

monotone decreasing function T(:.) such that

(21)  Hu(e)ll ¢ HuCe DI+ 1 for all t, and #e[to,to+T(l|u(to)tl)].
Proof. First of all, we note that there exists a number AG(O,ZJ
such that

(22) Iulz(p'l) 2 ¢ ulZZ? Pt Yuend(ny.

Indeed, for the case N=1,2 or N=z23 and 2(p-1)£22N/(N-2),
we can take A = 2. For the other case, we have only to apply

Lemma 1 with s=2(p-1),m=r=2 and q=2N/(N-2) and use the

-9-
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fact that HlQQJ is continuously embedded in LZN/(N'Z)(QJ.

This inequality implies that there exists a monotone increasing

function M(.) such that

1 2
(23) lg(-,0) 1% ¢ - laul®™ + M(|lull) Yue H(O) .
Multiplying (1)' by - au(t) + u(t), we get

(o) 112+ Tau(e) 1%+ Ju(®) 12+ 2 hvu(e) 1P 2 g+, laule)].

QID-

1
2
Then, by (23), we obtain
1
2

||u(t)H < M(|lu(t)|]) for a.e. t e[o,an)

2

by which we can easily verify (21) by taking T(r) = 1/2M(r+l1).

QR.E.D.
Now we proceed to the proof of Theorem I.

Proof of (6) and (7). By virtue of (iii) of Proposition 1, there

exists a positive number TO such that

00 2
@H - lu012ar ¢ (297 20a).
¢]

IN

K4

Then we have
2
K3

T + =— .

(25) fu(e)ll ¢ a;+ 1 for all t=zT = T+ 54

Suppose that this does not hold. Then there exists a 'tlzI& such

that Ilu(tl)ll > d, + 1. Hence, by Fig. 1, j(u(tl)) > o

Therefore there exists a t < t; such that j(u(to))'= oL and
jlu(t)) » o4 for all t e(to, ti]. Then integration of (17) over

’ 2
) 2 )
[to,tl] and (20) give t -t g K, /22 Li.e., t oz T,-

Again integrating (17) over [to, t we find

lj’

-10-
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t t ’
oL (£t -t) € gtl jlu(t)) dt ¢ Stl lu (£) | lu(t) ] at
o | o o 1o
1/2 2 1
¢ Ky (=5 2 Jup()1%an) 2
o
Hence, by (24), tl-—to < T(dl). Since Hu(to)l|§(Hj Lemma 2

assures that |lu(t )llgd; + 1. This is a contradiction. Thus

(5)-=(7) of Theorem I are verified.

Proof of (8). As was seen above, u(t) can not stay in the region
{L16H1CQ); j(U)>d§ longer than 'K'g Ki/ 2« . Then for any
t 20, there exists to ¢ [max(0,t-¥), t] such that Hu(to)H < d3
= maX(Huoll,dl). Therefore, in order to prove (8), it suffices
to show that llu(t) Il € €, for all tel = Lty to+zr]. For this
purpose, we prepare several results on u.
r r
Lemma 3. If uel (I;L (Q)), r<2*, then
lul < C( {ul ,d ,d., r).
12(1;17/ 2 q)) LNty ° 8
Proof. We note that
1 d S . S=-2 s-1
=g [wg = (u (), Tul™ "ule)) ¢ lu (8) [Hule) |
1 2 r r
é 2(lut(t)l +|u(t)]r), S;ET+1.

Then integration of this over I and (ii) of Proposition 1 assure

the assertion. R.E.D.
Proposition 2. If uel®™(I; LY(Q)) with N(p-2)/2<r<2*,
then
Jul < C(lu_| ,C_ ).
L=(I; H (@) °re(1;1%(a))  ©

-11-
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lQ—Z

proof. Multiplying (1)' by Ju u(t) (2<2< 2*), we obtain,

1 d 2 a-1) b2, 2 p+0-2
(26) o luol + w1212 o k2 @122 lal.
For all £ > (p-2) N/2, Lemma 1 with s=2(p+f-2)/p,m=1,r=q=2
and u replaced by luIQ/2 gives

- - 0 -
PHI-2 o P2 gy /22

(27) lulp+2_2

y A20.

Then, by integration of (26) over I and (27) with £/ =r, we
get

(28) | lulF/?] ¢ ¢ (lul a1
L2(1;a () L2(1;L5 () ©

Again by Lemma 1 with s=2(N+2)/N,m=1,r=q=2 and u replaced

by lulr/2, we now deduce
(2+N)r/N 2/N r/2,2
(29) lul (SoNyp/y € Clulm 1=
Then it follows from (28) and (29) that. ueaL(2+N)r/N(I;L(2+N)r/N

o)) . Hence, by Lemma 3, uc< L>(I; L(N+2)r/2N+l

(L)). Repeating
this procedure, we observe that uc¢ U”(I;Lrigm)), where r, are

defined by the recurrence formula

N+2 .
ri+l = SN ri + 1, i=1,2,+--, rl-r.

Since ri-+ 2¥ as 1 — oo and p< 2%, we can show by finite

steps that |ul o ¢ c(lul _ - )
L®(I;L7 () L7(I;L° (Q))

assertion follows from (il) of Proposition 1. Q.E.D.

C ). Thus the

-12-
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Proposition 3. For N=1,2,3 or 4, we have

[ul < C, : for all g< g*,
L(1;14(Q)) | .

where q*=o0 for N=1 and g*=2+8/(3N-4) for N=2,3,4.

Proof. Let g, =2 and qi+l=(4~—N)qi/2N+(6N+8)/2N, i=1,2,""",
and apply Lemma 1 with s-= PR m=1,r=2 and q-= (2+qi)/2.Thenwe

h
ave 93 41
lul

iv178 4
[lull .
q

q
C Iul(2+qi)/2

i+l

Therefore, by virtue of (vi) of Proposition 1 and Lemma 3,

. a.
ue L l(I;L 1)) for all q; - Since qi_)q* as 1--500, we can
derive the assertion by finite steps. Q.E.D.
Proposition 4. For N=5, we have

lal < CO : for all q<q, =3+ (N-4)(2-p)/4.

L(1;04(Q))
Proof. Since p<2*¥< 4 for Nz4 and (vi) of Proposition 1
assures that |u] < C we get |ul < C_.
4 o* s Yo =
LH(I;L° () T ° LP(1;1P(0)) ©
Let p,=p, p; ; = (N-4)p /(N-2) + [8+(N-4)(2-p))/(N-2), and
s; = 2+pi—p, i=1,2,..-. Suppose that uel “(I;L (),
s./2
then by (26) with ¢= s,, lul * ¢ L2(I;Hl(0J). Moreover
Lemma 1 with s= 2pi+1/si, m=1,r=2,q-= 2-2*/3i and u replaced
by lulsi/2 yields
) A :
+1 A . /2 .
Wl e culoh I IS2)" witn A /2 + AL <2,
pi+1 2 1 2

I

whence follows ll.il C _. Since p,-— q, as

Lpi+l(I;Lpi+l(‘Q‘) )— o
i—5 o, the assertion can be derived by finite steps. Q.E.D.

-13-
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In order to prove'*(S), we have only to combine Propositions
2 with 3 ( for the case N<4) and 2 with 4 ( for the case N=z5).
in fact, N(p-2)/2 < gq* or N(p-2)/2<aq, holds if and only if

p<2y- | | Q.E.D.

Proof of Theorem . Wevshall rely on Moser's iteration scheme
to obtain L% bound via Hi bound. The following lemma plays an

important role in this procedure.

Lemma 4. Let we wic’)(l:( (0,c0) ;Lz(ﬂ)) N L‘i"oc( [0,0) ;L""(ﬂ»)nH1 (o))

satisfy

2

r/2“ ¢ C

(30)  Slw(e) 1T +c e lw(e)] r2(lw(t) 1T+1)  a.e.te0,”)

2

for all r 22, where Cl>O and C2,61,6230.

Then there exist constants a,b,c,d such that

6, +(0,+40.) b
a2 2 172 M,

sup lw(t)loo °

t =0

N

sup |w(t)[9).

where M_ = max (1, clu_|
o o
tz 0

oo ?

Proof. When w belongs to Hé@ﬂ) for a.e. t, this is proved by
Nakao [5] ( See Lemma 3;1). By using Lemma 1 instead of Gagliado-
Nirenberg's inequality, one can prove this lemma by the same

argument as in [5]. Q.E.D.

Put A, = r(1-N(p-2)/2p), A, = P-2, Ay = Nr(p-2)/2p and

6 = Nr/(N-2). Then, by Holder's inequality, we get
p+r-2 _ o, AL, A2, A3
!ulpﬂﬂ__2 < ful, Iulp lul6 .

Applying Sobolev's embedding theorem and Young's inequality, we

deduce

-14-
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_ A 2A./r
la(e) 12772 < ¢ juce) 1 (o) {7273
(31) r/2 2 N(p-2)
¢ 2D jjuce) [N 0 p2Pm BTNy

where C is a general»constant depending on Sup{(u(t)lp; tg:O}.

Then (31) and (26) with ¢ = r imply ‘that u(t) satisfies (30)

with C, =1, 9. =0 and 92 2p/(2p-(p-2)N). Thus (9) is

1

verified by Lemma 4.
On the other hand, it is easy to show that there exists a posi-

tive number T depending only on Iuolc,o such that

Iu(t)lm ¢ju |l + 1 for all te[o,zTO] and IIu(TO)HgC(IuOlu}/TO

= O oo

Hence, (10) and (11) follows from (7) and (8) respectively.
Q.E.D.
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