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ON KNESER TYPE THEOREM FOR FUNCTIONAL DIFFEREMTIAL EQUATIONS

WITH THE PHASE SPACE QY IN BANACH SPACES

Jong Son SHIN

Department of Mathematics, Korea University

Ogawa, Kodaira, Tokyo 187, Japan

§ 1. Introduction.

Let R = (-»,») and E be an infinite dimensional Banach
space with norm l-IE. Let X = E or R. Denote by Qﬁ, YER,
the space of continuous functions ¥ : (-«,0] » X having the
limit lim ey6¢(9) with the norm

o~ ’
1 o = sup e I,
¢ -0 g<0
Y.
I1f x ! (-o,0+a) - X, 0O<a<ge, then for any t€(-=,0+a) we define

Xy ¢ (-=,01 » X by xt(e) = x(t+0), -«<0<0.

The purpose of this paper is to give Kneser type theorem on
the set of solutions for the Cauchy problem of the functional
differential equation(FDE) with infinite delay in a Banach space

(for brevity, CP(1.1)),
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(o9

X—
el f(t.xt), X

]
<
m
o

y? (1.1)

under the condition that f : (0,0+a]xgg(¢,r) - E, gg(@,r) i =

(WGQEI lo-y¢ 1 ESr), is a uniformly continuous mapping. The
.
argument in the proof of the main theorem(Theorem 3.4) is besed

on the idea in [9]1 and on properties of gs. Our result extends

€

the one obtained in [10] and is closely related to the one due to

Kubiaczyk (2] for ordinary differential equations(ODE's).

§ 2. Some Lemmas.

In this section, we shall sﬁow a differential inequality and
a comparison theorem. For a continuous function w : (a,b) = R
and for t€(a,b).b(D+w)(t), (D_w)(t) and (5+w)(t) denote the
right hand derivative, the left hand lower derivative and the

right hand upper derivatjve, respectively.

Lemma 2.1. Let w ! [o,0+a) » R be a continuous func-
tion such that (D+w)(t) exists for all t€io,o+a). Then the
following inequalities hold

D

D sup w(s) < !(D+w)(t)l.

+
o<s<t

2) 1If w(t) 2 O, then



f l(D+w)(t)| if v=0
5+ sup Y5V sy <
g<s<t : C ;
Lo,w )l - v sup "S5 Vyis) it yeo.
: o<s<t
Proof. For a proof of .the assertion 1) refer to (1,61].

Set u(t) = sup{w(s)|lo<s<t), z(t) = sup{e'>w(s)|o<s<t) and I=

[c,0+a). Clearly, z(t) is nondecreasing in te€l. Let any
t€]l be a fixed number and vY€(-«,0). Then we have, for h > 0,
Yto
z(t+h) - z(t) = e w(to) - z(t) for some toe[t,r+h]
< eyr sup w(s) - eyt sup w(s)
og<s<t+h 0<s<T

eyr(u(t+h) - u(t)},-

from which it follows that

-D+ sup eysw(s) < eyt§+ sup w(s).
o<s<t oss<st

It is easy to prove the assertion 2) in case where Yy is a

negative number. Let v = 0. Then by the assertion 1) we have
§+ sup eY(S—t)w(s) < -Ye—yt sup eysw(s) + e—yt5+ sup eysw(s)
o<s<t oLs<t o<s<st
< —ye_Yt sup eVSu(s) + ngtID+(eytw(t))|
o<Lsst

3
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< 1, W ()]

as required.

Lemma 2.2. Let ¥y >0 and U : [0,0+alxR’ » R* be a

R+ = [0,x), Assume that

continuous function, where

(1) u* : [o,0+a] - R+ is the maximal solution of the scalar

differential equation

u(o) = uO > 0 ; and

[N

S8 oo oyt uct)),

-

(2) m : (-=,0+al] » R 1is a continuous function such that

€

Mo

[o0,0+a] such that Im, |
t R
1 gy

€ Q? and m(t) =2 0 on ({o,0+al, and that, for every tl

m(tl); the differential inequality

(D_m)(t ) )< UCt ,m(t D)

is satisfied.

If Im_| R < Uy then

g
gY
m(t) < u¥(t) for te€l[g,o+al.
Proof. For any " € > 0 we denote by u(t,g) dny solution

of the differential equation
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T u(t) = UCt,uct)) + g, u(o) = uO + E. (2.1)
Then, by Lemma 1.3.1 in [4], we have
. *
lim u(t,g) = u (t)
E-0+
uniformly on [o,0+al. Thus it is sufficient to show that for
every € > 0, sufficiently small,
m(t) € u(t,e) on [o,0+al.
Suppose; on the contrary, that the set
Z = {t€lo,o+al | m(t) > u(t,e)}
is nonempty and define tl = inf Z. Then we have t1 >
because ImolgR < u, < uofa. Moreover, since m(tl) = u(tl,s)
Y
and m(t) < u(t,g) for te[o,tl), it is easy to see that
Q_m(tl) 2 lim inf %(u(t1+h,8) - u(tl,s))
h -» 0-
= U(tl,m(tl)) + g by (2.1).
Hence, we have
(2.2)

D_mCty) > Uty ,mCt;)).
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On the other hand, since U(t,s) =2 0 and u(t,g) is

nondecreasing in t, we have

Img | o = sup eyelm(t1+9)|
1 € 9<0
Y
= max{ sup eyelm(t1+6)l, sup eyelm(t1+6)l)
6<o-t o-1.<0<0
1 1
Y(s-t1+o)
= max{sup e Im(o+s) |, m(tl))
s<0
Y(a—tl)
= max{e ImolgR , m(tl))
Y
= m(tl).

Thus, from the assumption 2) we are led to the inequality
Qfm(tl) < U(tl,m(tl)),

which is incompatible with (2.2). This implies that the set 2Z

is empty. Therefore the proof is completed.
A function n : (o,0+alx[0,2r] » R 1is said to be a Kamke-

type function if the following conditions hold

(n) n =nCt,s) is a real-valued function, defined on
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(0,0+alx[0,2r], which is Lebesgue measurable in t for each

fixed s€(0,2r] and is continuous in s " for a.a. t€lo,o+als
‘(nz) There exists a function o, defined on <(o,0+al and

locally integrable there, such that In(§.s)| < a(t) for a.a.

t€ (o,0+al] and all s€l[0,2r1].

The following result is a modification of the one given by

[8, Lemma 3.117. The proof is obvious.

Lemma 2.3. Let n(t,s) : (0,0+alx[0,2r] » R be a Kamke-

n

type function and let {w)} and {zn) converge pontwise to

functions wo and 20 on (o,0+a]l] as n = o, respectively.
Assume that

1) there are a constant H > 0 such that

Iw"(t) - wM(s)I<HIt-s| for all t,s€lo,0+al and all neEN

; and
2) wn and zn' are related to each other as
d n n
a1 w (t) < nCt,z (t)) + on for a.a. t€(o,o0+a),

where onzo and ¢_ = 0 as n - o,

Then

%Two(t) S'n(t,zo(t)) . for a.a. t€(o,o0+a).
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§ 3. Main results.

For a bounded set @ of E, the ad-measure of § is defined

as follows
a(Q) = inf(d>0 | 9 has a finite cover of diameter < d}.

Let ¥ be the set of functions X on (-o,0+al], 0<ad«, into
E such that x is continuous on [o0,0+a] and X € gy. For a
subset %X ¢ ¥, we will use the following notations

Lty = (x(t)€EE | x€0)y, I, = (x, | x€0)  for t€lo,0+a)

t t

and
Lllc,dl = {(xllc,d] | =€),

/ .
where c¢,d€lo,0+a) and xllc,d] is the restriction of Xx to

[c,d]. We denote by C(la,bl,E) the set of all the continuous
functions x : [a,b)l = E with supremum norm. For brevity, we
denote QY the phase space QE when X = E. The following

lemma is concerned with the phase space Qy.

Lemma 3.1 (Shin [77]). If %0 is relatively compact in

QY and if XIl(o,t] 1is a bounded and equicontinuous set in

C({o,t],E), then
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L) = eV sup " Sa(x(s)).
o<s<t
Lemma 3.2 (Shin [91). » Let (Sn) be a family of nonempty
bounded subsets of a'Banach space Y such that Sn+l C Sn for
neN. 1f 'Sn is connected for every n€N and if a(sn) <+ 0 as

@

n » @, then the set N cl Sn is nonempty, compact and
- n=l

connectéd, where ¢l A stands for the closure of A.

Assume that f : [o,a+ajxﬁy(¢,r) - E 1is a uniformly
continuoué function such that ifIE £ M, ',Then a function u :
(~o,0+%] - E, 0<g<a, said to be an %—approximate solution for
CP(1.1) if the folloWing conditionskhold

(1) u is continuéus on J, J=[o,0+%], and uo=¢€% 3

(2) u has the right hand derivative (D+u)(t) such that

l(D+u)(t)lE <M on [0,0+%), and satisfies
; )
u(t) = @(0) + I (D+u)(s)ds for t€J ; and
o

1
(3) |(D+u)(t) - f(t,ut)|E < Y for telo,o0+%).

We denote by Qn[d] the set of all the %—approximate solutions,

defined on (-«,0+d], for CP(l.1). Then there is a & > 0
and the set Qn 1= ané] is nonempty(see [8, Lemma 2.11]).
Lemma 3.3 (Shin [9]). Let f : [O,o+ajxgy(@,r) - E be
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unifomly continuous and IflE < M on [0,0+a]XQY(w,r). Then QU

is nonempty and inJ is connected in C(J,E) for every né€N.

Now, we state the main result in this paper, which is

related to the result due to Kubiaczyk(2] for ODE's.

Theorem 3.4. Assume that f : [a,o+a]xgy(w,r) - E is a

uniformly continuous function such that I[fl, < M on

E
[0,o+a]xgy(¢,r), and that there exists a Kamke-type function
ow(t,s) : (o,0+alx[0,2r] = R+ such that

1) w(t,s) is nondecreasing in s

, t
2) o(t,z(t)) - 0 as t = o+0 and fm('s,z(s))ds ( ®
. g

whenever =z : [0,0+a] = [0,2r] 1is an absolutely continuous func-
tion satisfying the condition (D+z)(o) = 2(ag) = 0, where
(d*2)0) = 1in ZE
t-o
t-0+

3) z = 0 1is the unique absolutely continuous function,

mapping [o,0+a]) into R+, which satisfies the initial condition

(D+z)(o) = z2(0) = 0 and the scalar differential equation
j w(t,z(t)) Yy 20
%% = 1 c for a.a. te€(o,o0+a) ; and
wo(t,z(t)) - vz(t) Y <0
4)

/0
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D_o(ACt))i= Tim inf ——[@(ACt)) - ofC{xX(t) - hE(t,X.) : X€A))]
- h » 0O- L.

< m(t,a(At))

for a.a. t€(o,o+al] and for any subset A ¢ ¥ such that
Allo,o0+al is equicontinuous and that At C Qy(w,r) for all

telo,o+al.

Then the set of all the solutions for CP(1.1) defined on J

(=[0,c+§]) is nonempty, compact and connected in C(J,E).

Proof. From Lemma 3.2 and Lemma 3.3 it is sufficient to
see that o(Q"1J) *‘O as n - @, since Q"IJ is an equiconti-
nuous subset of C(J,E), we have «(Q"M1J) < sup(a(Q?)l teJy by
Theorem 2.1 in [51]. Thus we must prove that a(Q?) -+ 0 uni;
formly on J as n - =, From the properties of the<a—meaSure of

noncompactness, we have, for t€(og,0+y]l and h > 0O,

—%—(a(Qn(t)) - (@™ (t-h) )

< —%—(a(Qn(t)) - a((x(t) - hict,x) | xe@™))
N é a({x(t) - x(t-h) - hiCt,x,) | xeQ™ )). (3.1)

By the uniform continuity of £, for any €30 there exists a

§=6(£)>0 such that 1f(s,¢,) - f(t,9,01 < &/2 if Ilt-sl<s and

1 E

i
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. n
lw1—¢2|<6. Since (xt

(c,0+%t]1, we have, for any X € Qn and h €(0,8),

n_.n . . . .
| x7eQy is uniformly equicontinuous on

Ix(t) - x(t-h) - hf(t,Xt)l

t t
< II [D,x(s) - f(s,x )1dsl| + !f [f(s,x ) - f(t,xt)]dsl
t-h s t-h s

h. (3.2)

Set w'(t) = a(@"(t)) and z"(t) = a(Q?)) for all teJ.

Clearly, we have, for t,s€J and any ne€N,

Vo < W, Wt - whs) Il < 2Mlt-s]

and, Lemma 3.1,

2"ty = supley(s-t)wn(s). , (3.3

o<s<t

Hence we get

zn+1(t) < 2™ty and 12"ty - 2M(s)l < 2M sup eyelt—sl.
~a<68<0

These imply that the sequences (wn(t)} and (zn(t)) converges
to functions w°(t) and z°(t) uniformly on J, respectively.
Now, we shall show that zO(t) =0 on J. From (3.1),(3.2)

and the assumption 4) it follows that

/2
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dwl(t)
dt

< otz (t)) + i + g for a.a. t€(o,0+%).

Using Lemma 2.3 and the relation (3.3), we can obtain

Qﬁg%il < oct, 2%t + Sb for a.a. te(o,a+§$ ' (3.4)
and
20Ct) = sup " 570y, (3.5)
o<s<t
Moreover, it is easy to see that (D+ZO)(0) = zo(c) = 0. Using

the assumption 2), we can put

t

uL) = f 0(s,2%(s))ds + g(t-0),
s g
from which it follows that wl(t) < u(t) for t€J. Therefore
we can obtain
0 < é% = m(t,zo(t)) + € for a.a. t€(o,0+%).
_ Y(s-t)
Put v(t) = sup e u(s). Then, by Lemma 2.1 we can see that
g<s<t ' )

/3
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f‘m(t,ZQ(t))_+ g
%% < l for a.a. t€(o,0+%), (3.6)

w(t,zo(ﬁ)) - YZO(t)_+ €

On the other hand, since wo(t) < u(t), we have zo(t) < v(t)
by (3.5). Letting € - 0 and using the assumption 1), we see

that the relation (3.6) becomes

o(t,v(t))

a
<

I

[l

T < { for‘a.a. t€(o,0+%).

o(t,v(t)) - yv(t)

It is easy to see that (D+v)(o) = v(o) = 0. Thus, by Lémma 4.1

in [6] and the assumption 3), we have v(t) 0 and so,‘

zo(t) = 0. This implies a(Qn!J)'% 0 as n ~» o, Hence the

1t

proof is complete.

Corollary 3.5. The conditions 1) --4) in Theorem 3.4 can be

replaced as follows
1) the condition 3) in Theorem 3.4 is satisfied ;and

2)

a(f(t,B)) € o(t,x(B)) for a.a. t€(o,0+a) and all Bcgy(w,r).

Combining the argument in the proof of Theorem 3.4 and

Lemma 2.2, we have the following result.

Proposition 3.6. Let vy = 0. Assume that f

/¢
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[0,a+a]xgy(¢,r) -+ E is a uniformly continuous function such that

IfIE <. M on [g,o+a]x@y(¢,r), and that there exists a continuous
function ®(t,s) : [0,0+alx[0,2r] - R such that -
1) for every t1€(o,o+a]‘Asuch that a(At ) = a(A(tl)); where
. 1
A is as 'in Theorem 3.4, the differential inequality

D_a(A(t)) < @(t,a(ACt;)),

is satisfied ; and

2) u(t)'= 0 is the unique continuous function, mapping

[oc,0+a] into [0,2r], which satisfies the scalar differential

equation

Sdull) o, uct)), uco) = 0.

Then the conclusion of Theorem 3.4 remains valid.
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