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tally集合上の $P$ -置換群の
代数的構造について

Algebraic structure of the group of p-permutations on tally sets
(Extended Abstract)

西野哲朗
Tetsuro Nishino

東京電機大学情報科学科
Department of Information Sciences, Tokyo Denki University

Abstract

Let $G_{p}^{t}$ be the group of p-permutations on tally sets. In this paper, we will
show that

$G_{p}^{\iota}\triangleright F_{p}\triangleright A_{p}\triangleright\{id\}$

is the unique composition series for $G_{p}^{t}$ , where $F_{p}$ is a normal subgroup of
$G_{p}^{t}$ composed of finite p-permutations, and $A_{p}$ is a normal subgroup of $F_{p}$ of
index 2, and $id$ is the identity p-permutation.

1 Introduction
If we follow the approach of F. Klein, the recursive function theory is con-
sidered to be the study of properties possessed by sets of natural numbers
which are invariant under recursive permutations [11]. Thus, the group of
recursive permutations of the natural numbers are of interest in the recur-
sive function theory. In [6], C. F. Kent showed that the group of recursive
permutations has algebraic properties similar to those of $S_{\infty}$ , which is the
group of all permutations of the natural numbers.
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The group $S_{\infty}$ was studied by L. Onofri [8], and by J. Schreier and S.
Ulam $[9, 10]$ around 1930. They showed that

$S_{\infty}\triangleright F\triangleright A\triangleright\{id\}$

is the unique composition series for $S_{\infty}$ . The normal subgroup $F$ of $S_{\infty}$

consists of permutations moving only finitely many natural numbers. While,
the normal subgroup $A$ of $F$ consists of those finite permutations which
are even. Hence $A$ is a subgroup of $F$ of index 2. And $id$ is the identity
permutation.

In [6], Kent showed that the analogous result holds for a group $R_{M}$ of
permutations recursive in an arbitrary set $M\subseteq N$ . That is

$R_{M}\triangleright F\triangleright A\triangleright\{id\}$

is the unique composition series for any such $R_{M}$ .
While, in [3], L. Berman and J. Hartmanis introduced the notion of poly-

nomial time isomorphism (pisomorphism for short) by using the concept
of p-permutations. A $I\succ permutation$ is a member of the following subgroup
$G_{p}$ of the group of recursive permutations :

$G_{p}=\{f$ : $Narrow N|f$ is a one-one onto map computable in
p-time, and $f^{-1}$ is also computable in p-time }.

It is well known that Berman and Hartmanis conjectured that all NP-complete
sets are p-isomorphic. The isomorphic question for NP-complete sets has
gained a great deal of attention in recent years.

In this paper, we will show that the group $G_{p}^{t}$ of p-permutations on tally
sets has algebraic properties similar to those of $S_{\infty}$ and $R_{M}$ . Namely we will
show that

$G_{p}^{t}\triangleright F_{p}\triangleright A_{p}\triangleright\{id\}$

is the unique composition series for $G_{p}^{t}$ , where $F_{p}$ is a normal subgroup of
$G_{p}^{t}$ composed of finite p-permutations, and $A_{p}$ is a normal subgroup of $F_{p}$ of
index 2, and $id$ is the identity p-permutation.

2 Preliminaries
First, we briefly describe the basic concepts in computational complexity.
For details, see $[2, 5]$ .
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We use the standard lexicographic ordering $\leq or<on$ strings. The length
of the string $x$ is denoted by $|x|$ , and the cardinality of the set $S$ is denoted
by $|S|$ . The empty string is denoted by $\lambda$ . A set $S$ is sparse iff there exists a
polynomial $p(x)$ such that $|\{ w|w\in S, |w|\leq n\}|\leq p(n)$ . And a set $S$ is
a tally set if $S\subseteq\{1 \}$’. A set $S$ is bi-infinite iff both $S$ and $\overline{S}$ are infinite.
The composite of two functions $f$ and $g$ is denoted by $fog$ . We denote the
value of the composite $fog$ for $x$ by $fog(x)$ .

The set of natural numbers is denoted by $N$ , i.e. $N=\{0,1,2, \ldots \}$ . In
this paper, we use strings in {1 }’ to represent natural numbers. That is, $0$

is represented by $\lambda$ and $n\in N$ is represented by $1^{n}$ . Thus, an arbitrary set of
natural numbers is considered to be a tally set, and especially, $N=\{1\}^{*}$ .

DTIME(t(n)) $=\{S|S$ is accepted by a deterministic Turing
machine which runs in time $t(n)$ }.

$\mathcal{P}=\bigcup_{i\geq 0}DTIME(\uparrow?^{i})$ .

For a function $f$ : $Narrow N,$ $dom(f)$ denotes the domain of $f$ . A function $f$ is
computable in p-time if there exists a polynomial time bounded deterministic
Turing transducer $M$ such that (1) for all $x\in dom(f),$ $M$ outputs $f(x)$ , and
(2) for all $x\not\in dom(f),$ $M$ outputs a special $symbol*$ .

In this paper, we deal with the following subgroup of the group of recursive
permutations :

$G_{p}^{t}=\{f$ : $Narrow N|f$ is a one-one onto map computable in
p-time, and $f^{-1}$ is also computable in p-time. $N=\{1 \}$ ’ }.

In this paper, we call a member of $G_{p}^{t}$ a polynomial time permutation (p-
permutation for short). A p-permutation which moves infinitely (resp.
finitely) many natural numbers is called an infinite (resp. finite) p-
permutation.

For a set $S$ , a one-one function $e_{S}$ : $Narrow S$ , which enumerates $S$ and
is computable in p-time, is called p-enumeration function of $S$ . A set which
has a p-enumeration function is said to be p-enumerable. A set $S$ is strongly
p-enumerable iff (1) $S$ is p-enumerable, and (2) An inverse $e_{\overline{s}^{1}}$ : $Sarrow N$ is
also computable in p-time (We assume that $e_{\overline{s}^{1}}$ outputs a special symbol,
$*$ , if an input string is not belong to $S$ ). Notice that, from (2), strongly
p-enumerable sets are in $\mathcal{P}$ .
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A function $f$ optimally compresses a set $S$ if for any $x\in S$ of length
$n,$ $|f(x)|\leq\lceil log(\Sigma_{i=0}^{n}|S^{i}|)\rceil$ , where $S^{i}$ is the set of strings in $S$ of length $i$ .
The ranking function for a set $S,$ $r_{S}$ , maps strings in $S$ to their index in the
standard lexicographic ordering, i.e. $r_{S}(x)=|\{w\in S|w\leq x\}|$ . The
ranking is a special kind of optimal compression. As was noted in [4], if
$r_{S}$ : $Sarrow N$ is computable in p-time, then so is $r_{\overline{s}^{1}}$ : $Narrow S$ using binary
search. In [1], E. W. Allender showed the following theorem.

Theorem A [1] The following are equivalent :

(1) A set $S$ is p-isomorphic to a tally set in $\mathcal{P}$ .
(2) A set $S$ is sparse and has a ranking function $r_{S}$ which is
computable in p-time.

口

Next, we briefly describe the basic concepts in group theory. For details,
see [7].

A permutation on a set $S$ is a one-one onto map $Sarrow S$ . A permutation
which amounts to a circular rearrangement of the symbols permuted is called
a cycle. The number of letters in a cycle is called its length. A cycle of length
2 is called a 2-cycle or a transposition. The 2-cycle which interchanges the
symbols $s_{1}$ and $s_{2}$ is denoted by $(s_{1}, s_{2})$ . And the composite of the two
2-cycles $(s_{1}, s_{2})$ and $(s_{3}, s_{4})$ is denoted by $(s_{1}, s_{2})(s_{3}, s_{4})$ .

A subgroup $H$ of $G$ is said to be normal in $G$ when $hEH$ and $gEG$
imply $ghg^{-1}EH$ . We write $H\triangleleft G$ if $H$ is a nomal subgroup of $G$ . A
group $G\neq\{u\}$ is called simple if it has no nontrivial nornal subgroups.
Here, $u$ is the identity of $G$ . A composition series of $G$ is any series

$G=G_{0}\triangleright G_{1}\triangleright\ldots\triangleright G_{m}=\{u\}$

where the quotients $G_{i-1}/G_{i}$ for $i,$ $1\leq i\leq m$ are simple. These quotients
are called the composition factors. The following theorem is well known.

Theorem (Jordan-H\"older) Any two composition series for a group $G$ have
the same length and isomorphic factors.

口

3 Main Theorem
In this section, we will show a proof sketch of the following Main Theorem.

4



159

Main Theorem Let $G_{p}^{t}$ be the group of p-permutations on tally sets.
Then,

$G_{p}^{t}\triangleright F_{p}\triangleright A_{p}\triangleright\{id\}$

is the unique composition series for $G_{p}^{t}$ , where $F_{p}$ is a normal subgroup of $G_{p}^{t}$

composed of finite $p$-permutations, $A_{p}$ is a normal subgroup of $F_{p}$ of index
2, and $id$ is the identity p-permutation.

In order to prove the Main Theorem, we first prove the following theorem.

Theorem 1 Let $G$ be a normal subgroup of $G_{p}^{t}$ . If $G$ contains an infinite
p-permutation then $G=G_{p}$ .

We will prove Theorem 1 through a sequence of four lemmas. The ideas
of the proofs of these lemmas are from [6].

Lemma 1 Let $G$ be a normal subgroup of $G_{p}^{t}$ containing an infinite p-
permutation $f$ . Then $G$ contains a p-permutation $g$ with infinitely many
disjoint 2-cycles.

口

Lemma 2 Let $G$ be a normal subgroup of $G_{p}^{t}$ containing a p-permutation
$g$ with infinitely many disjoint 2-cycles, which is constructed in the proof of
Lemma 1. Then $G$ has the following property II:

Let $A\subseteq N$ be a bi-infinite set such that both $A$ and $\overline{A}=N-A$

are strongly p-enumerable. If $e_{1}$ and $e_{2}$ are two penumeration
functions for $A$ , then there exists a p-permutation $h\in G$ such
that, for all $n\in N,$ $hoe_{1}(n)=e_{2}(n)$ .

口

Lemma 3 Let $G$ be a normal subgroup of $G_{p}^{t}$ having the property II of
Lemma 2. Let $f\in G_{p}^{t}$ be an arbitrary p-permutation with infinitely many
disjoint 2-cycles and infinitely many numbers not in 2-cycles, then $f\in G$ .

ロ

Lemma 4 Let $f\in G_{p}^{t}$ be an arbitrary p-permutation. It is possible to
express $f$ as a composition $f=f_{2}of_{1}$ of two p-permutations such that both
$f_{1}$ and $f_{2}$ have infinitely many disjoint 2-cycles and infinitely many numbers
not in 2-cycles.

口
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We now return to the proof of Theorem 1.

Proof of Theorem 1 Let $G$ be a normal subgroup of $G_{p}^{t}$ containing an infinite
p-permutation. Let $f\in G_{p}^{t}$ be an arbitrary p-permutation. By lemma 4, $f$

can be expressed as the product $f_{2}of_{1}$ of two other p-permutations of $G_{p}^{t}$ ,
each of which has a bi-infinite closed set of natural numbers. But, by lemmas
1, 2 and 3, $G$ contains every p-permutation of $G_{p}^{t}$ having a bi-infinite closed
set of natural numbers. Thus, $f_{1}EG$ and $f_{2}EG$ . Since $G$ is a group,
$f=f_{2}of_{1}\in G$ . Therefore $G_{p}^{t}\subseteq G$ , and Theorem 1 is proved.

口

Finally, we return to the proof of Main Theorem.

Proof of Main Theorem By Theorem 1, $F_{p}$ is maximal normal in $G_{p}^{t}$ . Since
$A_{p}$ is a subgroup of $F_{p}$ of index 2, $A_{p}$ is maximal normal in $F_{p}$ . The simplicity
of $A_{p}$ can be shown in the same way that, for $n\geq 5$ , the simplicity of the
alternating group $A_{n}$ of all even permutations of $n=\{1,2, ... n\}$ is
proven (See, for example, [7]).

By the Jordan-H\"older theorem, it is easily seen that
$G_{p}^{\iota}\triangleright F_{p}\triangleright A_{p}\triangleright\{id\}$

is the unique composition series for $G_{p}^{t}$ .
口

4 Concluding Remarks
In this paper, we have shown that the group $G_{p}^{t}$ of p-permutations on tally
sets has algebraic properties similar to those of $S_{\infty}$ , the group of all permu-
tations of the natural numbers. It is to be expected that similar algebraic
properties of $G_{p}$ can be found in order to give some insight into the isomor-
phism question for NP-complete sets.
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