-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Kyoto University Research Information Repository

Bl
oo o e/,
&
Kyoto University Research Information Repository > KYOTO UNIVERSITY

The interval arithmetic for the ill-conditioned polynomial

Title equation

Author(s) | NODA, Matu-Tarow; SASAKI, Tateaki

Citation O0000DbO0D0OO (1988),673:47-61

Issue Date | 1988-11

URL http://hdl.handle.net/2433/100904

Right

Type Departmental Bulletin Paper

Textversion | publisher

Kyoto University

https://core.ac.uk/display/39231907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ooooboooao
673 0 1988 0 47-61

The interval arithmetic for
the i]l—cqnditioned polynomigl equatian

Matu-Tarow NODA® ‘and Tateaki SASAKI™®™

* Department of Computer Science, Faculty of Engineering,
Ehime University, Matsuyama-shi, Ehime 790, Japan

¥ The Institute of Physical and Chemical Research

Wako-shi, Saitama 351-01, Japan

1. Introduction

A polynomial is said to be ill-conditioned if small changes in
its coefficients result in large changes in its zeras {Bareiss,
1967, An ill—conditioned’poiynomial equation has at least none
of the following properties:

1) The existeqce 0of several roots having ratios close to unity.
2y The existence of multiple roots. |
The prbperty 1) means the existence of close zeros in a
polynobial equation,. On multiple roots, 1let the polynomial

equation be

Pn(x}=anx“+an_1x“'1+..,+a1x+a0 ,

and let m; be a multiplicity of a solution X; of Pn(n)=0. If a

o~

coefficient, ay is perturbed slightly to agt Lkak, then the
perturbation in X5 is

Xi=

' { ‘ mj ! xixkzgak xlfmi

¢ d/dx yme Pp(x;)

Where Aag< ag.

Many numerical algorithms have been proposed to obtain zeros of

polynomial equations. Most of them, however, is not effective
for ill-conditioned problems. It is well known that the Newton's
method and some modified methods can not calculate roots
accurately if -root are multipie. As a result, authors of today's
textbooks on numerical mathematics limit themselves to write it
is very difficult te compute equations having multiple roots and
close roots" or "it is necessary tn use double or aquadruple
precision arithmetics for obtaining accurate solutions".

In this note, two approaches for the ill-conditioned polynomial
/equation are discussed. One is by using the interval arithmetic
and the other is by the hybrid computation, i.e. a combination of
symbolic and numerical caomputations. In the way af the hybrid
computation, algorithms which are established in algebraic

computations are extended to validated or approximate algorithms.

2. Rough sketches of an algorithm

I[f the polynomial P(x) has integer coefficients and integer
roots , multiple roots fof the P(x)=0 is easily separated. In
this case, P(x) has not square-free decomposition and P(x> is
divided by dP(x)/dx exactly. For s-fold multiple roots, P(x) is
divided by d‘3’P(x)/d‘%’x with residual=0. It follows that the
greatest common divisor (GCD) of two polynomials P(x) and its s-
times differentiation by X, d(S)P(x)fd(S)x, is not primitive.
The GCD of two‘polynomials Pl and'Pé is written as GCD(PI,P2>. It
is usually obtained by the Euciidean algorithm and is shown as
the algorithm 1. Here, the ccoefficients of polynomials are
ommited for the simpi}icity.

Algorithm 1 FEuclidean algorithm for the GCD

(A%

i
ey

input polynomial Py (x), Pzix)
output GCD(P;(x),Pp(x))

1. F(' P]. s G <- Pr)
2, obtain Q and R satisfies
F = QG + R
3. if R = 0 then
else
F <- G, G <- R
4, goto step 2.
Pl’ P2 .and successive Rs construct the polynomiali remainder
sequence (PRS). The algorithm is rewritten as

Algorithm 1 iEuclidean algorithm for the GCD

input polynomial Pl(x), P2{x>, deg(P1}>deg(P2)
output GCD(Py(x),Po(x))
calculate a PRS

(P P evv, PyLFO, P =0
1a 2’) k 1] 5
by the formula k+1
Pi—l = Qipi + Pi+1 , i=z2,...,kK
if Pgsyy = 0 then
GCD(Pl,Pz) = Pk
else

repeat the process)

where deg(Pi) is the degree of the po;ynomial Pi' The _PRS is
computed by the elimination of leading terms{ the highest degree
term) of two polynomials. The GCDécomputation is valid only for
two integers or two‘polynomials whose coefficients and zeros are
limited to integers or rational numbers. Here, we —consider an
extension of the GCD-computation to polynomials ‘whose
coefficients or foots are floating point. numbers. We call the
GCD in abnve case as an approximate-GCD. The computation of the
PRS is terminated by a given parameter £ in the approximate-GCD
vcalculation. “The parameter &£ corfesponds to the accﬁracy of the

result. The approximate-GCD 1is computed by the method with
validation and by the combination of symbolic and numerical

computations. The former is done by'the interval arithmetic and

the latter is realized on the hybrid computation system. If the

[J]

e

P

approximate-GCD is obtained, <c¢lose roots of the original
polynomial equation behave like multiple roots, The multiple
root is easily separated from the'equation. The ill-conditioned
problem changes to two well-conditioned problems, one contains an
approximafe multiple roat and the other does not contain it.
Zeros of the equation which does not have appraximate multiple'
roots are easily computed by any traditional methods for
numerical computations. There remains a problem to obtain
solutions of the equation having approximate muitiplie ronots. The
detailed discussion an the problem is in 3.
2.1 Approximate-GCD by the interval arithmetic

Two types of interval arithmetic have been discussed
extensively. One is the rectangular interval arithmetic and the
other is the circular one (Alefeld and Herzbérger, 1983). The
former is well known because it is easy to implement on’
computers. The advantage of fhe circular interval arithmetic 1is
that it preserves some mathehatical properties of the prohlem.:

The circular interval arithmetic consists of a center, A, and a

radius, r¢(A) of a circite. A and r(A) correspond to a floating

peint number and an error, respectively. Because «of theﬁ
correspondence, here, the circular interval arithmetic is used toé
obtain the approximate-GCD.

vThe approximate-GCD of polynomials PI and P2 with accuracy E:,j
GCD(PI,PZ, £€), is an natural extension of usualvGCD computation.é
It is also obtained by the Algorithm 1 , but the relationalf

gperator R=0 in the step 3 must be rewritten as 'r{R)Yi<= &

There arises a difficulty on a division by an interval number.é

The fact that the denominator must not inciude =zerce in the
interval arithmetic, requires modifications of the Algorithm 1.
[t is important especially for the case 0of irregular polynomials.
The irregular polynomial is the polynomial whose leading
coefficient(lc) is very small in thé process to -eliminate the
leading term of polynomials. If the lc is normalized to unity,
the PRS is obtained without difficulty. The Euclidean algorithm
is modified as follmwé in the interval arithmetic.

Algorithm 2 Euclidean algorithm for the GCD{(interval arithmetic)

input polynﬁm&al Pi(x), Pyix), degi(Pyi>degi(Py), éﬂtoff value

output GCD(Py(x),Py(x)) with accuracy
calculate a PRS

(Py,P ,...,Pkéﬂ(with accuracy 8),Pk+1=0(with accuracy £ 1)
by the tormula
Pi"l = QiPi + Pl"'l 3y i=2,...,k ! B
where 1c(P;,y) = interval number corresponds to unity
if ir{RYi <= € then
else
repeat the process
Many. studies have been done :to implement the interval

arithmetic especially for the rectangular interval arithmetic,
In our computafion, however, the circular interval arithmetic is
adequate to decide whether the result contains zero or not. Here,
the package to compute the circular interval arithmetic is ~made
and implemented on personal computers. Some results are in 5.
2.2 Approximate-GCD by the hybrid computation

The exact GCD is easily obtained by the symbolic computation as
shown above. We try to modify the Algorithm 1 for the case
coefficients or zeros of the polynomial are floating point num-
bers. Computations are done by the combination of the symbolic
computation and the numerical computation. Resulfs by the

symbolic computation are used in the numerical computation and

[44]

e

no

vise versa. We call the symbolic-numerical computation as the
hybrid computation. In the hybrid computation, the GCD algorithm
for the symbolic computation is modified. ﬁumbers computed in
the algorithm\are not the interval but the integer, the rational
number or the floating point number. The decision whether a
number is zero or not is measured by considering accuracy.
Except for the use of interval numbers, the strategy is similar
to the method mentioned in 2.1 for the circular interval
arithmetic. The normalization of the remainder R is also
considered and is made some changes. Here, for the purpose of
the normalization, the absolute value of the maximum magnitude
coefficient of - the polynomial P is defined and 1is written as
mmc(P). The step 2 of the Euclidean algorithm becomes clearly as
shown below,
Algorithm 3 Euclidean algorithm for the GCD (hybrid computation?}
input polynomial Pl(x), Pyrix), deg(P1)>deg(P2), cutoff value

output GCD(Py(x),P5(xX)) with accuracy g
calculate a PHS

(P{,Py,...,Pp#0(with accuracy € },Py,,;=0(with accuracy €))
by the formula
Pi— = QiPi + max(1, mmc(Qi))Pi+1 , i=2,...,k
if all coefficients of Py, <= € then
GCD'—fPl,P?_,) = Pk
else

repeat the process
The detailed discussion on the algorithm and the approximate-
GCD by the hybrid computation is in ref.2. Hybrid computation

systems used here are briefly mentioned in 4,

3. Root-finding algorithm.
The root-finding process for well conditioned equations is

performed -easily. If ill-conditioned parts are ‘separated out

from the given equation, the residual becomes the well
conditioned equation. There is no trouble to obtain numerical
solutions of the residual équation. Then, we must solve the
extracted equation that contains multiple or close roots. 1f
multiple roots are contained in the extracted equation, it is
easy to find the solution by computing the GCD. - There remains a
problem on the equation having close multiple roots. The position
of an approximate multiple reot which is obtained by an
apprroximate-GCD is on the center of close multiple roots (Sasaki
and Noda). The result 1is important faor the folloﬁing
discussion.

The root-finding algorithm for the equation having close roots
is constructed both by the interval arithmetic and by the hybrid
computation. In the interval arithmetic, the basis of the
algorithm is the Krawczyk operator {(Alefeld and Herzberger) and
the Moore-Jones method on existence region of a solution. It
requires the great number of operations to find out the uniquely
existence region of a solution. Though it is possible to obtain
satisfactory results, it takes too much CPU times. It seems new
idea should be introduced to overcome the difficulty.

On the other hand, the root finding algoerithm for the <close
roqt part in the hybrid computation is as follows. It gives
satisfactory results both in the accuracy and in the CPU times.

The notation
P u) = d™Px)/dx™) 4oy

is used in the algorithm. The input of the algorithm is P(X}

which 1is a regular polynomial having m close roots around Xx=u.

7

e

Qutputs of the algorithm are m close roots Uj,...,u

m around Xx=u.
Following three steps consist of the algorithm as follaows:
Step 1: Construct the following equation in variable & :
(€1 P (y) §mt + ...« PSS /1t ¢ Pawy = 0
Step 2: Solve equation [C) w.r.t. | by regularizing the l.h.s.
and let the roots obtained be SI’ N Y,
Step 3: For each ‘Si’ i=l,...,m, solve P{(x)=0 by Newton's method
with initial approximation Xy = u+‘gi.

The regularization in the step 2 corresponds to the normalization
in the algorithm 3. Even if the input polynomial is regular, an
irregular polynomial -appears, sometimes, in the elimination
process of the algorithm. The regularizafian process is then
important to complete the algerithm. It is done by an operation
multiplying constant to the variable. Small coefficients in the

polynomialAare changed to coefficients having usual magnitude,

4, Hybrid computation systems.

The hybrid computation system is essential to obtain the
approximate-GCD by the Algorithm 3. The second author of this
note)uses the hybrid computation system GAL(Sasaki et al.).
The system GAL is written in LISP and is designed for big
computers. On the other hand, the first author uses the
portable hybrid computation system SYNC. It is written mainly in
PROLOG and parfially in C. As a hybrid cumpufation system, it is
a new comer but it is capable to compute hybrid computations on
personal computers. Details on SYNC 1is written in another
article(Noda and Iwashita). Here we will limit ourselves to

give an outline of the SYNC. Special features of SYNC are as

¢

W

follows:

a) A variable occurs in a mathematical expression is assigned to
a prime number.

b) The data structure is adequate to a portable system.

¢) The format of functions of SYNC's symbolic manipulation parts
is similar to that of usual symbolic computation system.

d) SYNC has a powerful interface between symbolic computations
and numerical computationst

e) Symbolic results in SYNC are easily translated to FORTRAN
program and numerical FORTRAN results are used in SYNC.

f> SYNC has its own programming language. The programming
language is similar to Pascal and is easy .to program.

Among above features, e) is mainly described in the following.
In SYNC, the result in symbolic computation (symbolic result
is used in the numerical FORTRAN - computation. The numerical
result is used in the next symbolic computation. The process is
done automatically 1in SYNC. The process is divided into five
stages as follows: 1) the symbolic computation is done, 2) a
program written in an intermediate language receivés the symbolic
result as its input, 3) the program is translated to a FORTRAN
source program, 4) the FORTRAN compiler runs and the’ numerical
result is generated and 5) the numertcal result is used in the
next symbolic computation. Stages 2) to 4) are managed by the
SYNC's predicéte fortran. The intermediate language in the stage
2) is a small extension to usual FORTRAN. It has a new statement
JOINT which is similar to the block COMMON statement. JOINT

statement has two blocks. One is called IN and the other is OUT.

ol

&

6

In IN block, symbonlic results are stored and in OUT block,
numerical outputs are stored. The intermediate language whose
file-attribute 1is syn is translated usual FORTRAN iﬁ the stage
3). An example of stages are shown as follows:

QY £f:=2xX"4-10.4%xX"3-70,96%x"2+29.6%x-3.

<A> X 4 - 10,4 %x x 7 3 - 70.96 x x © 2 + 29.6 %x x - 3.

Q> dfi=dif(f,x;.

CA> 4 % x 73 - 31.2 % x 7 2 - 141.92 % x + 29.6.

<@> x0:=20. :

<A> 20,

{Q> eps:=1.0e-5,

<A> 0.00001.

<Q> fortran newton(f,df,x0,eps,out’.

%% compiler & linker messages s#%x

approximate sol. = 14.99999965778487

{@> g:=x~-out.

<A> X - 14.99999966.

<Q> poldiv(f,g).

residual = -0.00149918 _
guotient = x73 + 4.59999966%x"2 -1.96000671%x + 0.19990006
<A> done. :

In above, a line with <Q> accepts user's input statement and a
line with <A> returns results. of evaluation by SYNC. An input
statement must terminate a symbol ".". in the first input line, a
polynomial is defined. The derivative of it with the variable . x
is computed symbolically in the next <Q> line. The initial value
and the stopping c¢riterion of the Newton iteration are defined in
the following two inputs. User must prepare a program for the
hybrid Newton's method in the intermediate language and store it
in the file with the name "newton.hyb". The program "newton.hyb"
is the same as usual FORTRAN program except for one ,statement.
In the program, a statement

- JOINT /IN/ F,DF,x0,eps /OUT/ ¥
must be added. The order of these parameters and the name of ;he’
program correspond to arguments of the predicate fortran. . The

program in the intermediate language, "newton.hyb", is

10

automatically translated to the program in‘ usual FORTERAN,
"newton.f77", by the predicate fortran in SYNC. The FORTRAN
program generated here 1is stored in file and 'is accepted by
FORTRAN compiler. Results of the numerical computation is put on
/OUT/ block. As shown in the figure, the numerical vresult is
easily used in the next symbolic computation. The user defined
predicate "poldiv" in the final input line divide a polynomial f
by the \other g. The residual and the quotient are shown
symbolically. |

Some studies have been proposed on the connection of symbolic
computations and numerical computations by using FORTRAN. In
famous symbolic computation systems REDUCE and MACSYMA, the
FORTRAN source program is also generated automatically. In these
systems, however, the symbolic computation must be terminated and
the FORTRAN processor must be started as a different computation.
Symbolic and Numerical results are, then, exchanged through files

and two systems run independently.

5. Examples for the approximate-GCD.
5.1 Multiple root(double root)

We consider the polynomial treated in 4,

P(x) = x¥ - 10.4 x5 - 70.96 x% + 29.6 x - 3
The equation Pi(x) = 0 has roots x = -5, 15 and double root at
X=0.2. It is an ill-conditioned polynomial equation because of

its double roots. Two methods described in 2 are applied to the
equation. In the circular interval number with the value A and
the radius r(A) is represented as < A, r(A) >. We shaw the PRS

generated by the algorithm 2 as follows.

11

58

Fy = < 1.0, 2.2B-16> x* + ¢-10.4, 1.8E-15> %3
+ <-70.96, 1.4E-14> x* + < 29.6, 3.6E-15> X
+ < =3.0 , 4.4E-16>
Fp = < 4.0E 00, 1.8E-15> x° + <-3.1E 01, 8.9E-15> x°
+ ¢-1.4E 02, 5.7E-04> x + < 3.0E 01, 7.1E-15>
Fg = <-8.9E 02, 3.8E-12> x° + <-1.1E 03, 9.3E-12> X
+ < 2.6E 02, 1.8E-12>
F, = <-4.7E 06, 1.1E-07> x + < 9.5E 05, 2.2E-08>
F; = < 1.3E-06, 7.8E-04> > 0

Starting r{(A)s in F1 are automatically cOmputed‘according to the
floating point format in the computation. Above computations are
performed on the IBM-PC with the Intel's 8087 flcating point co-
processor, The IEEE format is used in the computation. Then,

the GCD of P{(x) and its derivative is f4. It means the . equation

P(x)=0 has the double root. [If we put the lc of the GCD to

unity, we obtain the GCD as
GCD(P(x), dP(x)/dx > = X - < 0.2, 4.7E-10 >.
.On the other hand, the hybrid computation gives the following

PRS by the algorithm 3.

Fy = Xx"4 - 10.4 x”3 - 70.96 x"2 + 29.6 x - 3

F2 = - 4 x™3 - 31.2 x72 - 141.92 x + 29.6 -
F3 = - 85.78 X72 - 107.76614385 X + 24.98461538
F4 = - (,46563934 x + 0.09312787

F5 = 2.77555766E-17

Then, we obtain the GCD = X - 0.2, because the F5 is approxi-

mately 2zero. Above results for the double root show that two.

algorithms are also valid for the ill-conditioned - polynomial
equation with close roots.
5.2 Close roots

We consider an equation with close root such as

P(X) = (X +5 (X -156)(x - 0.2 (% -(0.2-7)y)>.

The algorithm 2 generates the PRS for several'7 . Final‘Fss of

the PRS are shown in the Table 1. When ’7>;10—6, the absoclute

12

value of A is greater than r{(A; and the obtained intervai does
not contain zero. On the other hand, 7< 1077, the interval
contains zero and F4 should be taken as the approximate-GCD. It

we make r(A) large, then F5,w1th greater 7 will be zero in the

interval arithmetic. An example of the PRS for"7= 107 and a

starting riay= 10719 g computed as

Fy = < 1.0, 1.0E-10> x} + <-10.4 , 1.0E-10> x°
+ <-70.96 , 1.0E-10> x* + < 29.6 , 1.0E-10> x
+ < =3.0 , 1.0E-10>)

Fy = < 4.0E 00, 4.0E-10> x° + <-3.1E 01, 3.0E-10> x°
+ ¢ -1.4E 02, 2.0E-10> %, + < 3.0E 01, 1.0E-10>

Fg = < -8.9E 02, 4.8E-07> x° + <(-1.1E 03, 1.2E-06> X
+ < 2.6E 02, 2.3E-07>

Fy = < -4.7E 06, 1.3E-02> x + < 9.5E 05, 2.6E-03>

Fg = < L1.4E 00, 9.3E 00> 0

Then the approximate-GCD is obtained from F, as

approximate-GCD = < 1.0, 5.3E-09 > x + <(-0,200005, 1.1E-09 >,
It is possible to extract the approximate GCD from a given ill-
conditioned polynomial equation with close roots. The starting
r(A) behaves like a cutoff value & in the algorithm 3.

The hybrid computation by using algorithm 3 is also easy to
extfact the approximate—GCD. The computation is performed with
no trouble. The normalization process is important in whole

computation, Results for any ’75 are shown in Table 2.

107Y1¢ 1.4E 08, 7.1E-04 > 1071 1-0.00945431%-0.23943771
10721¢ 1.4E 06, 5.9E-04 > 1072(-0.00011671x-0.20487204
10731< 1.4E 04, 5.8E-04 > 10731-0.00000121%-0.20049869
10741¢ 1.4E 02, 5.8E-04 > 10"41-1.0E-09 1x-0.20004999
107%1<¢ 1.4E 00, 5.8E-04 > 10721-1.197E-101x-0.20000499
107°81¢ 1.4E-02, 5.8E-04 > 10781 0.0 [xX-0.20000000
1107 7(< 1.4E-04, 5.8E-04 > L .

10781< 0.0E 00, 5.8E-04 >

Table 1 Table 2

13

v

e
e’

60

6. Conclusionsf
A method to solve the ill-conditioned polynomial equations are

considered. Il1i-conditioned parfs, multiple or close roots, are

extracted from the given equation. The method of the extraction:

is based on the Euclidean algorithm that 1is defined as the

'exact'-algebfaic method. The algorithm is extended to be able
to treat floating point coefficients and zeraos. The first
extension is done by using the interval arithmetic and the second
is by the hybrid computaiion. Examples by both metheds are shown
and results are satisfiable.

Extracted parts which contain close.rnots/are also computed
very carefully. In the hybrid computation, the Taylor series

expansion 1is effectively used. In the interval arithmetic,

sl

accurate root finding methods are based on a modified Newton's

method but it takes too many CPU times. An efficient method for
the root finding should be necessary. |

The hybrid computation discussed here should be extended to new
and ultimate hybrid computation. 1In the 'ultimate' computation,
it is expected the ‘combination of symbolic and validated

numerical computations . To better use of the ‘ultimate'-hybrid

computation, the hybrid computation system which allows both the |

validated numerical computation and the symbolic computation

seems to be important. The portable hybrid computation system |

SYNC and ‘the validated PASCAL-SC {(Rall, 1985) will Dbe
candidates for the system.

Computations reported here were done by M .0Ochi, Ehime Univ., (

hybrid computation) and by Y. Nishio, Ehime Univ., { circular

14

interval arithmetic). H." Asagawa, - Ehime Univ., read the

manuscript carefully.

References

alefeld,G. and Herzberger,J. : ‘Introduction to Intervai
Computation', Academic Press, 1983.

Baréiss,E.H.: The numerical solution qf‘palynamial equaﬁinnx and

the resultant procedure , in ‘Mathematical Method for Digital
Computers Vol.2', John Wiley, 1967.

Moore,R.E. and Jones,S5.T. ! Self starting regions for iterative
methods, SIAM J. Numer. Anal., 14, 1977,rpp.lﬁ51—1065.

Noda,M.T. and Iwashita,H. : Portable hybrid computation system
SYNC, J. Intf. Proc. Japan, to be submitted(in‘Japanese V.

Rall,L.B. : An introduction te the scientific computing Ianguage
Pascal-SC, trans. Second Conf. on Applied Math. and Computihg,
U.S.» Army Research Office, Research Triang}é Park, NC, 1985,
pp.117-148.. |

SasakiﬂT.f Fukui,Y;, Suzuki,M. and Sato;M.(1988;:: Proposal of. a
scheme for linking different compﬁter languages, Jour. Inf.
Proc., submitted.

Sasaki,T. and Noda,M.T., Approximate square-free decomposition
and root-finding of ill—conditimned algebraic equations™, Jour.

Inf. Proc., submitted.

15

