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Abstract

This paper describes the design, implementation and applications of an event-driven
execution monitor for Ada tasking programs named EDEN. We discuss two major
problems which confronted us in developing the execution monitor, i.e., what to
observe in monitoring an Ada tasking program, and how to reduce the interference
from the monitoring actions. These are intrinsic problems in monitoring concurrent
programs. In this paper we describe our approaches which we adopted to those
problems in designing and implementing EDEN. This paper also presents practical
applications of EDEN including communication deadlock detection. Finally we assess
our monitoring mechanism and our monitor EDEN.

Keywords Concurrent programming, Ada tasking, Execution monitoring,
Monitoring domain, Monitor transparency, Communication deadlock detection, Ada
programming support environment

1. Introduction

Debugging concurrent programs is more difficult than debugging sequential
programs because the former presents a higher level of complexity than the latter.
EfTective tools and methodologies which are developed specifically for concurrent
programming are hardly available so far. Traditional debugging tools and
methodologies for sequential programs do not provide enough information and means
to deal with the problems in debugging concurrent programs. Therefore, we must
develop new tools and methodologies in order to deal with the new level of complexity.

The events that occur in a concurrent program during its execution may be
categorized into two groups : sequential (or local) and concurrent (or interactive)

events. A sequential event concerns a local action inside the process such as sequential

\copyright Ada is a registered trademark of the U. S. Government (Ada Joint Program Office).
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control transfer or access to the local data. A concurrent event relates to an interaction
between processes such as inter-process synchronization or communication. The
behavior of a concurrent program may be regarded as streams of such sequential and
concurrent events. In order to debug a concurrent program, it is indispensable to
provide information about the events occurred during execution of the program. Such
information can collected by monitoring executions of the program.

We particularly treat Ada [DoD-83] programs with concurrent tasks. In this paper
we describe the design, implementation and applications of an event-driven execution
monitor for Ada tasking programs. This monitor named EDEN collects, analyses,
saves, and reports information about the tasking behavior of the target program. It
also detects tasking communication deadlocks in the program at run-time. The
description of the tasking behavior reported by EDEN is presented at the Ada source
code level. In order to deal with the most inherent problems in monitoring Ada tasking
programs, we devoted our attention to the concurrent events in Ada programs and
neglected the sequential events when we developed EDEN.

The central problems we treat in this paper are : what to observe in monitoring an
Ada tasking program, and how to reduce the interference from the monitoring actions.
These two problems are intrinsic for monitoring concurrent programs. Therefore, we
discuss them from the viewpoint of both Ada programming specifically and concurrent
programming in general.

For the first problem, we have defined the monitoring domain of Ada programs with
which we describe the monitored tasking behaviors of the programs. The monitoring
domain of a target Ada program consists of tasking events which occur and are
observed at the run-time of the program. For the second problem, we have presented a
new concept, named partial order transparency, as a criterion used to measure the
transparency of an execution monitor with respect to the monitored behavior of a
target program.

Recently, several execution monitors $and/or$ debuggers with an execution
monitoring approach for concurrent programs have been proposed andlor developed
with various aims [Baiardi-86, DGC-84b, Gait-85, German-84, Helmbold-85a,b,
Holdsworth-83, LeDoux-85, Maio-85, Mauger-85, Smith-85], but none of these
monitors $and/or$ debuggers systematically deals with $\circ he$ above two problems.
Accordingly, it could be difficult to present significance, suffciency, and accuracy of
the information provided by the monitors $and/or$ debuggers about the monitored
behavior of a target program.

In section 2 we give a brief overview of EDEN. In section 3 we discuss the problems
in monitoring concurrent programs, and present our approaches to them. We introduce
the monitoring domain for Ada tasking programs and describe our monitoring
mechanism adopted in EDEN. Section 4 describes the implementation of EDEN.
Section 5 presents some practical applications of EDEN. Concluding remarks are
given in section 6.
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2. Overview of EDEN

EDEN consists of a preprocessor (3,000 lines of text) and a run-time monitor (7,000

lines of text). We implemented it as an Ada package on a Data General ECL] PSE
$MV/10000$ [DGC-84a1. We aimed that it can be easily introduced in any APSE [DoD-

80]. Currently, EDEN is a prototype system and serves for experimental use.

2.1 Monitoring and Debugging Process

The basic idea of monitoring mechanism of EDEN is as follows : the preprocessor
transforms a target Ada program $P$ into another Ada program $P$’ such that $P$ ’ preserves
tasking semantics of P. The transformed program is compiled, linked with the run-
time monitor, and then executed. During its execution, $P$’ will communicate with the
run-time monitor when each tasking event occurs in $P$’ and passes information about
the tasking event of $P$’ to the run-time monitor. The run-time monitor can analyze,
save and report the collected information as the tasking behavior of the target program
P. Fig. 1 shows the monitoring process with EDEN.

2.2 Debugging Facilities

EDEN provides a number of basic debugging facilities. It currently supports:

a) Reporting snapshots of task states

The user can designate task(s) in the target program whose snapshots at the current
or designated time are to be reported, e.g., a single task, all dependent tasks of a
designated task, or all tasks. Each snapshot includes, for designated or each
elaborated task, the name in source code, the internal identification number, the state,
and if any, the entries ready for communication, or the communicating entry and the
communicating task.

b) Reporting snapshots of entrv queue states

The user can designate entry or entries in the target program whose snapshots at the
current or designated time are to be reported, e.g., a single entry, all entries of a
designated task, or all entries. Each snapshot includes, for designated or each entry,
the members and their order in the entry queues.

c) Reporting snapshots of task and entrv queue states conditionallv

EDEN reports a snapshot in the same way as above a) andlor b) according to the
condition which the user specifies on the value of a task state or entry queue state.

d) Reporting dependence relationship between tasks and their masters

The user can designate task(s) $and/or$ time as in a).

-3-
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(a) Processing target program (b) Run-time monitoring

Fig. 1 Monitoring process with EDEN

e) Reporting histories of task states

EDEN reports the execution histories as sequences of task states of the target
program for the designated duration. When a task state is a communication state, the
communicating entry is also reported. The user can designate task(s) andlor time as in
a).
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f) Reporting histories of entrv queue states

EDEN reports the histories of the operations on entry queues of the target program
for the designated duration. The user can designate entry or entries as in b).

g) Breaking

EDEN breaks the execution of the target program at run-time in response to the
user’s command or the condition which the user specifies on the value of a task state or
entry queue state.

h) Saving execution histories

EDEN saves the execution histories of the target program to the designated external
files.

i) Detecting tasking communication deadlocks

EDEN detects some kinds of tasking communication deadlocks just before they occur
during execution of the target program, and then reports the tasks and communicating
entries involved in the deadlock (we shall describe tasking communication deadlocks
in section 5.2).

By using these facilities, the users of EDEN can easily understand what the program
is doing and how it is being executed, and test andlor debug an Ada tasking program at
the Ada source code level. EDEN provides two modes of usage : the interactive and
batch modes. At the interactive mode, as the interface is menu-driven, and the user
may easily select a command.

3. Monitorinff Mechanism

In order to monitor the execution of a concurrent program at run-time, we must solve
the problems pointed out in section 1. We rewrite those two problems below (1 and 4),
and also present two additional problems deeply related (2 and 3):

1) What is the concurrent behavior of the target program? What behavior of the
program should be monitored and is monitorable?

2) How to identify uniquely each process for monitoring its behavior?

3) How to collect information about the concurrent behavior of the target
program?

4) How to reduce the interference from the monitoring actions of the execution
monitor as little as possible and guarantee the accuracy of information reported
by the execution monitor?

The complete solutions of these problems depend on the concurrent programming
language to be used. Here, we present our approaches in designing the monitoring
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mechanism of EDEN. We believe that the principles of our strategies used in EDEN
are also applicable to execution monitors for other concurrent programming languages.

3.1 Tasking Event Space

When developing an execution monitor for concurrent programs, the first problem is
deciding what is the concurrent behavior of the target program, and what behavior of
the program should be monitored and is monitorable? We call the set of such
monitorable entities the monitoring domain. This problem is very important for the
monitor because of three reasons. First, it determines the domain where the monitor
works. Second, it is a basis for formally defining and discussing various properties
(e.g., completeness [Plattner-81], pertinence [Plattner-81], and transparency) of the
monitor. Third, it is a criterion for practically evaluating the monitor.

Now, we define the monitoring domain of EDEN. In constructing a formal model of a
physical system, it is a good strategy to define the basic concepts in terms of attributes
that can be directly or indirectly observed or measured. To describe the tasking
behaviors of Ada programs, we define and use tasking events as primitive entities
which are detectable as atomic tasking actions at Ada source code level and regard the
tasking behavior of a task as a tasking event stream. Then a state of a task which
describe what that task is doing may be defined by two contiguous tasking events.
Most of the works in debugging Ada programs (including our earlier studies) use states
of task as primitive entities to describe the tasking behavior of Ada programs. But, we
have found out that tasking events are more suitable as primitive entities because a
tasking event stream provides a higher abstraction of the tasking behavior than a state
stream does. It become possible that we devote our attention only to the task
interaction without concerning details inside tasks.

The lifetime of a task is the duration from the moment at which the task to be
elaborated to the moment at which the task to terminate.

First of all, we decide what kinds of tasking events are detectable as atomic tasking
actions of a task at Ada source code level; and assign a different name to each kind.
According to the syntax and semantics of Ada tasking [DoD-83], the following kinds of
tasking events may occur in the lifetime of a task, we specify each kind by a tasking
event name and a informal description of its semantics below:

1) Elaboration start: The elaboration of the object declaration of the task is to be
started.

2) Activation start : The elaboration of the declarative part of the task is to be
started.

3) Activation completion: The elaboration of the declarative part of the task is
completed.

4) Execution start: The first statement of the task body is about to be executed.
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5) Creation : An allocator which creates some task(s) is evaluated during the
execution of the task.

6) Creation completion : The evaluation of an allocator which creates some
task(s) during the execution of the task is completed.

7) $Entr\gamma$ call : The task issues an entry call (simple, conditional or timed) to
another task.

8) Acceptance : The task is ready at an accept statement for accepting any
corresponding entry call.

9) Selection: The task is ready at a selective wait statement for selecting any of
its opened select alternatives.

10) Entry call cancellation: An entry call (conditional or timed) issued by the task
is canceled because the corresponding rendezvous can not be started
immediately or within the specified duration.

11) Selection cancellation: A selective wait is canceled because the corresponding
rendezvous can not be started immediately or within the specified duration.

12) Rendezvous : The task has issued an entry call to another task which has
accepted this entry call; or the task has accepted an entry call issued by another
task.

13) Continuation: The task which has issued an entry call resumes its execution
as the result of the completion of the corresponding rendezvous; or the task has
completed the execution of an accept statement and continues its execution.

14) Abort: The task executes an abort statement.

15) Aborted : The task is aborted as the result of the execution of an abort
statement.

16) Block activation start : The elaboration of the declarative part of a block
statement in the body of the task is to be started; or the elaboration of the
declarative part of a subprogram called by the task is to be started.

17) Block activation completion: The elaboration of the declarative part of a block
statement in the body of the task is completed; or the elaboration of the
declarative part of a subprogram called by the task is completed.

18) Block execution start: The first statement of a block statement in the body of
the task is about to be executed;or the first statement ofa subprogram called by
the task is about to be executed.

19) Block execution completion: The execution of a block statement in the body of
the task is completed or aborted; or the execution of a subprogram called by the
task is completed or aborted.
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20) Block termination: The execution of a block statement in the body of the task
terminates; or the execution of a subprogram called by the task terminates.

21) Activation exception : An exception is raised during the elaboration of the
declarative part of the task.

22) Execution exception : An exception is raised (including a propagated
exception) during the execution of statements (excluding the accept statement)

of the body of the task.

23) Communication exception : An exception is raised during the rendezvous of
the called task; or such a communication exception is propagated to the task
which is calling the corresponding entry.

24) Completion: The execution of the body of the task is completed or aborted.

25) Termination: The task terminates.

A tasking event is a 5-tuple $(T, N, E, M, t)$ . Where $T$ is the identifier of a task in
which the tasking event occurs; $N$ is a tasking event name; $E$ is a set of entries to be
used for communication of $T$ with other tasks, and is defined if and only if $N$ is in any
one of the following tasking event names : ”Entry call“, “Acceptance“, ”Selection“,
”Entry call cancellation”, “Selection cancellation”, “Rendezvous”, and
”Continuation”, otherwise, $E$ is not defined and denoted $by\perp;M$ is a set of messages
which are passed between the task $T$ and the other task during their rendezvous, and is
defined if and only if $N$ is ”Rendezvous” or ”Continuation”, otherwise, $M$ is not defined
and denoted $by\perp;t$ is time\dagger when the tasking event occurs.

A state of a task which describes what the task is doing may be defined by two
ccntiguous tasking events. Here, we briefly specify each $k_{\wedge\wedge\wedge}^{i\mathfrak{n}}d$ of task states by a task
state name and the detailed discussion can be found in [Cheng-88] : Ela\’oorated,
Activating, Execution waiting, Creating, Working $r_{0\Gamma}$ internal $a[fairs,$ $Entr\gamma$ calling,
Accepting, Selective waitin , Suspended $b\gamma$ rendezvous, Abnormal, Block Activating,
Block execution waiting, Block completed, Completed, Terminated.

We may define a partial order on the set of tasking events occurred during execution
of an Ada tasking program according to Ada tasking $sem_{\llcorner A1}tics$ . For example, a task
can only be activated after the start of execution of its master and must terminate
before the termination of its master, but different tasks of the master may start their
execution in any order. This partial order can be regarded as a minimum constraint on
the causal order of the tasking events occurred during the execution of the program
and is determined only by the tasking semantics of the program. We have formally
defined the partial order [Cheng-87b].

Based on the concept of tasking event, the tasking behavior of a task can be regarded
as a tasking event stream. An execution history of an Ada tasking program can be

\dagger This time may be physical time in an interleaved implementation of Ada, or may be
virtual time [Lamport-78, Jefferson-85] in a distributed implementation of Ada.
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thought of as a partially ordered set of tasking events. We call this partially ordered
set tasking event space. The monitoring domain of EDEN is this tasking event space.

When defining monitoring domain of an execution monitor for concurrent programs,
if we can distinctly define concurrent events and sequential events of the programs
respectively, then we should do so. Distinguishing concurrent events from sequential
events has two advantages. First, it may often expose inherent problems that have to
be dealt with in monitoring and may reduce complexity of various properties of the
execution monitor. Secondly, since the amount of full information about the behavior
of a target concurrent application program generally becomes very huge, providing the
full information for the programmers will be infeasible. An acceptable strategy would
be providing only information which reflects the most inherent properties of problem.
In this case, it is suitable to use concurrent events well defined as primitive entities of
monitoring domain.

3.2 Naming Tasks Uniquely

In order for an execution monitor to follow what is happening in the execution of a
concurrent program and report both the behavior of each process and the interactions
among the processes, the execution monitor must be able to uniquely identify each
process instance at run-time. This might not be a problem for such concurrent
programming languages in which there is exactly one instance for each declared
process as DP [Brinch Hansen-78] and SR [Andrews-82]. But, this is an important
problem for such concurrent programming languages as Ada in which there may be
multiple instances for each declared process. Moreover, processes can be created at any
time during execution and so the number of processes is variable.

In EDEN, for instance, when a statement concerning tasking in a task body is
executed, the run-time monitor must be able to know who executes that statement.
When a task is called by another task, the run-time monitor must be able to know who
is called.

The identifier of a task object in the Ada source text cannot generally be used to
uniquely identify that task object inside the task body itself because all task objects of
the same task type have the same task body. It is obvious that any Ada run-time
support environment must uniquely identify each task object. But, it is difficult for us
to use the internal information maintained by the Ada processor. Besides, we cannot
use such an internal information since we intend to implement EDEN at the Ada
source code level.

According to [DoD-83], “if an application needs to store and exchange task
identifiers, it can do so by defining an access type designating the corresponding task
objects and by using access values for identification purposes.“ In this approach,
however, we would have to modify and recompile EDEN for each target program
because of the strong type checking of the Ada language. This is an impracticable
approach for EDEN. Therefore, EDEN has to name internally each task object in a
uniform way at run-time in order to uniquely identify each task object.
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Some naming strategies for Ada tasks have been proposed such as [Booch-82,
German-84]. The basic idea of the naming strategies is adding a new entry to each task
such that it receives its internal name from its parent program unit. But, there are two
problems in such naming strategies. First, the internal name of a task can only be
referred after the activation of that task because a task can not accept an entry call in
the declarative part of its body. This means that these strategies cannot be used for
monitoring inter-task communication during activations of tasks. Second, these
strategies may modify the behavior of the target program because all task objects
depending a parent program unit have to start their execution in only order according
to calls of the parent to such new entries but not in concurrently according to the
original semantics of the target program.

In order to assign a unique name to each task object, we introduced a task-name-
server as a package into the program library of the existing APSE. Any target program
is transformed such that some local objects used to keep the internal names of task are
introduced at the head of the declarative parts of task bodies. Such local objects are
initialized by invoking a function in the task-name-server. Uniqueness of the task
internal names is guaranteed since all the above initializations call the single entry of
a task in the task-name-server. This naming strategy can easily be used for
monitoring inter-task communication during activations of tasks in the target
program and do not modify the execution start order of such tasks [Cheng-86].

This approach can be applicable to naming uniquely the masters of a task in
monitoring the tasking behavior of Ada programs. It can also applicable to other
applications where it is necessary for each task object to know its own unique
identifier.

3.3 Collecting Information about Tasking Behavior

When designing the monitoring mechanism of an execution monitor for concurrent
programs, there are alternative methods to collect information about concurrent
behavior of the target program. One is the central collection method and the other is
the distributed collection method.

The central collection method is suitable for a multiprogramming $and/or$

multiprocessing environment. In this approach, a central information collector
receives and saves information about the behavior of the target program sent by each
process. Generally, the information collector should be a process executed concurrently
with processes of the target program. A potential drawback in this approach is that the
central information collector may become a bottleneck.

The distributed collection method is suitable for a distributed processing
environment. In this approach, no central information collector exists, but a central
manager may exist. Each process must record its own execution history and send the
recorded information as output according to instructions of the central manager. A
potential problem in this approach is how to record a full execution history of the target
program if a process is allowed dynamically created and eliminated.

-10-
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We adopt the central collection method in the monitoring mechanism of EDEN. We
call a moment in the lifetime of a task a tasking point when a tasking event occurs
during the execution of the target program. We call a point in the source text of the
target program an in ormation collection point which corresponds to a tasking point at
run-time.

In order to collect information about monitored tasking behavior of the target Ada
program, we introduced a tasking-in ormation-collector as a task which has a separate
entry for each kind of information collection points. We need to find all information
collection points in the source text of the program, and insert an entry call to the
tasking-information-collector at every information collection point. The information
can be passed to the tasking-information-collector through parameters of the entry
call. Thus, during the execution of the transformed program, the tasking-information-
collector can collect the information about monitored tasking behavior of the target
program at each tasking point.

Fig. 2 shows a program transformation rule for collecting information about accept
statement. The transformation rule consists of a pattern and a replacement. A term in
angle brackets, for instance $<id>$ , is a pattern variable; the program text covered by a
pattern variable is copied into the replacement. The pattern variables are restricted;
for instance, $<id>$ can only match a identifier. Square brackets enclose optional
items.

Pattern:
begin

$<statemenls- 1>$

accept $<entry$ simple name $>[<formal$ part $>1$ [do
$<statements- 2>$

[ $<text$ piece-l $>return$ <expression $>;<text$ piece-2 $>$ ]
$<statements- 3>$

end [ $<entry$ simple name $>$ ]];

Replacement:
begin

$<statements- 1>$

Tasking–Information–Collector. ACCEPTANCE $($

TASK–ID, CLOCK, GET–simple– name ( $”<entry$ simple name $>$ ));
accept $<entry$ simple name $>[<formal$ part $>1$ do

Tasking–Information–Collector RENDEZVOUS $($

TASK–ID, CLOCK, GET–simple– name ( $‘<entry$ simple name $>$ ));
$[<statements- 2>1$
[ $<text$ piece-l $>$

Tasking–Information–Collector. CONTINUATION $($

TASK–ID, CLOCK, GET–simple– name ( $”<entry$ simple name $>$ ));
return $<expression>;<text$ piece-2 $>1$

$[<statements- 3>1$

Tasking–Information–Collector. CONTINUATION $($

TASK–ID, CLOCK,GET–simple– name ( $”<entr\}$ simple name $>$ ));
end [ $<entry$ simple name $>1$ ;

Fig. 2 Program transformation rule for collecting information about accept statement
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3.4 Partial Order Transparency

In monitoring the behavior of a concurrent program, the monitoring actions may
interfere and even modify the behavior of the program. This is particularly a serious
problem for monitoring the concurrent behavior of the programs. It is impossible to
completely eliminate this interference because the behavior of a concurrent program
generally depends on the rate of each process in the program [Brinch Hansen-73].

Therefore, when we develop an execution monitor for concurrent programs, it is
indispensable to make certain whether or not the monitor always report accurate
information about the monitored behavior of the target program. In other words, we
should establish an acceptable criterion with which we can measure the accuracy of the
information about the monitored behavior of the target program reported by the
monitor.

When we monitors an execution of a target concurrent program with an execution
monitor as EDEN, the observed behavior, of course, is the behavior of the program
transformed by the preprocessor of the monitor and not the original behavior of target
program. In order to accurately observe and report the monitored behavior of target
program, the monitor should and must be transparent to the monitored behavior. We
have presented a new concept, called ”partial order transparenc “, as a criterion used to
measure the transparency of an execution monitor with respect to the monitored
concurrent behavior of target program [Cheng-87b]. The basic idea of the concept is
making execution monitor transparent to the concurrent events in the program with
respect to the order of their occurrence. We have proposed a theoretical foundation for
our “partial order transparency” concept. Here, we describe our concept briefly. The
reader is referred to the detailed discussion [Cheng-87b].

If we regard an execution history of an Ada tasking program as a partially ordered
set of tasking events, then any correctness of the execution can be determined only by
the tasking event space of the program. Therefore, when transforming an Ada tasking
program, if the tasking events space of the transformed program preserves full
properties of the tasking event space of the original program, then we may say that the
behavior of the transformed program completely includes the behavior of the original
program.

Our approach is based on the viewpoint described $a_{\vee}\vee e$ . We first abstract the
tasking behavior of Ada programs with respect to the task interaction by using lattice
theory. We showed that an execution history of an Ada tasking program forms a lattice
consisting of the tasking events occurred in the execution. Then we discuss the
correspondence between execution histories of the target program to be monitored and
the transformed program, which is really executed during monitoring, in terms of
abstract algebraic structures based on the above lattice model. If a program
transformation guarantees that there is an isomorphism from the history lattice for the
original program to a sublattice of the history lattice for the transformed program,
then the partial order of tasking events is completely preserved by the transformation.
We claim if the program transformation used in an execution monitor for concurrent
Ada programs has the above property, then the monitor is transparent to the
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monitored behavior of the target programs in terms of partial order transparency. Fig.
3 shows an isomorphism which preserves the partial order of tasking events in the
target program.

(a) Lattice of the original program (b) Lattice of the transformed program

Fig. 3 Preserving the partial order of tasking events

We do not claim it is possible for an execution monitor to completely eliminate the
interference from the monitoring actions, but we can develop an interference-free
execution monitor in the sense of the partial order transparency. The principles of our
approach are also applicable to execution monitors $and/or$ debuggers for other
concurrent programming languages.

4. Implementation

Fig. 4 shows the overall structure of EDEN.
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$l/O$ Entry call Subprogram call Package

Fig. 4 Overall structure of EDEN
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The preprocessor of EDEN transforms a target Ada program into another Ada
program which communicates with the run-time monitor. In order to identify
declaration of task types and task objects during transformation, a symbol table is
necessary in the preprocessor. The run-time monitor of EDEN consists of seven major
parts: task-name-server, master-name-server, tasking-dynamic-dependence-tree,
entry-queue-manager, tasking-information-collector, tasking-information-manager,
and query-processor.

The task-name-server and master-name-server create and manage a task name
table and a master name table respectively. Each name-server is implemented as a
package.

The tasking-dynamic-dependence-tree is a data structure used for managing
dynamic dependence relation between tasks and their masters in the target program.
Its nodes correspond to elaborated task objects, currently executing blocks, currently
executing subprograms, or a library package. The relation between any two nodes
corresponds to the dependence relation between the tasks and their masters. During
the execution of the program, when a task object is elaborated, or a block or
subprogram is executed, the run-time monitor inserts a new node for it into the
tasking-dynamic-dependence-tree. When the task object, block or subprogram
terminates, the run-time monitor deletes the corresponding node. The tasking-
dynamic-dependence-tree is implemented as a package.

The entry-queue-manager creates and manages a queue for each entries of the target
program. It creates a queue for each entry of a task object when the task is elaborated,
and deletes these queues when the execution of the task is completed. When an entry
of a task is called, the entry-queue-manager inserts an item which contains the
internal name of its caller and the calling time into the corresponding entry queue.
When the call succeeds in rendezvous or is canceled, the entry-queue-manager deletes
the corresponding item from the entry queue. The entry-queue-manager is
implemented as a package.

The tasking-information-collector collects information about the tasking behavior of
the target program. It is also regarded as the interface between the target program
and the run-time monitor. During the execution of the program, entries of the tasking-
information-collector are called at every tasking point of the target program. Then the
information about tasking behavior of the program is passed through parameters of
entries and saved at the tasking-information-manager by the tasking-information-
collector.

The tasking-information-manager maintains all information collected by the
tasking-information-collector, and reports the information saved in itself. In order to
ensure mutual exclusion of readlwrite operations on the data saved in the tasking-
information-manager, all operations for the tasking-information-manager are done
only by the tasking-information-collector. The tasking-information-manager is
implemented as a package.
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The query-processor is a command interpreter. It also serves as a menu-driven user
interface ofEDEN. The query-processor is implemented as a task.

5. Practical Applications

An execution monitor for concurrent programs can be used as a testing $and/or$

debugging tool to detect and locate the presence of errors. It can be used as a
performance evaluation tool, too. But, it is more important that the execution monitor
may become a common basis for development of testing andlor debugging tools with
various aims in a general concurrent programming environment.

5.1 TwoLevel Debugging

We may distinguish three kinds of errors in a concurrent program with respect to its
specification as follows:

1) $S$ )$!nchronizat_{i}on$ error There is an invalid sequence of synchronizations in
the program [Tai-85];

2) Communication error A process sends/receives an invalid message in the
program, or $writes/reads$ an invalid value on a shared variable in the program;

3) Computation error There is an invalid sequential control transfer or an
invalid readlwrite operation on a local variable inside a process in the program.

Based on this classification of errors in a concurrent program, we may consider a
strategy, called two level debugging, for debugging concurrent programs in order to
reduce the complexity of the debugging procedure. This strategy is to debug a
concurrent program at two levels; i.e., at the higher level (or inter-process level),
intending to debug synchronization errors and communication errors for interaction
between processes; at the lower level (or intra-process level), intending to debug
computation errors for each process.

An event-driven execution monitor for concurrent programs can be used in the
higher level debugging as a general tool. We have used EDEN to test andlor debug
several small Ada tasking programs. Although EDEN mainly takes notice of the
tasking activities in Ada programs, it reports sufficient information about run-time
interaction between tasks.

5.2 Tasking Communication Deadlock Detection

A tasking communication deadlock in an Ada tasking program is a situation where
all members of a group of tasks will wait forever at communication points, and hence
can never proceed with their computation. We say that a tasking communication
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deadlock is global (local) if the group of tasks includes all (a part of) tasks in the
program. Tasking communication deadlock is one kind of the most typical
synchronization errors in Ada tasking programs. Here, we describe briefly the tasking
communication deadlock detection. The detailed discussion can be found in [Cheng-
$87c]$ .

There may occur a variety of tasking communication deadlocks during the execution
of an Ada tasking program, e.g.,

1) Self-blocking: A task has issued an entry call to itself.

2) $Circular- entr\gamma$-calling: There is a closed loop of tasks such that each task has
issued an entry call to the next task in this loop.

3) Dependence-blocking: The task $T_{1}$ is (directly or indirectly) dependent on a
block statement in the body of the task $T_{2}$ or dependent on a subprogram called
by $T_{2}$ , and $T_{1}$ has issued an entry call to $T_{2}$ . When $T_{2}$ proceeds into the
execution of the block statement or the procedure call, the block statement or the
procedure body will never terminate unless the dependent task $T_{1}$ terminates.
In this case, however, $T_{1}$ will be blocked at the entry call to $T_{2}$ which will never
be accepted since $T_{2}$ is at the block statement or the procedure call and will not
execute the accept statement. Thus, $T_{1}$ and $T_{2}$ will fall into a deadlock.

4) Acceptance-blocking: A task is waiting at an accept statement or a selective
wait statement for acceptable entry calls, but no entry call is issued to such
entries.

We modeled the following two relations by using arc-labeled digraph, i.e., the
dependence relation between tasks and their masters, and the entry calling relation
among tasks. Based on this model, we showed that the self-blocking, circular-entry-
calling, or dependence-blocking occurs iffa cycle exists in the digraph [Cheng-87c].

By analyzing the information about tasking behavior of the target program, EDEN
can easily create and operate such an arc-labeled digraph at run-time. EDEN directly
detects the self-blocking, circular-entry-calling, or dependence-blocking by detecting a
cycle in the digraph.

A global tasking communication deadlock occurs when every active task is frozen at
a state and never resumes its execution. EDEN detects a deadlock of this type by
counting the numbers of the active tasks and the blocked tasks. An acceptance-
blocking can be indirectly detected by detecting a global tasking communication
deadlock.

5.3 Other Applications

The information provided by EDEN will be helpful in evaluating the performance of
the target program and in discovering bottleneck of the target program. A
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performance evaluation tool for Ada tasking programs may work based on the
execution history data collected by EDEN.

When we intend to develop a dynamic analyzer for execution properties of the
executable statements in Ada tasking programs, a task naming strategy is
indispensable in order to uniquely identify each task object as mentioned in section 3.2.
In this case, EDEN provides a ready-made task name server. The dynamic analyzer
can easily refer to the task name server predefned in the program library in the APSE
by using a with clause.

In a database-based debugging approach, debugging a program can be regarded as
queries and updates on a database that contains both the program source and the
execution state information [Powe11-83]. When we intend to develop such a database
for debugging in an APSE, EDEN can serve as a ready-made information collector for
the database to collect information of the tasking behavior of the target program.

Some knowledge-based debugging systems need an execution trace of the target
program as an input [Seviora-87]. When we intend to develop such a knowledge-based
debugging system in an APSE, the execution history data of the target program
collected by EDEN may be used as the input of the knowledge-based debugging system.

Therefore, EDEN may become a common basis for development of testing andlor
debugging tools with various aims in an APSE.

6. Discussions and Conclusions

In comparison with other proposed Ada debuggers such as [DGC-84b, German-84,
Helmbold-85a,b, Holdsworth-83, LeDoux-85, Maio-85, Mauger-85], EDEN has the
following features:

1) When we develop an execution monitor $and/or$ debugger for concurrent
programs, it is indispensable to make certain that the execution monitor $and/or$

debugger should always report accurate information about the monitored behavior of
the target program. To solve this problem, it is necessarv to define its monitoring
domain and to make it transparent to the monitored $concu_{A}\cdot rent$ behavior of the target
program. We dealt with these two requirements systematically when we developed
EDEN.

2) EDEN supports most tasking facilities which are not supported by some other
Ada debuggers, such as entry families, task types, inter-task communication during
activations of tasks, selective wait, conditional entry call, timed entry call, task
abortion, and exception handling. Therefore, EDEN is a more useful and powerful tool
than such debuggers are.

3) EDEN provides more information about the tasking behavior of the target
program than other Ada debuggers do, such as inter-task communication during
activations of tasks, task abortion, states of entry queues, and relationship between
tasks and their masters. As a consequence, EDEN can detect most tasking
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communication deadlocks which can not be detected by other debuggers proposed so
far, such as deadlocks that occur in inter-task communication during activations of
tasks, dependence-blocking and so on [Cheng-87c]. The users of EDEN can more easily
discover abnormal situations by analyzing information provided by EDEN.

4) EDEN provides no facility for breakpoints while some other Ada debuggers do
[Maio-85]. We consider that traditional breakpoint facilities are not suitable for
debugging concurrent programs because the behavior of a concurrent program
generally depends on the rate of each process in the program. Any debugging facility
should affect such rates as little as possible.

We are now improving EDEN, accumulating experience with it, and evaluating its
usability and effectiveness from the practical point of view. EDEN is aimed to become
an effective tool which supports the programming in the large with Ada.

Our experience with the development of EDEN has led us to the following
conclusions:

1) An execution monitor for concurrent programs is a very useful testing andlor
debugging tool in a general concurrent programming environment. It may become a
common basis for development of testing $and/or$ debugging tools with various aims in
the environment.

2) When we develop an execution monitor $and/or$ debugger for concurrent
programs, it is necessary to define its monitoring domain and to make it transparent to
the monitored concurrent behavior of the target program.

3) When we intend to specify andlor describe the behavior of a concurrent program
at a high abstraction level, the concurrent events are more suitable as primitive
entities than process states are.

4) The lattice theory is a powerful tool to abstract and formalize the properties of
concurrent programs because of the simplicity of its concept and the consistency with
some inherent properties of the programs.
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