
Title Controllable Two-Phase Locking Mechanisms

Author(s) KAMBAYASHI, Yahiko

Citation 数理解析研究所講究録 (1988), 655: 40-51

Issue Date 1988-04

URL http://hdl.handle.net/2433/100515

Right

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyoto University Research Information Repository

https://core.ac.uk/display/39231697?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

40

Controllable Two-Phase Locking Mechanisms

可制御二相施錠機構

Yahiko KAMBAYASHI

上林弥彦

Dept of Computer Science and

Communication Eng.

Kyushu University

九州大学工学部

Fukuoka 812,Japan

The concept of controllability of concurrency control $mcch_{i}\iota ni_{\iota^{\backslash }}\subset_{\}}nls$ was

introduced by the author. It is useful to realize a distributed system consisting of

different kinds of concurrency control mechanisms. We can also realize adaptive

concurrency control mechanisms as well as mechanisms to handle complex data

which are mutually related. This paper discusses a method to realize controllable

two-phase locking mechanisms. In a controllable concurrency control

mechanism, from outside we can add order information on transactions and the

mechanism produces the serializable schedule which has no conflicts with the

given order. A wait-for graph with control edges is introduced to realize

controllability by modifying the lock phase of two-phase locking mechanisms. We

will show conditions when rollback of a transaction is required using that graph

in order to satisfy the given order.

1

数理解析研究所講究録
第 655巻 1988年 40-51

41

1. Introduction

It is important to use concurrency control mechanisms to improve efficiency of

database systems. There are many such mechanisms proposed so far and each of

which has different advantages. We need to develop concurrency control

mechanisms suitable for wide range of applications. For such purpose the author

has introduced the concepts of controllability and observability of concurrency

control mechanisms. In this paper we will discuss how to make one of the typical

mechanisms, two-phase locking mechanisms, to be controllable.

A concurrent execution of transactions is dcfined to be correct if the result of

the execution is equivalent to the result of some serial execution of’ transactions.

In conventional concurrency cont,rol mechanisms, we cannot select the serial

execution equivalent to the concurrent execution. If a concurrency control

mechanism is controllable, some restrictions can be imposed on such serial

schedules from outside. If il is observable, sucli equivalent $<\llcorner;erial$ $ordc^{\iota}r^{\iota}\llcorner$; can be

known from outsid. Such concept was introduced in order to combine database

systems with different concurrency control mechanisms [KAMB85].

There are the following applications of such properties.

(l)Dynamic concurrency control mechanisms : We can control the property of the

concurrency control mechanism according to the change of usage patterns.

(2)Combination of different concurrency control mechanisms: It is not possible to

combine two database systems with different concurrency control mechanisms,

for example two-phase locking and time-stamp ordering mechanisms. One simple

method is to make one mechanism to be observable and the other to be

controllable, so that the serial schedule observed from one system is used to

control the other system in order to avoid inconsistency.

4 l

(3)Priority control : For some applications we need to classify transactions by

their priority. Priority control can be realized by controllable concurrency

control.

(4)Handling of non-uniform transactions : In time-stamp ordering mechanisms,

among conflicting transactions always the transaction started earlier than others

is selected to be restarted. Thus if there are transactions longer than others, the

possibility of rollbacks of these transactions is higher and we may not be able to

finish very long transactions. We need to control such transactions not to be

restarted.

There are two typical concurrency control mechanisms; two-phase locking and

time-stamp ordering ones. As control of time-stamp ordering mechanisms is

diseussed in $[KAMI\}^{\Gamma}\prime_{J}87]$ l,ogether with applications to problom (4) :ibove, in this

paper we will discuss methods to make two-phase locking mechanisms to be

controllable. Control can be realized by adding control edges to wait-for graphs

which are used to detect conflicts in two-phase locking mechanisms.

Basic concepts will be discussed in Section 2. Section 3 shows definitions

related to controllable concurrency control mechanisms. How to realize

controllable two-phase locking mechanism is discussed in Section 4. For

simplicity we will discuss strict two-phase locking with only execlusive locks.

2. Basic Concepts

Let A_{i},B_{i},\ldots be units of data handled by read and write operations. A

transaction is assumed to be expressed by a sequence of read and write

operations. A read or write operation for data item A_{i} performed by transaction

Tj is denoted by $R_{j}(A_{i})$ or $W_{j}(A_{i})$, respectively. A schedule S for a set of

$4_{c’}i$

transactions $\{T_{1},T_{2},\ldots,T_{m}\}$ satisfies the following condition, where f_{i} is an

operation to erase all operations Rj and Wj $whenj\neq i$.

$f_{i}(s)=T_{i}$

A schedule S is serial if it is expressed by a sequence of $T_{ai’S}$, where

(al, $a2,\ldots,am$) is a permutation of $(1,2,\ldots,m)$. Two schedules are said to be

equivalent if for any combination of initial data values the outputs of transactions

and the final values of all the data after the execution by the both schedules are

identical. A schedule is called serializable if it is equivalent to some serial

schedule. A serializable schedule is assumed to be a correct schedule. Typical

methods to generate $seri_{1}^{l}1i\prime z_{e1}^{l}ble$ schedules are two-phase locking n) $ecll’\iota nisms$

and timest.amp ordering mechanisms. We will discuss two phase lock ing

mechanisuns in this paper. In order to avoid a series of rollback operations the

following strict two-phase locking mechanisni is usually used.

[Definition l] Strict $1^{1}wo- J^{\supset}h_{c}$} $se1_{r}oc\cdot kingM_{Ct}\cdot h_{i111}i_{Sft1}$

Every transaction consists of the following t,hree steps.

(l)Lock phase : I) $uring$ computation when a data i tem is required, a Iock request

for the data item is issued. If the data item is not locked by another transaction, it

can be locked, otherwise the transaction must wait until the data item becomes

available. Lock operations and computation are realized in this phase.

(2)Computation step : After locking all the data items required by the

transaction, only computation is performed.

(3)$Unlock$ phase : After the completion of computation all locked data items are

unlocked at the same time.

Data items once locked in the lock phase will be never unlocked before the

unlock phase. Ifa transaction Ti issuesa lock request to data itemA in the lock

phase and it is detected that A is already locked by another transaction Tj, T_{i}

must wait until A is unlocked by Tj. Such wait conditions are not simple, since Tj

44

may also wait for another data item to be unlocked. The following wait-for graph

is used to show the interaction of lock requests.

[Definition 2] Wait-for Graph

A wait-for graph G is a labeled directed graph such that V is a set of vertices, E is

a set of edges and L is a set oflabels. Each vertex corresponds to a transaction and

each edge (called a wait-for edge) corresponds to a lock request. If transaction T_{i}

made a request for data item A which is locked by transaction Tj, there is a direct

edge labeled by A from v_{i} to vj as shown in Fig. l(a).

$Oarrowarrow OA$

v_{i} v_{i}
v_{i} B

v_{J}

(a) (b)

Fig. 1 Basic components of a wait-for graph

If rr_{i} makes a lock request for data i tem A locked by rr_{i} and $r_{1_{i}^{1}}$. makes a lock

request for data item B locked by T_{i} , the both transactions will wait forever. Such

a situation is called a deadlock. The wait-for graph for this case is shown in

Fig.l(b). In this case if T_{i} or Tj unlocks all the data items the deadlock will be

eliminated. In order to unlock all the data items the transaction must be

restarted from the beginning. Such an operation is called a rollback operation. In

general if there isaloop in the wait-for graph as shown in Fig.2(d)then there is a

deadlock. We must select one transaction in the loop to be rollbacked in order to

delete the loop.

In the two-phase locking mechanism, the transactions which correspond to

vertices without outgoing edges are active and the transactions correspond to

45

vertices with outgoing edges are in waiting state. Active transactions are shown

by black circles in Fig.2.

The wait-for graph is modified by termination of a transaction and generation

of new lock requests. Fig.2(a) shows a situation when there are two transactions

waiting for the transaction shown by a black circle. After the termination of this

transaction one of the two waiting transactions locks data item A and the graph

in Fig.2(b) is obtained. If the transaction shown by a black circle in Fig.2(a)

makes a new lock request, there are two cases, nondeadlock and deadlock cases,

which are shown in Fig.2(c) and (d), respectively. In Fig.2(c) the transaction

becomes waiting state. Fig.2(d) contains a loop corresponding to a deadlock, due

to the lock request shown by the dotted line.

’

$(-\backslash \mathfrak{l}$

$\backslash -/$

(a) (b)

(d)

Fig.2 Modification ofwait-for graphs

46

3. Controllability of Concurrency Control Mechanisms

In this section definitions related to controllable concurrency control

mechanisms are discussed.

Let P be a partial ordered set on the set of transactions. Each element of P is

denoted by $T_{i}>T_{j}$.

[Definition 3] Let P be a partial ordered set. A closure of P , denoted by $p*$ is

generated by the application of the following operation recursively until no new

elements are generated.

If there are $T_{i}>T_{i}$ and Tj $>T_{k}$ in P , add $T_{i}>T_{k}$ which is generated by

the transitivity rule on partial ordered set.

[Definition 4] Let P_{i} and Pj be two partial orders. If every element in $I_{i}^{)}$ is

contained in $l_{i^{*}},$ Pi is said to be a refinement of p_{i} .

[Definition 5] Let P ; and P_{i} be two partial orders. If there are no conflicting

orders in $P_{i^{*}}$ and l
)

$*|’ P_{i}$ and p_{i} are said to be conflict-free. IIere it is said to be

conflicting orders if $P_{i^{*}}$ contains $T_{k}<T_{h}$ and $P_{j^{*}}con$lains $T_{k}>T]_{1}$.

Orders of read and write operations define orders of transactions. For

example, if there is a sequence $W_{j}(A)R_{k}(A)$ in schedule S then there is $T_{j}<T_{k}$ in

the partial order realized by S , since data A written by Tj is read by T_{k} . The

partial order defined by the two-phase lock mechanism is as follows.

[Definition 6] The partial order P defined by the two-phase lock mechanism

consists of the following elements.

$T_{i}<T_{j}$ if Ti and Tj lock the same data item and Tj locks the data item

after unlocked by T_{i} .

If we define shared and exclusive locks corresponding to read and write

operations, the efficiency of the mechanism will be increased. For simplicity we

will only discuss (exclusive) locks in this paper.

47

[Definition 7] A concurrency control mechanism is controllable if the mechanism

can generate the partial order P for any given partial order Q , such that P and Q

are conflict-free.

[Definition 8] A concurrency control mechanism is weakly controllable if it is

controllable for some restricted class of partial order Q.

Ifwe can only use total order as Q , it is weakly controllable. As two-phase lock

mechanisms are not controllable we will discuss a method to make it to be

controllable.

4. Controllab}e Two-Phase Locking Mechanisms

In order to realize a controllable two-pbase locking mcchanism
$,$ a wait- for

graph with control edges is defined as follows.

[Defini tion 9] A wait-for graph Gc wi th control edges is defi ned by Gc

$=(V,E,\Gamma^{l},L)$, where V is a set of vertices, E is.a set (r wait-for edges, F is a set of

control edges, and L is a set of labels for E. F is defined to control the order

realized by a serializable schedule. There exists control edge f_{ij} from v_{i} to vj, when

there is element $T_{i}<T_{j}$ in Q which is given as controlling partial order.

We use dotted lines to express control edges. In order to realize controllable

mechanism, we need to control a wait-for graph with control edges to be loop-free.

[Theorem 1] If a wait-for graph with control edges has a loop consisting of at least

one control edge, the order of execution will eventually have a conflict with the

order Q which is given as a control input.

Proof : By properties of wait-for graphs with control edges, the vertex

corresponding to the transaction which is active has no outgoing edges and

possibly outgoing control edges. In a wait-for graph with control edges a loop with

at least one control edge does not produce a deadlock. Fig.3(a) shows such a

48

situation. Here the transactions shown by black circles are active. In this case if

all transactions in the loop are executed without rollbacks, the order realized by

the mechanism has a conflict with the order determined by the control edges.

v_{1}
v_{2}

(a) (b)

Fig.3 Aloop inawait-for graph with control edges

[Theorem 2] If t,here is a loop in a wait-for graph with control edges, we ca n

eliminate tlie loop by rollbacking a transaction which corresponds to the vertex

whose incoming edgc in the loop is not a control edge.

Proof : We can cha $1t$ ge tbe directions of edges in E by rollback operations, but tlue

direction of control edges cannot be changed. Thus we have to rollback a

transaction whose incoming edge is not a control edge. In Fig.3(a), if the

transaction corresponding to v_{1} is rollbacked (the data items locked by v_{1} are

unlocked), then direction of the edge between v_{1} and v_{2} can be changed effectively

(in general there is a path from v_{1} to v_{2} as shown in Fig.$3(b)$) and thus the loop is

deleted. Here by the roll back operation, the transaction corresponding to v_{1}

starts from the beginning, and thus vl will use the data item after unlocked by

the transaction corresponding to v_{2} .

If there is a loop consisting of only wait-for edges, we must select one

transaction to be rollbacked. If a loop contains at least one control edge, we need

not rollback one transaction immediately, since there is at least one active

transaction in the loop. If there is more than one such loop we can determine a

49

minimum set of transactions to be rollbacked to eliminate all the loops. Since Q

for control is a partial ordered set, there is no loop consisting of only control edges.

Even if there is no loop currently, by improper operations we may generate a

loop. How to avoid such possible loops is discussed below.

[Theorem 3] Assume that there are the following $v_{0},$ v_{1} and v_{2} .
There are edges e_{10} and e_{20} .

The labels of the two edges are identical.

There is a path from v_{2} to v_{1} consisting of edges in both E and F.

In this case after the completion of the transaction corresponding to v_{0} , the right

to lock the data should be given to the transaction corresponding to $v1$ to avoid a

potential loop.

Proof : A graph satisfying the above conditions is sliown in Fig.4(a). Assume

v_{0} v_{0} v_{0}

(a) (b) (c)

Fig.4 Deletion of a possible $1oc_{\wedge}\supset$

that the path from v_{2} to v_{1} contains a control edge. After the completion of the

transaction corresponding to v_{0} , if the transaction corresponding to v_{2} gets the

right to lockA then there isaloop as shown in Fig.4(b). If the right to lockA is

given to the transaction corresponding to v_{1} , such a loop can be avoided.

In general when there is more than one transaction waiting for the same data

item, the order to give the right to the transactions should not have a conflict with

the order determined by the edges of the wait-for graph with control edges.

10

50

[Theorem 4] If there exists edge f_{ij} , we cannot complete the transaction

corresponding to v_{i} before the completion of the locking phase of the transaction

corresponding to vj.

Proof : By edge f_{ij} , it is required that the transaction corresponding to vj should

be completed before the completion of transaction corresponding to v_{i} . If vj is in

locking phase there is a possibility that vj will make lock request for a data item

locked by v_{i} . In such a case the transaction corresponding to v_{i} must be

rollbacked. If v : is already completed, we cannot rollback v_{i} and thus vj cannot be

completed. Furthermore, if there is a path which goes into v_{i} , there are no

additional problems since the transactions in the path cannot be completed before

the completion of the transaction corresponding to $v:$.

By the above discussion we have the following controllable stric t two-phase

locking mechanism.

[Controllable Strict Two-Phase Locking Mechanism]

(l)Lock pliase : If there exists a loop of Theorem 1 in a wait-for graph with wait-

for and control edges, a loop is eliminated by rolling back a proper transaction

determined by Theorem 2. When there is more than one transaction requesting

lock for the same data item currently locked by some transaction, we can avoid

possible deadlocks by giving a proper order on locking to the requesting

transactions (Theorem 3).

(2)(3) Computation step and unlock phase : Same as the strict two-phase locking

mechanism.

5. Concluding Remarks

In this paper how to realize controllable two-phase locking mechanism is

discussed. As shown in Section 1 there are many application areas for

controllable concurrency control mechanisms, such mechanisms will be

11

$J^{\ulcorner}1$

important in complicated systems like distributed system and multi-media

systems. We can get an efficient controllable two-phase locking mechanism by

considering shared locks as well as exclusive locks.

References

[BERNG80] P. A. Bernstein and N. Goodman “Timestamp-Based Algorithms for

Concurrency Control in Distributed Database Systems,“ Proc. 6th

Int. Conf. VLDB, Oct. 1980.

[ESWAG76] K. P. Eswaran, J. N. Gray, R. A. Lorie and I. L. Traiger, “The

Notions of Consistency and Predicate Locks in a Database System,”

Comm. ACM, pp.624-633, 1976.

[KAMB85] Y.Kambayashi,“Concurrency Control in Distributed Database

Systems,” Symposium on Knowledge Information Processing,

Information Processing Society of Japan, September 1985 (in

Japanese).

[KAMBK84] Y. Kambaysahi and S. Kondoh, “Global Concurrency Control

Mechanisms for a Local Network Consisting of Systems without

Concurrency Control Capacity,“ AFIPS NCC Vol.53, pp31-39, 1984.

[KAMBZ87] Y. Kambayashi and X. Zhong, “Controllable Timestamp Ordering

and Oriental Timestamp Ordering Concurrency Control

Mechanisms,” Proc.IEEE COMPSAC, Oct. 1987.

[PAPA 86] C. H. Papadimitriou, The Teory of Database Concurrency Control,

Computer Science Press, 1986.

[SAISK87] K.Saisho and Y.Kambayashi, “Multi-Wait Two-Phase Locking

Mechanism and Its Hardware Implementation,” Proc. International

Workshop on Database Machines, Oct. 1987.

12

