-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Kyoto University Research Information Repository

Bl
oo o e/,
&
Kyoto University Research Information Repository > KYOTO UNIVERSITY

Title Generalized Object Oriented Data Model for Multi-Media Data

Author(s) | KAMBAYASHI, Yahiko; ARIKAWA, Masatoshi

Citation O000OoooDooOg (1988), 655: 52-63

Issue Date | 1988-04

URL http://hdl.handle.net/2433/100514

Right

Type Departmental Bulletin Paper

Textversion | publisher

Kyoto University

https://core.ac.uk/display/39231696?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

0oo0D0DO00oOoo
0 6550 1988 O 52-63

Generalized Object Oriented Data Model
for Multi-Media Data

INFRAT AT T—=5D72DD
7Yy VERAITFT—FETFTILO—EAL

Yahiko KAMBAYASHI and Masatoshi ARIKAWA
EMIRZ AINIER
Dept. of Computer Science and Communication Eng.
Kyushu University
UMK T
Fukuoka 812, Japan
Abstract
An object oriented data model is considered o be a suitable model for multi-
media databases. Since object oriented concept was first introduced for
programming languages, we nced to modify the concept in order to handle
databases. In this p:\pcf, we will discuss representation of various relationships
and inheritance of the model. In conventional objeet oriented model only one
rclationship “IS-A” is considered and inheritance of values from parents to
children (Ltop-down) is used. In order to handle more than one relationship in
multi-media data, we have introduced multiple-relationship object hierarchy. As
in databases inheritance from children to parents (bottom-up) is also important,
general version of inheritance is also discussed, both top-down and bottom-up.

Concepts introduced in this papers are considered to be useful to realize various

views in multi-media databases.

1. Introduction

Recently there have been a lot of efforts to realize multi-media databases. One
promising data model for such databases is the object oriented data model. To
realize a multi-media database system, we need to handle problems which do not

appear in conventional database systems. Among these problems, we have a

problem of expressing complicated relationships in data as well as a problem of
handling large amount of data. In the object oriented approach, usually one
relationship IS-A is used, which may not be enough to handle complex data.
Inheritance is a useful property to reduce the amount of data as well as to express
data relationships economically. We will discuss how to express more than one
relationship in one hierarchy and various kinds of inheritance in this paper.

In database model classes are selected as proper units of data processing.
Depending on the application different sets of classes are required. Each class has
instances. In order to handle relationships among instances, it is better to handle
instances as classes. For some applications union of classes can be regarded as a
class. To handle such class abstraction togcether with hicrarchies among objects in
the same abstraction level, we have introduced a concept of multiple-relationship
object (class) hicrarchy. In this hicrarchy more than one relationship satisfying
conflict-free property, is permitted.

One important property of object hicrarchies is inheritance of values and
methods. Ip conventional object oriented model inheritance from a parent to its
“children is considered. We can generalize the inheritance such that cach child
inherits a different value, by computing the value using the parent value and
child’s key values. Besides inheritance from parents to children (top-down),
bottom-up inheritance is also useful in databases. General definition of bottom-up
inheritance is also given.

In Section 2 basic definitions on object oriented models are give‘n. Multiple-
relationship object hierarchies and generalized inheritance are discussed..in

Sections 3 and 4, respectively.

2. Object Oriented Models
Database systems have been attempting to increase their power by associating

more functionality with the data. In particular, object oriented databases may

33

54

incorporate notions of type, data abstraction, and inheritance. These idea have

been studied extensively in the programming language domain.

Smalltalk is a general purpose programming language, and its basic

components are as follows.
(1) classes

(2) instances
(3) class / instance variables
(4) class / instance methods

(5) IS-A relationships

Each class is an object to deseribe a set of instances of the same type. The
description of class C contains dcﬁnitiuns of instance variables, class variables,
instance methods, and class methods. The method is a procedure describing how
to perform one of object’s operations, and is shared by all the instances of a class
and ownced by the (;l:ISS.

Between two classes, the IS-A relationships can be defined. A hierarchy on the
set of classes is defined by IS-A relationships. Meaning of IS-A is shown in
Example 1. If class C IS-A class Co, then the variables and methods of class Cy is
automatically inherited to the class Cj. Basically, Smalltalk program is a
collection of message expressions, each of which consists of an object (receiver)
followed by an appropriate message. According to the message sent to a receiver
object, an appropriate method of the receiver or the inherited method is executed.

The notation of class is different in database and language communities. In
the language view, a class means a data type, that is the definition of the
behavior and structure of a set of objects as the above. In the database view, a
class is used to refer to the set of objects themselves rather than a definition. A
classes is used as a primary mean of grouping objects and searching for objects.
Thus database systems should support these mechanisms for grouping objects

into collections automatically. These mechanisms will reduce the burden of users.

In order to simplify discussion we will omit inheritance of methods, and only
inheritance attribute values are considered in this paper.

We assume that there are n attributes, Ai, Ao, ..., Aph. Each object O; is. defined
by an ordered set of these attribute values. If the value is not defined we use # to
denote the null value. The value of attribute A; of object Oj is expressed by vi(A;).
Partial ordered set p; defines a hierarchy on the object set. Here p; need not to be
IS-A relationship.

We permit a set of values as an attribute value in order to handle inheritance
of various kinds. Especially multiple inheritance from more than one parent
object (sce Example 1) or from more than one child object (sce Definition 7) is

important,

[Definition 11 Object hierarchy is deflined by a graph H;=(Vj, Ej, pi), where Vj is
a sct of vertices cach of which corresponds to an object, Ej is a set of edges defined
by partial order p;. There is edge ¢j from vertex O to vertex Oy if and only if
OjpiO is satisfied. In Lhis case Ok is called a parent of O; and Oj is called a child

of Oy.

[Definition 2] Assume that there are m child objects Oj1, Oj2, ... , Ojm for a
parent object Ok. We define inheritance on attribute A as follows.
Values of Ain Oj; (i=1, ..., m) are determined identically

by the value of A in Oy

A minimum set of attributes which uniquely determines the object is called a
key. This definition is similar to the key for relational databases with universal
relations.

How to express data by an object hierarchy is shown in the following

examples.

High way
IS-A T IS-A
Inter-State | |State Toll

Highway Highway Way

Inter-State || State
Toll Way Toll Way

| [Fig.1 An example of an object hicrarchy]

[Example 1] Fig.1 shows an example of such hicrarchy. Here we assume that
there is only one attribute and p; is TS-A’ relationship. Some examples are as

follows.

Inter-State Highway IS-A Uighway.
State Highway 1S-A Iighway.
Toll way IS-A Uighway.
For each class there are instance values. For example, I-Iighway 101 is an
instance of Inter-State Highway. Depending on applications, the set of instances
of class “Inter-State Highway” can include the set of instances of class “Inter-

State Tollway”, or can exclude it.

For example if the maximum speed of Highway 70 miles/hour, it should be
satisfied by all highways. We only need to specify the values at the top value and
the value is inherited to others. Inter-State Tollway has some properties (for
example, the supporter is the government) of Inter-State Highway and some |

properties (for example, we must pay for the use) of Tollway, such a case is called

multiple inheritances.

World

*

Country

f

State New York California ¢ce

DA T, BTE

City New York | {Syracuse Los Angeles || San Jose

(a) (b)

World

Country

New York California
/—_\oo oo e
nse San Jos
New York Syracuse Los Angcles oan Jose

(c)

[Fig.2 Selection of objects]

[Example 2] There are many ways in order to express the same set of data

depending on the selection of objects. Fig.2 shows such an example. If we select

” &«

“world”, “country”, “state” and “city” as objects, the hierarchy shown in Fig.2 (a)

is obtained. We can use smaller units as objects as shown in Fig.2 (b). Depending

57

on the applications, a proper hierarchy is selected. Furthermore, we may need -

mixture of the both as shown in Fig.2 (c). In this case it is assumed that detailed

treatment on states and cities are required. Another method of handling such

98

case is shown in Fig.3, which is commonly used. For objects “state” and “city” we
have values called instances of the objects. A problem of this approach is that the
relationships on instances (“California” consists of “Los Angeles”, “San Jose”,

etc.) are not expressed explicitly.

World
gk
C f K ----- .
ountry easean «
A \Japan :
‘New York -
State |4~ reeeee---an :
A \Cahformd :
“New York
City '%'y'rl.lliié :

[Fig.3 Objects with instances]

3. Object Hierarchies with Multiple Partial Orders

In the object oriented data model usually only one kind of partial order is used.
For database systems we can define hierarchy with multiple partial orders. In
this section we will discuss a hierarchy with more than one partial order. Su'.ch a

hierarchy is expected to be useful to support various kinds of database views.

[Definition 3] For partial order p, the closure p* is defined as follows.
(1) If O;pOx then O;p*Oy.
(2) If Ojp*Oy and Okp*Op, then O;jp*On.

(3) Repeat (2) until no further application is possible.

[Definition 4] Two partial orders p; and pj are said to be conflict-free if p;* does
not contain Okp;*Op such that Opp*Ox. A set P of partial orders is said to be

conflict-free if it is conflict-free for any pair of partial orders in P.

In one hierarchy we may need to use more than one kind of partial order. Thus
we define multiple-relationship object hierarchy as follows.
[Definition 5] Multiple-relationship object hierarchy is defined by a graph
M;=(Vj, E;, P;), where Vj is a set of vertices each of which corresponds to an
object, E; is a set of edges defined by at least one partial order contained in
conflict-free set I of partial orders. The name of the partial order is used as a

iabel of cach cdge.

Examples with two kinds of partial orders are shown as follows.

IS-A
4
Wi” Id | ¢ Wf’ﬁ#d. IS-PART-OF
1S-A . e
« / IS-A] e o e N
Count USA Japan
Govern- |y ountry |&— 2 .. IS-PART-OF
mental 4 if’f 7 ee e N,
Unit A [S-A ~ . .
State |4 New York California
'S ‘..i K’ o o @ '." |‘~.. e o 0
'S-A - L. ~ - b
City New York ||Syracuse | |Los Angeles | |San Jose
p IS-A j j
1S-A
\ 1S-A
— :ISA
[Fig.4 Hierarchywith | .
Two Kinds of Partial Order.] : » :IS-PART-OF

9y

60

[Example 3] Fig.4 shows a hierarchy with two kinds of partial orders. Two
hierarchies in Fig.2 (a) and (b) are combined by IS-A relationships. As discussed
in Section 2, we have a lot of views for one hierarchy due to the difference of
defining objects. By using Fig.4 we can realize various views by just taking a
subgraph. Furthermore, various kinds of inheritance can be also expressed, such
as inheritance in IS-A relationships, inheritance in IS-PART-OF relationships of

Fig.2 (a) and inheritance in IS-PART-OF relationships in Fig.2 (b).

Multiple-relationship object hierarchy is necessary when we need to
distinguish partial orders. For example in M;=(V;, E;, {p1, p2}) we can distinguish
p1 and pg, while in H;j=(V;, E;, p1Up2) p1 and pg cannot be distinguished. In the
both cases p1 and pg are required to be conflict-free. Tlere p=p1Up2 is defined as
follows.

OipOj if Oip10j or Oip20;.

4. Generalization of Inheritance
In conventional object oriented models for programming only one kind of

inheritance (from parents to children) is considered. In database models
aggregation which can be regarded as inheritance from children to parents is also
important. We will generalize such inheritance in this section. The following
notations to define general inheritance.

®Dvi(A) is the value of attribute A in object O;.

@S] and Sy are the predetermined subsets of {A1, Ag, ..., Ap}.

®vj(S;) corresponds to a vector (vj(Ai1), Vj(Ai2), ..., Vj(Aik))

when S;={Aij, Ajo, ..., Aix}.

®fis a predetermined function to calculate a value.

®The domain and the range of function f can be set values satisfying the
following property.

f(aUb,x) =f(a,x)Uf(b,x)
where a and b are values (or set values) for some attribute and x shows
other values. Thus f for set values is defined by f for simple domain values

by applying the above equation recursively.

[Definition 6] A general version of inheritance from parents to children in
object hierarchy determined by partial order p is as follows.

Type D (down): The value of attribute Ay in a child object is determined by the
values of atiributes in it and its parent object.

If O;pO; then {f(vj(Sy), vi(S2NICvi(AK), Ay€S2

Set inclusion is used since both f and vi(Ak) can be set values.

The above definition is very general. There are many uscful special cases. For
example, the conventional inheritance is defined as follows, which is a special
case of Type D.

Type D1: If O;pOj then {vi(AR)}Cvi(Ag)

The value of Ak in parent object Oj determines the value of Ay in its child
object Oj. vi(Ak) is a set value since O; can have more than one parent in the
hierarchy determined by p.

A simple generalization of Type D1 is that vj(Ax) can be computed from Vj(Ag),
thatis
Type D2: If O;pO;j then {f(vj(AK))}Cvi(Ay).

Furthermore we can use value of more than one attribute.

Type D3 If O;pOj then {f(vj(S1))}Cvi(Ak)

-10-

61

In these cases, the value of f(vj(Ak)) or f(vj(S1)) is identical for any child object
of Oj. If we want to change the value for different children, we need to add some

attribute values of each child object. Thus the definition of Type D is obtained.

[Definition 7] A general version of inheritance from children to parents in
object hierarchy determined by a partial order p is as follows.
Type U (up): The value of attribute Ak in a parent object is determined by values
of attribute in it and its child object(s).

If O;,p0;, O;,p0;, ..., Oj, pO; (Oj has m chﬂdren Oi,, ..., O0i),

then {f(v1(S1), vi,(S2), viy(S2), ..., Vi, (S2)}Cvj(A), A €Sy.

Type U is a new kind of inberitance introduced in this paper. A simple case is
as follows.
Type U1l: If O;,pO0j, Oi,p0;, ..., 0i, pO; (Oj has m children O;, ..., 0;),
then {{(vi,(A), vi,(A), ..., vi, (AT V{(A).

Two typical cases of type Ul are given as follows.
(1) fis an addition operation.
(2) fis a set union function.

Examples of these two cases are as follows.

[Example 4] Let O; corresponds to a state and its child objects correspond: to the
counties of the state. If the value of attribute A is population, we can compute the

value for Oj by summarizing all values of its child objects.
[Example 5] Let Oj and its child objects correspond to a state and its counties as

shown in Example 4. If the value of A shows factories in the area, then the

factories in a state is the union of factory sets in its counties.

-11-~

5. Concluding Remarks

In this paper we have introduced two new concepts; multiple-relationship
object hierarchy and generalized inheritance. These concepts are especially
important for multi-media database systems in order to support various views.

- Applications to such systems are currently investigated.

References

[1] A.Goldberg and D.Robson, “Smalltalk-80 : The Languages and Its
Implementation,” Addition-Wesley, 1983.

[2] B. Toby, “Issues in the Design of Object-Oriented Database Programming
Language,” In OOPSLA’87, Conference Proceedings, SIGPLAN, October
1987.

(3] D., Maicr, ct al, “Development of an Objecet-Oriented DBMS,” In OOPSLA’86,
Conference Procecdings, SIGPLAN, September 1986.

[4]J. Bancerjee, . Chou, J. Grarze, W. Kim, D. Woclk, “Data Model Issues for
Object—Oricntcd Applications,” ACM Transactions on Office Information
Systems, Apri1'11987.

[5] Smith, J. and D.C.P. Smith, “Database Abstractions: Aggregation and

Generalization,” ACM Transactions on Database Systems, vol. 2, no. 2, 1977.

-12 -~

63

