
Title Generalized Object Oriented Data Model for Multi-Media Data

Author(s) KAMBAYASHI, Yahiko; ARIKAWA, Masatoshi

Citation 数理解析研究所講究録 (1988), 655: 52-63

Issue Date 1988-04

URL http://hdl.handle.net/2433/100514

Right

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyoto University Research Information Repository

https://core.ac.uk/display/39231696?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

52

Generalized Object Oriented Data Model
for Multi-Media Data

マルチメディアデータのための
オブジェクト指向データモデルの一般化

Yahiko KAMBAYASHI and Masatoshi ARIKAWA
上林弥彦 有川正俊

Dept. of Computer Science and Communication Eng.
Kyushu University
九州大学工学部

Fukuoka 812, Japa n

Abstract

An object oriented data model is considered Lo be a suitable $11\downarrow()(|_{\llcorner^{\backslash }}$] $f_{1}\iota\cdot Ill\iota 1lti-$

medi a databases. Since object orien ted co 11 cept was fi rst in tt($cI\iota\downarrow$ ced fo r

$I)r$($b^{\min g}r_{I:1I11}1^{l}\iota$ nguages, we need to $11lt$)($lify$ the concept in order to handle

databases. In $t|\tau i_{\grave{s}}$(pa per, we will discuss reprcsentation of various rela $tion_{\backslash }ship_{\backslash }\backslash$

and inlteritance (r the model. In conventional ol)$jec:t$ oriented $111t’([t^{\backslash ,1}$ only one

relationship “1S-A” is considcrcd and inheritance of values $f\cdot\iota\cdot tIIl$ parents to

children (top-down) is used. In order to handle more than one relaLionship in

multi-media data, we have introduced multiple-relationship object hierarchy. Λs

in databases inheritance from children to parents (bottom-up) is also important,

general version of inheritance is also discussed, both top-down and bottom-up.

Concepts introduced in this papers are considered to be useful to realize various

views in multi-media databases.

1. lntroduction

Recently there have been a lot of efforts to realize multi-media databases. One

promising data model for such databases is the object oriented data model. To

realize a multi-media database system, we need to handle problems which do not

appear in conventional database systems. Among these problems, we have a

-1-

数理解析研究所講究録
第 655巻 1988年 52-63

53

problem of expressing complicated relationships in data as well as a problem of

handling large amount of data. In the objeet oriented approach, usually one

relationship IS-A is used, whieh may not be enough to handle complex data.

Inheritance is a useful property to reduce the amount of data as well as to express

data relationships economically. We will discuss how to express more than one

relationship in one hierarehy and various kinds of inheritance in this paper.

In database model classes are selected as proper units of data processing.

Depending on the application different sets of classes are required. Eaeh elass has

instances. In order to handle relationships among instances, it is better to handle

instances as classes. For some applications union of classes can bc rega rded $\prime 1S$ a

class. To handle such class abstraction together wi th hierarchies among objeets in

tbe same abstraction level, wc have introduced a concept of multiple-relation. hip

object (class) hierarcliy. In this hierarchy rnore than one $rc\backslash 1_{1}^{l}tion_{\backslash }t:1\iota[1$) $\backslash \backslash ;a$ tisfying

conflict-free property, is permitted.

One important property of object hierarcliies is inheritance of values and

methods. In conventional object oriented snodel inhcritance from a parent to itg
.
children is considered. We can generalize the inheritance such that each child

inherits a different value, by computing the value using the parent value and

child’s key values. Besides inheritance from parents to children (top-down),

bottom-up inheritance is also useful in databases. General definition of bottom-up

inheritance is also given.

In Section 2 basic $def_{1}^{\vee}nitions$ on object oriented models are given. Multiple-

relationship object hierarchies and generalized inheritance are discussed in

Sections 3 and 4, respectively.

2. Object Oriented Models

Database systems have been attempting to increase their power by associating

more functionality with the data. In partieular, object oriented databases may

-2-

54

incorporate notions of type, data abstraction, and inheritance. These idea have

been studied extensively in the programming language domain.

Smalltalk is a general purpose programming language, and its basic

components are as follows.
(1) classes

(2) instances

(3) class/instance variables

(4) elass/instance methods

(5) IS-A relationships

Each class is an object to describe a set $()f$ instances of the $s:$) $\iota\iota\iota c^{1}$ type. The

description of class C contains $c1_{C}\ulcorner_{1}niti()ns$ of instance variables, class $v:\iota ri:|bles$,

instance inethods, a $11(|$ class Inethods. $r_{I’ 1\tau e}111C(,|\iota()$ ($|$ is η procedure $d_{e^{\backslash },CI}\cdot i\downarrow$) $i_{11}\iota_{\urcorner}^{r}$ how

to perform one of objecVs operations, and is shared $1_{)}y$ all the instaances of a class

and owned by the $(;]_{\langle}\iota ss$.

BeLwecn two classes, t,he $IS-\Lambda$ relation. hips can be ($1e1_{1}^{\vee}$ ned. A hiera rchy on the

set of classes is $dc^{\backslash \ulcorner_{1}}ned$ by IS-A relationsbips. Meaning of IS-A is shown in

Example 1. lf class C_{1} IS-A class $C_{2},$ $t1_{1}en$ the $variab$] es and methods of class C_{2} is

automatically inherited to the class C_{1} . Basically, Smalltalk program is a

collection of message expressions, each of which consists of an object (receiver)

followed by an appropriate message. According to the message sent to a receiver

object, an appropriate method of the receiver or the inherited method is executed.

The notation of class is different in database and language communities. In

the language view, a class means a data type, that is the definition of the

behavior and structure of a set of objects as the above. In the database view, a

class is used to refer to the set of objects themselves rather than a definition. A

classes is used as a primary mean of grouping objects and searehing for objects.

Thus database systems should support these mechanisms for grouping objects

into collections automatically. These mechanisms will reduce the burden of users.

-3-

$5\overline{;)}$

In order to simplify discussion we will omit inheritance of methods, and only

inheritance attribute values are considered in this paper.

We assume that there are n attributes, $A_{1},$ $A_{2},$ A_{n} . Each object O_{i} is defined

by an ordered set of these attribute values. If the value is not defined we use $\#$ to

denote the null value. The value of attribute Aj of object O_{i} is expressed by $v_{i}(A_{j})$.

Partial ordered set Pi defines a hierarchy on the object set. Here Pi need not to be

IS-A relationship.

We permit a set of values as an attribute value in order to handle inheritance

of various kinds. Especially multiple inheritance from more than one parent

object (see Example 1) or from more than one child object (see Definition 7) is

importan t .

[Deflnition 1] $()|)jec:t1\downarrow ier^{l}\iota 1^{\cdot}t:1_{1}y$ is deCined $|$) $ytL^{1}\neg$ raaph 11 $i=(V_{i}, \Gamma_{iI)_{1}}^{0_{\lrcorner}}\cdot)$, wherc V_{i} is

a set of vertices each of wbich corresponds to an object, E_{i} is a set of edges defl ned

by partial order \int) i . There is edge $e_{|k}$ from vertex O_{i} to vertex $O_{I\backslash }$ if and only if

$O_{i1i})O_{1_{(}}$ is satisfTed. In Lhis $c:ase()_{1_{\{}}$ is called a paren $toI^{\cdot}O_{i}$, and O_{i} is called a child

of 0_{k} .

[Definition 2] Assume that there are m child objects $O_{j1},$ O_{j2} , ... , O_{jm} for a

parent object O_{k} . We define inheritance on attribute A as follows.

Values ofA in O_{ji} ($i=1,$ \ldots , m) are determined identically

by the value of A in O_{k} .

A minimum set of attributes which uniquely determines the object is called a

key. This definition is similar to the key for relational databases with universal

relations.

How to express data by an object hierarchy is shown in the following

examples.

-4-

56

[Fig.1 An example of an object hierarchy]

[Example 1] Fig.1 shows a n example of sucli bierarcliy. IIere we assu ιl) e that

there is only one attribute and $1^{1}i$ is $IS-\Lambda’ re1\tau ti$ ($111_{c}\backslash hip$. Some cxa $111 \int$) $1c^{\tau}s$ arc as

follows.

lnt,er-State IIighway IS-A [lighway.

State IIighway IS-A IIighway.

Toll way IS-A IIighway.

For eaeh class there are instance values. For example, Highway 101 is an

instance of Inter-State IIighway. Depending on applications, the set of instances

of class “Inter-State Highway“ can inelude the set of instanees of class ”Inter-

State Tollway”, or can exclude it.

For example if the maximum speed of IIighway 70 mileslhour, it should be

satisfied by all highways. We only need to specify the values at the top value and

the value is inherited to others. Inter-State Tollway has some properties (for

example, the supporter is the government) of Inter-State Highway and some

properties (for example, we must pay for the use) ofTollway, such a case is called

multiple inheritances.

-5-

57

(a) (b)

(C)

[Fig.2 Selection of objects]

[Example 2] There are many ways in order to $exprc_{\dot{\Phi}}s$ the same set of ‘data

depending on the selection of objects. Fig.2 shows such an example. If we select

”world”, “country”, ”state” and “city” as objects, the hierarchy shown in Fig.2 (a)

is obtained. We can use smaller units as objects as shown in Fig.2 (b). Depending

on the applications, a proper hierarchy is selected. Furthermore, we may need

mixture of the both as shown in Fig.2 (c). In this case it is assumed that detailed

treatment on states and cities are required. Another method of handling such

-6-

58

case is shown in Fig.3, which is commonly used. For objects “state” and “city” we

have values called instances of the objects. A problem of this approach is that the

relationships on instances (”California” eonsists of “Los Angeles”, “San Jose”,

ete.) are not expressed explicitly.

[Fig. 3 Objects with instanccs]

3. Object IIierarchies with Multiple Partial Orders

In the object oriented data model usually only one kind of partial order is used.

For database systems we can define hierarchy with multiple partial orders. In

this section we will discuss a hierarchy with more than one partial order. Such a

hierarchy is expected to be useful to support various kinds of database views.

$[Def_{1}^{\vee}nition3]$ For partial order p , the closure p^{*} is defined as follows.

(1) If $O_{jP}O_{k}$ then $O_{jP^{*}}O_{k}$.
(2) If $O_{jP^{*}}O_{k}$ and $O_{kP^{*}}O_{h}$ then $O_{jP^{*}}O_{h}$.
(3) Repeat (2) until no further application is possible.

-7-

59

[Definition 4] Two partial $orders_{Pi}and_{Pj}$ are said to be conflict-free $if_{Pi^{*}}$ does

not contain $O_{kPi^{*}}O_{h}$ such that $O_{hPj^{*}}O_{k}$. A set P of partial orders is said to be

conflict-free if it is conflict-free for any pair of partial orders in P.

In one hierarchy we may need to use more than one kind of partial order. Thus

we define multiple-relationship object hierarchy as follows.

[Definition 5] Multiple-relationship object hierarchy is defined by a graph

$M_{i}=(V;, E;, P;)$, where V_{i} is a set of vertices each of which eorresponds to an

object, E_{i} is a set of edges $def_{1}nc^{\iota}d$ by at least one partial order contained in

conflict-free set I)
i of partial orders. $r_{I^{1}1_{1}e}$ name of the partial order is used as a

iabel of each edgc.

Exainples wi th two kinds of partial orders are shown a s follows.

$arrow$:IS-A
[Fig.4 Hierarchy with

$-\cdots\cdot\cdot\rangle$: IS-PART-OFTwo Kinds ofPartial Order.]

-8-

6\’U

[Example 3] Fig.4 shows a hierarchy with two kinds of partial orders. Two

hierarchies in Fig.2 (a) and (b) are combined by IS-A relationships. As discussed

in Section 2, we have a lot of views for one hierarchy due to the difference of

defining objects. By using Fig.4 we can realize various views by just taking a

subgraph. Furthermore, various kinds of inheritance can be also expressed, such

as inheritance in IS-A relationships, inheritance in IS-PART-OF relationships of

Fig.2 (a) and inheritance in IS-PART-OF relationships in Fig.2 (b).

Multiple-relationship object hierarchy is necessary when we need to

distinguish partial orders. For example in $M;=(V_{i}, E_{i}, \{p_{1}, p_{2}\})$ we can distinguish

$P1$ and $P2$, while in $I- I_{i}=(V_{i}, E_{iI)}\iota\cup p_{2})$ }) 1 and $P2$ cannot be distinguished. In the

both cases p_{1} and \int) 2 a re required Lo be conllict-free. lIere $p=pl\cup P2$ is defined $|s$

follows.

$O_{iP}O_{i}$ if $O_{iP!}O_{i}$ or $O_{iP2}O_{J}$.

4. Generalizat,$i()|\iota(f$ lnheritancc

In conventional object oriented models for programming only one kind of

inheritance (from parents to children) is considered. In database models

aggregation which can be regarded as inheritance from children to parents is also

important. We will generalize such inheritance in this section. The following

notations to define general inheritance.

$O1v;(A)$ is the value of attribute A in object $O;$.
$\copyright S_{1}$ and S_{2} are the predetermined subsets of $\{A_{1}, A_{2}, \ldots, A_{n}\}$.

@$v_{j}(S_{i})$ corresponds to a vector $(v_{j}(A_{i1}), v_{j}(A_{i2}),$
$\ldots,$

$v_{j}(A_{ik}))$

when $S_{i}=\{A_{i1}, A_{i2}, \ldots, A_{ik}\}$.
$O4f$ is a predetermined function to calculate a value.

-9-

61

OThe domain and the range of function f can be set values satisfying the

following property.

$f(aUb,x)=f(a,x)Uf(b,x)$

where a and b are values (or set values) for some attribute and x shows

other values. Thus f for set values is defined by f for simple domain values

by applying the above equation recursively.

[Definition 6] A general version of inheritance from parents to children in

object hierarchy determined by partial order p is as follows.

Type D (down): The value of attribute Λ_{1c} in a child object is determined by the

values of attributes in il and i ts parent object.

Ir $O_{iI)}O_{i}$ tlien $\{f(v_{j}(S_{1}), v_{i}(S_{2}))\}\subseteq v_{i}(\bigwedge_{1_{\{)}},$ $\Lambda_{Ie}\not\subset S_{2}$

Set inclusion is used since both f a nd $v_{i}(\Lambda_{Ic})$ can be set values.

The above definition is very genera 1. There are 1η a ny useful special cases. For

example, the conventional inheritance is defined as follows, which is a special

case ofType D.

Typc DI: If $O_{iI)}O_{j}$ then $\{v_{j}(\Lambda_{k})\}\subseteq v_{i}(\Lambda_{k})$

The value of A_{k} in parent object Oj determines the value of A_{k} in its child

object $O;$. $v:(A_{k})$ is a set value since O_{i} can have more th $\gamma,$ n one parent in the

hierarchy determined by p .

A simple generalization ofType Dl is that $v_{i}(A_{lc})$ can be computed from $v_{j}(A_{k)}$,

that is

Type D2: If $O;pO_{j}$ then $\{f(v_{j}(A_{k}))\}\subseteq v_{i}(A_{k})$.

Furthermore we can use value ofmore than one attribute.

Type D3 If $O_{iP}O_{j}$ then $\{f(v_{j}(S_{1}))\}\subseteq v_{i}(A_{k})$

-10-

62

In these cases, the value of $f(v_{j}(A_{k))}$ or $f(v_{j}(S_{1}))$ is identical for any child object

of Oj. If we want to change the value for different children, we need to add some

attribute values of each child object. Thus the definition of Type D is obtained.

[Definition 7] A general version of inheritance from children to parents in

object hierarchy determined by a partial order p is as follows.

Type U (up): The value of attribute A_{k} in a parent object is determined by values

of attribute in it and its child object(s).

If $O_{i{}_{1}P}O_{j},$ $O_{i{}_{2}P}O_{j},$
$\ldots,$

$O:_{111}pO_{j}$ (Oj has m children $O;_{1},$
$\ldots,$

$O_{i_{t\tau\tau}}$),

then $\{f(vl(S_{1}), v_{i_{1}}(S_{2}), v_{i_{2}}(S_{2}), \ldots, v_{i_{I11}}(S_{2}))\}\subseteq v_{j}(A),$ $\Lambda_{1\mathfrak{c}}fS_{1}$.

Type U is a new kind of inheritance introduced in this paper. A simple case is

as follows.

Type Ul: If $O_{i_{1}I)}O_{i},$ $O_{i_{1}.I^{y}}O_{i},$
$\ldots,$

$O_{i,,,P}O_{i}$ (O_{1}
. has m children $O_{i_{1}},$

$\ldots,$
$O_{i_{111}}$),

then $\{f(v_{i_{1}}(\Lambda), v_{i_{l}}(\Lambda), \ldots, v_{i_{tt}},(\Lambda))\}\subseteq v_{i^{(\wedge)}}$.

Two typical cases of type Ul are given as follows.

(1) f is an addition operation.

(2) f is a set union function.

Examples of these two cases are as follows.

[Example 4] Let O_{i} corresponds to a state and its child objects correspond to the

counties of the state. If the value of attributeA is population, we can compute the

value for Oj by summarizing all values of its child objects.

[Example 5] Let Oj and its child objects correspond to a state and its counties as

shown in Example 4. If the value of A shows factories in the area, then the

factories in a state is the union of factory sets in its counties.

-11-

63

5. Concluding Remarks

In this paper we have introduced two new concepts; multiple-relationship

object hierarchy and generalized inheritance. These concepts are especially

important for multi-media database systems in order to support various views.

Applications to such systems are currently investigated.

References

[l]A.Goldberg and D.Robson, “Smalltalk-80 : The Languages and Its

Implementation,” Addition-Wesley, 1983.

[2] B. Toby, “Issues in the Design of Object-Orientcd Database Programming

Language,“ In OOPSLA’87, Conference Proceedings, SIGPLAN, October

1987.

[3] D., Maier, et al, “Development of an Object-Oriented DBMS,” In $OOPSLA’ 86$,

Conference Proceedings, SIGPLAN, September 1986.

[4] J. Banerjee, II. Chou, J. Grarze, W. Kim, D. Woelk, Data Model Issues for

Object-Oriented Applications,” ACM Transactions on Office Information

Systems, April 1987.

[5] Smith, J. and D.C.P. Smith, “Database Abstractions: Aggregation and

Generalization,” ACM Transactions on Database Systems, vol. 2, no. 2, 1977.

-12-

