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ASYMPTOTIC EQUIVALENCE OF STATISTICAL_INFERENCE

BASED ON ALIGNED RANKS AND ON WITHIN-BLOCK RANKS

=
Taka-aki SHIRAISHI (B b & 7))

Institute of Méthematics, University of Tsukuba

1. Summary and introduction

Rank tests for the the null hypothesis of no treatment effect
and rank-estimators of treatment effects, based on aligned ranks
and on within-block ranks, are proposed for multiresponse
experiments in two-way layouts without interaction, having one or
more observations in each cell. Large sample properties of the
tests and the estimators as cell sizes tend to infinity are
investigated. It is shown that the aligned rank tests are
asymptotically power-equivalent to the Friedman-type tests
(within-block rank tests) and that the two R-estimators have
asymptotically the same normal distribution. Further for the
univariate case, it is found that the asymptotic relative
efficiency (ARE) of the proposed rank test (R-estimator) with
respect to the parametric F-test (parametric estimator) is
equivalent to the classical ARE-result of the‘two—sample rank
test with respect to the t-test and additionally asymptotically
maximin power tests and minimax variance estimators due to Huber

(1981) can be drawn.
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PO D I -3 I
For the two-way model, the k-th rgsp035€ xijk'(xijk’ ’X;jk)

of the cell in the i-th block receiving the j-th treatment is
expressed as

Xijk=u+gi+Tj+eijk (k=1."',nj, j=1,+-,d, i=1,--°,1) (1.1)

where

|| B gl

n.t.=0, U is the mean effect vector,'Bi‘s are the block

jl']']

effects, Ti'S are the treatment effects and eijk's are the
independent error random vectors, each having identical
continuous distribution function F(x). The null hypothesis of

interest and the alternative are respectively

H; Ti=0 for j=1,---,J and A;,Tj#O for some j (12isJ).

Some rank test procedures for this model are already
available. However, these procedures possess certain
limitations. Friedman (1937) proposed a within-block rank test
for designs having one observation per cell in the univariate
case, that is, p=1. Mehra and Sarangi (1967) and Sen (1968)
proposed aligned rank tests for p=1 independently, and Sen (1969)
proposed aligned rank tests extended to multivariate case for
designs having one observation pef cell. All of them gave the
asymptotic properties of their proposed tests as the number of
blocks tendé to infinity, that is, i*w, and.Méhra and Sarangi
(1967) and Sen (1968) showed thaﬁ the aligned rank tests are more

efficient than the Friedman test in the sense of Pitman (1948).
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On the other‘hand, Mack and Skillings (1980) prqpused a
univariate within-block rank test based on Wiléoxon score for the
model having 6ne or more observations per cell, including
Friedman's test, gave the asymptotic distribution as cell sizeé

ténd to infinity (ni+w), and investigated the asymptotic relative

efficiency relative to the parametric F-test. But no-one has
investigated the asymptotic properties of the aligned rank test
statistics'as the cell sizes tend‘to infinity for the model. We‘
propose aligned rank tests and Friedman-type tests whjch are the
extension of their proposed rank tests and investigate the
asymptotic properties as the cell sizes tend to infinity. Sen
and Puri (1977) proposed multivariate aligned rank tests for full
rank linear models and investigated asymptotic properties qf
their proposed tests. However, the models do not include our
model (1.1), which is not a full rank model.

Next we consider rank estimators of T=(T1,"‘,TJ). For the

model with one observation per cell, Puri and Sen (1967, 1971)
proposed linear combinations of one-sample rank estimate
statistics defined by Hodges and Lehmann (1963) as estimators of

contrasts among Tl,"',TJ and gave the asymptotic variance as the

number of blocks tends to infinity. We propose estimators of T

based on aligned ranks and on within—block ranks by straight



method similar to the construction of Jureckova (1971), and
investigate the asymptotié properties as the cell sizes tend to
infinity. |

In Section 2, linear rank statistics are introduced and, in

Section 3, common assumptions for the asymptotic theory and basic

theorems are given. In Section 4, the test procedures are
proposed and the asymptotic distributions are drawn. In Section
5, the estimation theory is stated. In Section 6, the

efficiencies and robustness are discussed.

2. Linear rank statistics

Let us define the aligned observations by

Yijkzxijk_B(xill’..”xiJnJ)’ where
; . _ A L ), S50 () L (D
B(xill’ ’XiJnJ)—(Bi . ’Bi y' and Bi =R (Xill’ ’xiJnJ)

is a translation equivariant symmetric function such that each
aligned observation has a continuous distribution function.

Q)
i

Q)

Then we can take, as R , sample mean for {Xijk'

k=1,+++,n.,
]

j=1,+-+,J}, sample median, trimmed mean, Winsorized méan. Hodges

and Lehmann estimator, etc. Further for p-dimensional column
vector tj=(t§1),-~-,t§p))' and J-dimensional row vector

(Qy_,, (W L LD _ ’ ‘ SR
t —(t1 , ,tJ Y, let Yijk(tj)--Yijk tj and‘xijk(tj?—xjjk t.

o

and let their 2-th coordinates be respectively

87
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J
Y Oy O D g x(a) t®) . Then putting N= ¥ n. and
1Jk ijk k j=1 3
M=IN, we define R(fi( £ty and Q(g) Oy by the rank of
Q) () @D (W () Q)
Yle(t ) among the M observations Ylll(t ), ’YIJnJ(t )
Q) Q)
and the rank of X k( ) among the N observations
X(Q) t(g)),"°,XFg) (t(ﬂ)) respectively. For the univariate
ill 1JnJ

case (p=1), RFI)(O) s and Q(l)(O) s are respectively aligned

ranks defined by Mehra and Sarangi (1967) and within-block ranks

defined by Friedman (1932), Using these ranks and score
function agg)(') which is a map from {1,--+,n} to real values
(n21), for t(g). put
10y
sV oy v @V RV Ry, D Dy R 2.1
j . = M ijk M1
i=1 k=1
and
I nj
T @y 7 7@ (W) - (Q’}/JN (2.2)
b I = N ijk
i=1 k=1
J 0N N
where é&g)( g))= Y. ¥ aég)(RFg;(t(g ))/N and aég) N ég)(m)/N
i=1 k=1 H m=1

We define‘the random vectors with components of coordinates

consisting of these simple linear rank statistics by



s (@2 s W@, sy, (2.3)
T (DD (D) O 5.4

get)=(8 ¢y oo g (P (PXyy v 4pg

STALEPURTRNE ML N ALK

T(ty=ctt where t=(t ,--*,t ).

Since we consider the statistical inference based on Sgg)(t(g))’s

and on Tég)(t(g))'s and since the distributions of these

statistics under the model (1.1) are independent of not only mean

effect U but'block effects Bi's, in the remainder of this paper,

it is assumed without any loss of generality that

u=81=°'°=BI=0. (2.55
Also for b‘g)=(b§g),--~,b§g)) and t, let R§§;(b(g),t(g)) be
the rank of X§?;(b(g),t(g)) among the M observations
(@'D] @) Q.. v_+1 ... S . St ...
{Xijk(b . t y: k=1, ,nj, i=1, ,Jd, i=1, s, 1},
where XF%)(b(g),t(g))=X$$)-bfﬂ)—t€Q). In order to investigate
ijk ijk i i
e (), (), :
the asymptotic distributions of Sj (t Y's, we introduce the

following statistic.

89



S(Q) () (VD

SO S Rt Sl
]
1M
=y ¥ {a(g)(R(g)( () (), 0 () (R R, (2.6)
M ijk Mi
i=1 k=1
where al ¥ oy ¥ a(g)(R(g)( ) (5N,
Mi L .M ijk
j=1 k=1
. . _ () (O
To reduce notational comlexity, when t=0, we set R 0y,
IJk 1Jk
() _ (D = =) () () QY
Q) 1391 x(O)s Ay =ay; (0, S70=s 0, TP =T (0,
s® =5 0y, T®=1® (0), $=5(0) and T=T(0). Further when
b 20 and t® =0, we set R(&) (g)(o 0) and s(g) s 0,0y,
ijk 1Jk J

Next we will investigate the moments of the rank statistics under

H. So first we put matrix Z=(Zl.22,--',ZI), where

Z. —(2111’"o’ziln1’2121’.'.’ZiJnJ) is a pXN matrix and let GN be

the finite group of translation (gN} such that

gN(Z)=Z*=(ZT,°'-,ZT) and Z? is any permutation of the columns of
‘Zi. GN consists of (N!)I translations {g,}. For any Z, we put

ﬂ(Z)={gN(Z);gN€GN}. Let us now consider stochastic rank vectors

- (1) . (p) [} - s s 3 = .o i = LR
Rijk’(Rijk‘ ’Rijk) for k=1, ,nj, i=1, ,Jd, i=1, ,1 and
put the collection rank matrix R=(R111"..’Rllnl’Rlzl’...’RIJnJ)



Although the null distribution of R depends on F(X) and is not

distribution-free, the conditional distribution of R, given a set

ﬂ(RO), under H, is given by P{R=R*lﬂ(R0)}=1/{(N!)I} for all

R*c4(R?). (See Seén (1969)). Heplacing R§%;'s. R, ,'s and R by
(), ' , . o '
Qiik S, Qiik s and Q respectively, similarly we get the

conditional null distribution P{Q=Q*IQ(QO)}=1/{(N!)I} for all

Q*Eﬁ(QO). From straightforward computations due to the above
probabilities, it follows that the conditional expectétions and

conditional variance-covariance matrices of S and T under Hvare

91

given by
EO(SIQ(R)}=EO{T|Q(Q))=O, (2.7
Var—CovO{Siﬂ(R)}=F(R)®A(n), (2.8)
and
Var-Covo{Tlﬂ(Q)}=F(Q)8m(n), (2.9)
where r(R)=cvgﬂ,(R))g,g,=l’,,,’p, F(Q)=(YQQ,(Q))Q’Q,=1’_,,’p.
) P B
-~ _ (), (), — () (L), Q") _=(8") _
YQQ,(R)-.Z .Z Y. (ay™ " (Ry ) -ay ) (ay (R d-ay }y/(N-1),
i=1 j=1 k=1
(2.10)
13y ' ' ‘
~ _ (Q) (), (D (8'), ('), =" _
Yoor (@=L Lk a7 (Qpo-ay tayT @y mayt D/ (N,
i=1 j=1 k=1
(2.11)
A(n)=((nj/N)(6jj,—nj,/N))j’j'=1,.._’3, (2.12)
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6.., is the Kronecker delta and A®B denotes the Kronecker product

of A and B.

3. Common assumptions and basic theorems

The following are the minimum assumptions to discuss the

asymptotic theory.

Assumption 1. 1im(n./N)=XA.>0 for j=1,---,J. O
N->o0 J
Assumption 2. Score function aég)(°) is generated by a

function wg(u) (0<u<1) by the following way (Q=1,---,p):

(m)=E{V

Q) - e
a, (Un(m))} or wg(m/(n+1)) for m=1, ,n,

Q

where Un(m) is the m-th order statistic in a sample of size n

from the rectanguler (0,1) distribution. 0

Assumption 3. The score generating function wq(u) is non-
constant, nondecreasing and square integrable. 0

ng)'s which induce

Assumption 4. For random variables

aligned observations, there exists some constant v(g) not

(Q)—Big)-v(g)

depending on i such that Bi =0p(1/JN) (i=1,+--,1,

D

Q=1,-++,p), where as (2.5) is assumed, B§ =0. o



Assumption 5. Letting FQ(X(Q)) and fQ(x(Q)) be respectively

the Q-th marginal distribution function of F(x) and its density

function, for 2=1,---,p, FQ(X(Q)) possess finite Fisher's

[+ 4]
information, i.e., J {-fé(x(g))/fg(x(

- 0

V2 xPHraxPcse. 0o

Lemma 3.1. Let (X(Q),'~-,X(g) > have joint density
111 IJnJ

n
| J i
) m Tt (x(g)) and let Hsz=J2°z' for m-dimensional row

i=1 j=1 k=1 ¢ LK
vector z. Then under Assumptions 1 through 5, for any positive

£, C1 and Cz,

~

lim P(sup o, 15 0™ R, oV yRy-s W
T N IR :

a0 <c,

¢'D)

+I-d&~A oji>s)=0,

“~

where ség)cp(g)/dﬁ,a(g)/vﬁ) is defined by (2.6),

) (Q))

p(Q) p(ﬂ) { )

() _
10T TePy A=

0 - ¢ y, (Aiﬂ)’...,a

1
-._r o gt -1 -1
dQ— J {wg(U) fQ(FQ (u))/fg(Fg (u))}ydu and

2 )
A-ATL,=ALA ,—AjAJ) . (3.1)

5= AR A A A A A A

Our main theorem of this Section is the following.

10

33
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Theorem 3.2. Under the assumptions of Lemma 3.1, for any €>0

and any C>0,

lim P(sup g, Is?g)<a(g’/dﬁ>—sgg)+1-dQ-A(
N ha™~"ll j<c ] J :
where S;g)(t(g)) is defined by (2.1). 8]

LLet us define

Q¥ (2

2

D, 6') 6D
i J

a 1

E(C)= (A" =2 a LA

9

. 16V <e,

D

-g.l>sy=0,
J

NG

AN 0}.
j=p 4 '

Then we get two corollaries as direct results of Theorem 3.2.

Corollary 3.3. Under the assumptions of Lemma 3.1, for any £>0

and any C>0,

/Ny -5 ¢

f&)(A(Q) j +

lim P{sup |'s

N=o

A ercc)

Corollary 3.4. Under the assumptions of Lemma 3.1, for

and any C>0,

~

lim P{sup o, IISfQ)(A(Q)/JN)I-Isgg)
N->o® A eRcey 4
As in the proof of Lemma 3.1, we get

11

odg

-1-d

'A.-A$Q)|>8}=0.
J J

Q

any €30

a8 ssy=0. D
J J



Theorem 3.5. Under the assumptions of Lemma 3.1, for any #>0

and any C>0,

lim Psup o 1T @®/yi-1{Per-ag-a® -0, hey=0. 0
N~ Ia*~ii;cc !
4. Tests

Since the conditional expectations and conditional variance-
covariance matricés of random Vectors S and T are given by (2.7)—
(2.12), we propose to test the null hypothesis H versus the

alternative A, based on either of statistics

AL=S'{T(R)8A(n)} S and FR=T'{T(Q)®A(n)} T.

Proposition 4.1. Suppose that I'(R) (I'(Q)) is positive

definite. Then AL (FR) does not depend on thé choice of
generalizéd inverse {[C(R)®A(n)} ({f(Q)QA(n)}—) and is expressed

as AL=S'(I'(R) '®D(n))S (FR=T'(I'(Q) '8D(n))}T), where D(n) is the

diagonal matrix with j-th diagonal element N/nj. O

For the univariate case, that is, p=1, Sen (1968) proposed the
test based on AL, and Friedman (1937) proposed the test based on

FR when wl(u)=2u—1 and nj=1 for j=1,+-+,J. Also Sen and Puri

(1977) proposed aligned rank testé for limited multivariate
linear models not including the model (1.1). Our test

procedures are the extension of Sen (1968) and Friedman_(1937).

12

95
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First we will give the asymptotic convergences of the
conditional variance-covariance matrices of S and T. Under

Assumption 1, we get

A(n) — A=(01,"-,0J) as N-o, , (4.1)
where oj's are defined by (3.1).

Here we set

Assumption 6. wg(u)'s are absolutely continuous. ]
1

- T 2 : —_Q .
Let us put Yga"ljo{wg(“) wg> du if 9=2"';

=I} é{wchgcx))—wg}{wg, (y))-v

R

(F }dFRQ,(X,y) otherwise, and

Q! Q!

: 1
L= ) where ¥ =j ¢, (u)du and F (x,y) stands for

Yee'l9,9'=1,---,p’ SRl PR 99"

the (2,2')-th marginal distribution of F(x). Then we get
Lemma 4.2. Suppose that Assumptions 1 through 4 and Assumption

6 are satisfied. Then under H, both T'(R) and T'(Q) convérge in

probability to I. 0

To derive asymptotic distributions of AL and FR, we set

Assumption 7. T is pcSitive definite,. o

13



Theorem 4.3. Suppose that Assumptions 1 through 7 are

satisfied. Then under H, as N»®, AL and FR have asymptotically

the same Xz—distribution with p(J-1) degreés of freedom. O

Next we consider the sequence of local alternatives

: J
T =0 /YN, A %A, ! . n.A=0,
Ay T, AJ/JN AJ AJ for some j*ji' and jéanAJ.O
where A.=(A€1),~'°,A$p))'.
] J ]

If we suppose next Assumption 8, from the proof similar to the

proof of Hajek and Sidak (1967), we find that ANAis contiguous to

H as N-oo,
Assumption 8. j (-Sf(X)/ax(g)/f(x)}zf(x)dx<w for Q9=1,-+-+,p
RP
‘ v, .
and 3f(x)/3dx s are continuous. O

Theorem 4.4. Suppose that Assumptions 1 through 8 are

satisfied. Then under AN' as N2, AL and FR have asymptotically

the same noncentral Xz-distribution with p(J-1) degrees of

freedom and noncentrality parameter 62, where 62=u'(F8A)'u,

W) L @ () ()

. ' =1-d.-a.
1 LT M7 )" and uy =l-dgy-4 ,

a.. 0

=
J

14
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5. Estimates

Using the method similar to Jureckova (1971), we propose the

R-estimators of matrix 1, based on aligned ranks and on within-

J
block ranks. Let llzil= } Izjl for J-dimensional row vector z.
i=1
Then we put
D e () (V) (D J
D, (R)={B: }. IS (B ,***,B Yll=minimum under } n.0.=0)
N 1 J .
Q=1 i=1
(2) . (2 () J (D
={8:|Is (81 . -,BJ Yl=minimum under ¥ njej =0 for
i=1
9.=1,°",p}
and
P () Q) J
D,.(@={(8: ¥ T (8.7 ,-++.,0 Yll=minimum under { n.B8.=0},
N N 1 %7 b
Q=1 . J—l
where 6=(81,°°',BJ), 8j=(8§1),-'-,8§p))‘ and S(g)(') and T(g)(~)
are defined by (2.3) and (2.4). Since S(Q)(') and T(g)(') take

6D

finite values in (81 ,---,e(g)

J Y, DN(R) and DN(Q) are not empty.

) ~

We propose some point BAL in DN(R) and some point eFR in DN(Q) as

an aligned rank estimator of T and as a within-block rank

estimator fespectively. It is simple to verify
Py, (), () (). (D J

8: ¥ s (8 +T.7 7, *+,8 +7 .7 )ll=minimum under ) n.B8.=0)
Q=1 1 1 J J i=1 i’

={8—T;GEDN(R)}

15
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and

p J
{8: % HT(Q)(8§Q)+T§Q), ’,932)+T§Q))H=minimum under } n.6:=0}

Q=1 , ji=1
={B—T:BEDN(Q)}.

If D (R) (DN(Q)) is a convex set, a natural choice of eAL (BFH)

N
is the center of gravity of DN(R) (DN(Q)). We add
Assumption 9. dg>0 for Q=1,+--,p. O

In many cases, using integration by parts yields

Nl 2 . . .
dg"j_mwg(Fg (X)){fQ(X)} dx. Thus Assumption 9l1s feasible.

Then even if DN(R) (DN(Q5) is not convex, we can show

Theorem 5.1. Suppose that Assumptions 1-5 and 9 are satisfied.

Then
lim P{sup * JNHB—B*H J>£)=lim P{sup JﬁHB-B*H J>8}
N->w 6, 8ED (R) p N~ 8, 8"ED, (@ P

=0 for €30,

where HAHpJ=J?vec(A))"{vec(A)}'

Furthermore Jﬁ-vec(GAL—T) and Jﬁ-vec(BFR—r) have the same

multivariate normal distribution with mean 0 and variance-

(1) . )y,

covariance matrix EEAO, where vec(A) denotes (a s for

16



100

. _ea Ly 'y, =
pXJ matrix A=(a s IX:} ), “_(EQQ')Q,Q'=1-,"‘,})’

: 2 : e _ : :
Eggv'ygg'/(l dgdg.), 1\0—(6“./)\.1 1)1”.:1’“.,J and 6ij denotes
the Kronecker delta. 0

6. ARE and robustness in the case of p=1

At first, we invéstigate the asymptotic relative efficiencies
(ARE's) of the proposed tests and'estimaiors with respect to ‘the
normal theory parametric test and estimator. For p22, the ARE's
are complicated, especially in the.case of tests, the ARE under

AN depends on parameter A and we can discuss the ARE as in

Section 4 of Sen (1971). So we give the ARE's for p=1. It is

simple to verify that (normalized likelihood ratio F-test) —E-*

under H and — X2 1(n2) under A

XZ
J-1 & J-

N!

NS DFEINE O

where n A A /Var (X;,,>. Also we can find that

JN(X;l.—x.,,,--~,X_J_—x..‘) 5 N(O, Var,(X;,,)-A /1), where

n

J
7X,
1 k=1

J n

- ! i
/(I+n.) and X, =% ¥ LX, .
J i=1 j=1 k=1 'J

o]
[ el

cj- i ik k/M. - Combining

these facts with Theorems 4.3, 4.4 and 5.1, we get

17
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ARE(AL, F-test)

=AHE(8A parametric estimator)

Ll

1

' 1 ) _ )
=Vara (X )-[J Wy (w (=£ ' (F- e /e F L (uyyydui?s f W, (W -0, %du,
0X111 ! 1 1

0

which is equivalent to the classical ARE-result of the‘two—sample
rank test with respect to the t-test, where ARE(C, D) stands for
the asymptotic relative efficiency of C with respect to D. We

—3 N(O,ck) for c>1 (c<l),

say that, when V., —— N(0,E) and wN 5

N &
the asymptotic variance of VN is smaller (larger) thah that of

Wy -
1 -1 -1 2 (1 I

The larger [J v -1 F /e ET )y dul®/ J W -9 %au
0 0

is, the larger the asymptotic local power of the rank test is for

fixed A(l), and the smaller the asymptotic variance df the rank
estimator is. Thus asymptotic optimal scaore generating function
is given by llJl(u)=—f‘(F"1

(W) /£(F 1 (uw)) for fixed £(x). Further
the choice of wl(u) which gives maximin asymptotic power of the

rank tést over the class of distributions that f(x) is in a
contamination neighborhood and minimax asymptotic variance of the
rank estimator is reviewed by Section 2.9 of Hettmansperger
(1984) and Section 4.6 of Huber (1981). Also the choice of

wl(u) over the class that f(x) is in a Kolmogorov neighborhood is

stated in Huber (1964) and Wiens (1986). "

18
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