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" Introduction. The theory of branched coverings 1is one of good

examples of amalgamation of different branches of mathematics
topology, complex analysis and algebraic geometry. See, for
example, Zariski [31], Fox [6], Kato [17], Hirzebruch [11],

Hofer [13], Ishida [15], Fukui [7], Gaffney-Lazarsfeld [8], etc..



It need not to be mentioned that the theory of (CGalois)
branched coverings is a geometric counterpart of the Galois
theory of function fields.

In this article, we present a theory of Galois.and abelian
branched coverings of complex manifolds, emphasizing existence
theorems and examples mainly along the line of Namba [22]. In
the last section, we discuss the equivalence problem of Kummer

coverings after Kato [18].

Chapter 1. Galois Coverings.

1. Definition of Branched Coverings. First of all, we

give a definition of branched coverings of complex manifolds.
Since we treat infinite coverings as well as finite coverings,

we define branched coverings as follows:

Definition 1. 1. Let M Dbe an n-dimensional connected

complex manifold., A branched covéring of M 1is an irreducible

normal complex space X together with a surjective holomorphic
mapping 7w : X — M satisfying the following 4 conditions:

i) Every fiber of w 1is discrete.
%

ii) R

.= pEX | =

6ﬁ,ﬂ(p) - OX,p is not isomorphic}

and BTr ﬂ(Rﬂ) are hypersurfaces (i.e., pure codimension 1)

of X and M, respectively, called the ramification locus and

the branch locus of 7, respectively. (Here, Ok,p is the
locairing‘of germs of holomorphic functions around P.)
iii) w o X - wﬁl(BW)'——+ M - B1T is a topological (i.e.,
unbranched) covering.

iv) For every point q € Bﬁ,'there is an open neighborhood

W of g in M such that, for every connected: component U of



ﬂ—l(W), W_l(q)ﬂIJ consists of one point and : U — W is

w]U
5 surjective proper mapping (hence a finite mapping).

If RTr is empty, then 7 : X —> M should be called an
unbranched cdvering. But we call such a covering also a branched
coverihg by abuse of language:. A branched covering is said to
be finite if every fiber is a finite set. The mapping degree of -

o -1 v .
of m:X-m (B ) —M- B, 1s called the degree of .

Using the purity of branch loci (see Fischer [L1]), we have easily

Proposition 1. 2. An irreducible normal complex space X
together with a surjective finite proper holomorphic mapping

T ¢+ X -—> M d1is a finite branched covering, and vice versa.

Let m: X — M and 7' : X' — M be branched cover-
ings of M. A morghism of m to ! is, by definition, a

surjective holomorphic mapping ¢ : X — X ,such'that i =T.

Thus we have the category of branched coverings of M. ¢ is

. . t .
an isomorphism if ¢ : X —> X is biholomorphic. In this

case, we say that 7 and ' are isomorphic. In particular,

1 . . .
if X =X and 7w = m', then an isomorphism is called a cover-

ing transformation of m. The set G1T of all covering transfor-
mations of =  forms a group under compositions, called the

covering transformation group.. G1T acts on every fiber of .

A branched covering m : X —> M 1s called a Galois covering
if GTT acts transitively on every fiber. w1 ! X —»> M is

called an abelian (resp. a cyclic) covering if =m 1s a Galois

covering and GTr is an abelian (resp. a cyclic) group.

We denote by Sing>Bﬂ_ the singular locus of the,branch
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locus B,. It can be shown that, for evéry point q € BTr - SingBﬂ,
every point p € ﬂ—l(Q) is a non-singualr point of both X and
ﬂ_l(Bﬂ). Moreover, for any sufficiently small open neighborhood

W of g with a coordinate system ‘(Wl’ e, Wn) such that

qg= (0, **+, 0) and Bﬂﬂ W ='{wn= 0}, there is an oben neigh-
borhood U of p with a coordinate system (zl, e, zn) such

that U 1s a connected component of ﬂ—l(W), p= (0, =**, 0)

and 7 1is locally given by

e
ﬂlU : (le"',zn) — (Wls"'swn) = (Zl"'°’zn—1’zn)’

where e 1s a positive integer, (see Roan [25] and Namba [22]).
For an irreducible component C of w"l(Bﬂ), the integer e 1is
constant for points of C - ﬂ—l(SingB), and is called the

ramification index of m along C. (For convenience, the

ramification index of m along an irreducible hypersurface of

_1(

X which is not contained in 7 Bﬂ)' is defined to be 1.) If

7 1is a Galois covering, then, for any irreducible component

Dl of Bﬂ, the ramification index e of 7 along irreducible

—1(D

components of T l) is constant. 1In this case, e 1is called

the ramification index of w along Dl'

Let a hypersurface B of M be given. Suppose for sim-

plicity that B has a finite number of irreducible components

Dl’ ey, DS.:
B = D1U ve e U DS.

Let ey, **", €4 be positive integers greater than one, and
D = eDy + v + gD

be a positive divisor on M.

Definition 1. 3. A branched covering ﬁ : X — M is




said to branch along D  (resp. at most along .D) if (i) BTT = B

(resp. BWC B) and (ii) for every J (1 = J < s) and for every

_.1(

irreducible component C of Dj), the ramification index

of m along C is ey (resp. divides ej).

For branched coverings m : X — M and 7' : X' —> M of
M, we denote m =2 7m' or 7' <7 1if there is a morphism of 7
to w'. If w=>=mw' and 7 branches at most along D, then !
branches at most along D. If 7 1is a Galols covering, m = m!

and m < w', then 7 and 7' are isomorphic.

Definition 1. 4., A Galois covering T :XA——+ M is called

a D-universal covering if (i) w branches along D and (ii)

for any covering 7' : Xf —> M which branches at most along D,

the relation w7 > m' holds.

By the above remark, a D-universal covering is uniqgue up

to isomorphisms, if it exists. We denote 1t by
¥ : M(D) — M.

We now propose the following two problems:

Problem 1. When does a D-universal covering exist?

Problem 2. When does a finite Galois covering which

branches along D exist?

As for a compact Riemann surface M, the problems were

answered completely by Bundgaard-Nielsen [1] and Fox [5]:



Theorem 1. 5.  Let ‘M be a compact Riemann surface of

s be points of M, e;» *"*, e, be positive

genus g, pls ***, D s

integers greater than 1, and D = e,P; + - +’espS be a positive
divisor on M. Then the following three conditions are equivalent:
(1) There does not exist a D-universal covering of M.

(ii) There does not exist a finite Galois covering =m : X — M
which branches aiong D.

(iii) Either (4iii-1) g= 0 and s =1 or (iii-2) g = 0, s=2 and

e X €se

" Example 1. 6. If M is a compact Reimann surface and

~

T : M(D) — M exists, then T 'is an infinite covering, unless

M = M(D) = P+

, the complex projective line, and 7 is isomorphic
to one of the following rational functions, (see Klein [20],
Hochstadt [12]):
(1) w=2z" (m=1, 2, «++),
D = m(e) + m(o), G & Cm.(m-th cyclic group).
(2) w= -(z" = 1)2/u", | |
D = m(=) + 2(0) + 2(1), & 2 D (m-th dihedral group).
(3) w= (ZLl 2/32° - 1)3,
D = 3(=) + 3(0) + 2(1), G = Ay.
(1) w= (2% + 112"

+ 2/?22 - 1)3/(211l

+ 13710820 (2" - )Y,

D = b(x) + 3(0) + 2(1), G = Sy

(5 (2°9 = 228215 + 4ouzt0 & 20857 + 1)3
W= 5,10, -- 5 5
-1728z7(z7 "+ 11z - 1)
D = 5(=) + 3(0) +2(1), & = A;.
(Here (o) 1is the point divisor of o € Pl, G = G. and A (

resp. Sn) is the alternating (resp. symmetric) group of n

1etters.)



2. D-universsal cOveriﬁgs. In this section, we give

answers to the problems at the end of §1, using language of

fundamental groups.

Figure 1

Take a point pO E.M -B and fix it once for all. Let Yj be
a loop in M - B starting and terminating at Py encircling a
point p € Dj - SingB in the positive sense as in Figure 1.

Yj is called a normal loop of Dj' We identify Yj with its

homotopy class in ﬂl(M - B, po). Let
e e m
1
J=<Y113 cet, Y >

be the smallest normal subgroup of wl(M - B, DO) which

. b S €s
contains Y1 s s Yg oo

Definition 2. 1. A subgroup K of

1
J CK dis said to be D-faithful if the following condition

(M - B, po) with

is satisfied: If de belongs to X, then d = 0 (mod ej) for

every J (1 < j < S)..
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For every point p € SingB, take a sufficilently small ball

W (with respect to a metric on M) with the center p such that

nl(w - B) = (M - B), (the local fundamental group at p).

" ,lec,p
Let

ig ¢ WI(W - B) — wl(M - B, po)

be the homomorphism induced by the inclusion mapping i : W - B

s M - B.

Definition 2. 2. A subgroup X of =n,(M - B, po) with

1
J C K 1is said to be locally cofinite if igl(K) is a subgroup

of ﬂl(W - B) of finite index for every point p € Sing B.

Theorem 2. 3. For any covering 7w : X —— M which branches

at most along D, K = ﬂ*(ﬂl(X - ﬂpl(B))) contains J and is
locally cofinite. Conversely, for any locally cofinite subgroup
K (D2J) of wl(M - B, po),thereexists a unique (up to isomor-
phisms) covering 7w : X —> M which branches at most along D

such that my(m (X - n71(B))) = K. 1In this case, m branches

along D 1if and only if K dis D-faithful.

For the proof of the converse, we construct a topological
covering m' : X —= M - B such that X = w*l(wl(X')), and

then we extend 7' to
T X — M

using a theorem in Grauert-Remmert [9], (see also Grothendieck-
Raynaud [10], p.340). Topologically, this is so called a Fox

completion, (see Fox[6]). See Namba [22] for detail. By
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Theorem 2.3,

Theorem 2. L. There exists a finite Galois covering m : X

_» M which branches along D if and only if there exists a
normal subgroup K of vl(M - B, po) of finite index which
contains J and is D-faithful. The correspbndence T > K =
w*(ﬂl(x —'ﬂ—ltB))) between (isomorphism classes of) such 7's

and such K's is one-to-one. In this case, GTr '1s isomorphic to

'TTl(M - B, pO)/K'

In fact, for such a normal subgroup K, we have

-B) 441 (4-B))  Kely(r (W-B)) _m(M-B,p))

K K
under the above notation. ‘Hence X is necessarily locally
cofinite.
Now, put
K =NK,
where the intersection N runs over all subgroups K of

wl(M - B, po) which contain J and are locally cofinite. K.

is then a normal subgroup of Wl(M - B, po) which contains J.

- Theorem 2. 5. A D-universal covering T ot M(D) — M

exists if and only if K is locally cofinite and D-faithful.
In this case, K = ﬁ*(wl(ﬁ(D) - ﬁpl(B))) and Gﬁ = nl(M - B, po)/ﬁ.

Moreover, M(D) is simply connected.

It is easy to see that M(D) is simply connected. In

fact, if u : X —> M(D) is a (topological) universal covering
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of M(D), then Tm-u : X — M is a covering which branches
along D such that +p = 7. By the D-universality of T, we

~

have . T*u < . Hence u 1is an isomorphism.

Theorem 2. 6. Let m : X — M be a Galois covering which

branches along D. . Suppose that X 1is non-singular and simply
connected. Then w dis D-universal. In this case, K=J and
GTT = Wl(M'" B, po)/J.

In this theorem, the condition of the non-singularity of

X can not be dropped, as the followling example shows:

Example 2. 7. Put M= ®2 and let (u, v) be the coordinate
system on Cgf Put D, = {u = 0}, D, = {v =10} and D = 2D, +
2D,. Put  X = {(u, v, w) € ¢3 !wg = uv} and

7 : (u, v. w) € X r— (u, v)€EC2.

Then 7 1is a cyclic covering of degree 2 which branches along
D. X dis simply connected, for X 1is a cone. But 1w is not

D-universal. In fact, putting Y = C2 and

2 2
nw: (x, y) €Y > (u, v, w) = (x°, vy, xy) € X,

the composition 7w-p : Y — Cg is a covering of degree 4 which
branches along D and w~ﬁ > T. (Ry Theorem 2. 6, m+u 1is

D-universal.)

For the rest of this section, we suppose that B 1s simplé

normally crossing.




bt}
e

. :Dll-‘
M
FigUre‘Q
For any point p € SingB, let (wy, "°°, w) be a local coordi-
nate system around p such that p = (0, -**, 0) and
B={(Wl’ cey Wn){wkz...zwrl:()}.
locally. Let
,‘{Wj = 0} = Dj (k <3 <n),

locally, say. Let §j be a loop in M-B starting and termina-
ting at Pqs encircling a point of Dj - SingB near p 1in the

positive sense as in Figure 2. Then . §j is conjugate to Yj
in ﬁl(M - B, po). ?k, ey Qn are mutually commutative. For
a sufficiently small ball W with the center p, we have

m = B) = (7 e (v
and

e e
> "kyZ ~ "nZ .—1
(v D7 oo (v, D7 €17 (I) Cmy (W - B).

Hence J 1s locally cofinite, so that K = J. Thus

Theorem 2. 8. If B is simple normally crossing, then

a D-universal covering o ﬁ(D) —> M exists if and only if

J is D-faithful. 1In this case, J = K and G~ =m (M - B, p_)/J.
e

e
k)Z o e (,Y 1’1>Z =

Moreover, if (under the above notation), (?k a

i;l(J) - for every point p € SingB, then M(D) is non-singular.

11



The last assertion of the theorem is a special case of

Kato [17], as well as the following theorem.

Theorem 2. 9, Let B be simple normally crossing. Let
K be a normal subgroub of m (M afB, po) of finite index which
contains J and is D-faithful. Suppose moreover that, for
any point p € SingB? K satisfies the following condition
(under the above notation) |
d d

k A~ n

if ?k “r* Y, €K, then d, = 0(mod ek), *ers d =0(mod 88-

k
Then the irreducible normal complex space X is non-singular,
where 7 : X — M is the finite Galois covering which branches

along D and corresponds to K wunder Theorem 2. U,

3. Examples. It 1s not easy in general to apply the results of

§2 to concrete examples. (Even the calculation of nl(M - B, po)

is not easy.) In this section, we discuss two examples.

2 2

Case 1. Put M = €°, B = D = {(x,y) € ¢C |x3 = y2}, L

a positive integer greater than 1, and D = £D..

1
Dy
? ,
Yq
0] po
Yo
Figure 3
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As is well known,»'rrl(c2 - B, po) is 1somorphic to 3rd braid

‘group B3 ; taking the loops Yq and Y, @as in Figure 3,
have | ‘ ‘
5 ‘ _ _
m (€% = B, D) =<vys Yo | YyYo¥y = YoYqYs > -
Here the right hand side means the group generated by Yq
Yo with the generating relation Y1YoY1 T YoYqYoe Since
1 . R
(y2y1) YfY2Y1)’ Y, 1is conjugate to y;. Let J be the

normal subgroup of ﬂi(Cz - B, po) containing ylg (and

L
Y2 ). Then

ﬂl(®2 - B, po)/J <Gy =<a, b [a’2 = bg =4, aba = bab >

we

and
Y2 =
smallest

SO

by the correspondence: Yq — a, Yo t— b. We identify

these groups through the isomorphism.
The cyclic covering

2

corresponding to the kernel of the homomorphism
1is giVen by
TTQ: XQ = {(X,Y,Z>‘E®3 | ZQ =‘X3 - yg} -"“* M = «:2

(X,y,Z) B (x, y)

and branches along D = QDl. But m, is not D-universal.

The following argument on the structure of GQ was

informed by Mr., Mizutani. vSee also Coxeter [2]. TFirst of all,

Lemma 3. 1. c = (aba)? 1is an element of the center

of GQ.

13

Z(Gy )



Next, consider the Schwarz' triangular group

G(2, 3, ) =< S, T | s2 = 13 = (ST)Q =1 >,

and the homomorphism,

g : Gp — G(2, 3, %)

defined by g(a) = ST and g(b) = TS.

Proposition 3. 2. The following sequence 1s exact:

1 — <c> — Gy —£ ,@a(2, 3, 28) — 1

From this proposition, we have the following table:
L ord(c) G(2, 3, %) Go ord Gy
2 | 1 S3 . S3 6
3 2 AM SL(2, Z2/3%7) 2L
| G,/2(Gy) = Sy,
y 4 5, BT 4 96
”Z(Gu) = Z/L7
5 10 ‘ - A5 , SL(2, Z/57Z)x(2/5Z) 600
6 oo infinite group infinite solvable group ®
=7 0 infinite group infinite unsolvable group ©
If £ satisfies 2<8 <5, then (under the notations of
§2) ﬁ = J and there exists a D-universal covering

In this case,

Moreover, we have M(D) = €

~

% : M(D) —> M = C°.

2 and ¥ 1is the composition

~ m )
(D) = ¢ Y x, B

14

T is a finite Galois covering such that Gﬁ

- GQ.
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where U 1is the projection

p @ M(D) = ¢° "“+"XQ =702/H,

where H 1s a finite subgroup of GL(2, €). The origin of X

in this case 1s called the Klein singularity, {(see Pinkham [24]).
If £ = 6, then we have

‘Proposition 3. 3. The kernel of f6 : G6 — Z2/67

(f6(a) = f6(b) = 1) is given by <<a—1b, ab™ > and is isomorphic
to N = 1 i J
0 1 x| |i, j, k € 2
0 0 1
The isomorphism is given by
1 1 0 1 0 O
a”b s |0 ab™ —> (0 1 1
o o 1/, 0 0 1

We identify ker(f6) ‘'with N through the isomorphism. For any

positive odd integer r,

N(r) = = 0 (mod r)

o o
o K
W.
m
=2
i_l
hi
C,
i
e
1

is a normal subgroup of G6 of index 6r3 and is D-faithful.

Hence

Proposition 3. L, TFor any positive odd integér r, there

is a Galois covering‘ v, Yr — M = 02 of degree 6r3
v

r
branching along 6D;. v, < if and only if r|r'.

15
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Since /f\ N(r) = {1},
r:odd-

We have

Proposition 3. 5. If D = 6D, then there does not exist
a D-universal covering of M = 02.

2

Case 2. Put M = P~ (the complei projective plane), B =

DlU Ds, Dl = the closure in Fz of the affine curve

2 3 2

{(x, y)EC° | x° - y° = 0}, D, = L, (the line at infinity), &,m:

positive integers greater than 1, and D = QDl + mD,.

- Figure 4

Taking the loops Y1 Yo and & as in Figure L, we have

- - = <1
Tfl(M - B, pO) = <'Y1, 723 $ Y1Y2Y1 Y2Y1Y2 =48 7>
Let J be the smallest normal subgroup of ﬂi(M - B, pé) which
- . S

contains yf R y§ and ¢ Then

~

2 - —

16



where

Gy = <o, 8 6| o =g =" =1, aga = gos

3

L}
[}
v

Let GQ be the group in Case 1. There is a surjective homomor-
phism

defined by h(a) = a and h(b) = B.
For simplicity, we assume that m 1s a positive even integer.
Then the following sequence is exact:

m/o N

1 —— <& >>-————-—>GQ —-———+GQ —_ 1
. N , L]

In particular, if the pair (£, m) 1is one of the following

table:
R 2 3 h 5
m{{ 2 4 8 | 20
then G’2 m = G2 and there exists a D-universal covering
3>

¥ ¢ M(D) —> M = IP° (D = 2D, + mD,).

~

In this case, ¥ -is a finite Galois covering such that Gu =Gy . =
. 5

GQ.
If % = 6, then we have by Proposition 3. 3;
Proposition'3;'6. For any positive integer m such that
m = 2 (mod 4), there is a Galois covering ¢ ° Zﬁ — P° or

degree 6(m/2)3 branching along D = 6D1 +mL . ¢ < ot if

and only if m|m'.

17
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On the other hand, since the sequence

/2 Gy o~ G(2,3,9) —> 1

>

1 — <c> /<C

is exact, we have in particular (putting m = 2),

~

Gg_,2 - G(23 3.52)'
Putting & = 2, we identify G6 5 with @(2, 3, 6) through
3

DR

the isomorphism. It is well known that G(2, 3, 6) has the

normal subgroup L such that
a(2, 3, 6)/L = 12/61%,
LXZ®7 (the direct sum).

Identifying L with Z + Z through the isomorphism, consider,
for any positive integer q, the normal subgroup |
Lq='{(j,k)62®zljzkzo (mod q)}
of index 6q2 of G(2, 3, 6). Since

N1 = {1}

q ¢ ’

we have

Proposition 3. 7. If D = 6D1 + 2L_, then there does not

. . . 2
exist a D-universal covering of P".

By another method (see Namba [23]), we can show

Proposition 3. 8. TFor any positive integer k, there exists

a finite Galois covering = : X —_ P2 branching along D =

6le + 2KkL .

18
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4, Existence of Finite Galois Coverings. As for Problem 2

in 81, it is desirable to give (sufficient) conditions for the

existence without using language of fundamental groups. Theorem

1.5 - is such a‘theorem. In this section, we give such theorems.
Let Ll’ cery, Lé be distinct lines on Pz and put B =

I, U = U LS.‘ Put
A= {p €B | mp(B) > 3},

where m?(B) is the multiplicity at p of the curve B. A is

a finite point set.

Theorem 4. 1. Suppose that Ljﬂ A is non-empty for every
j (1 <3j <s). Then, for any postive integers €15 """, €y |
greater than 1, there exists a finite Galois covering = : X —>

2 ; -
P branching along D = elL1 + ... + eSLS.

Figure 5
See Kato [16] for the proof of the theorem. We generalize the

theorem és follows:

" Theorem 4. 2. Let M be an n (= 2) dimensional projective

19
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manifold and Dl’ try, DS ‘be distinct irreducible hypersurfaces

of M. Suppose that thereé are'fixed component free linear pencills

A *» Ay on M ‘such that (1) evéry Dj» is a member of some

19
Ak and (ii) every Ak contains at least three Dj's as its

members. Then, for an ositive integers e,, *°°, e greater
5 1 s

than 1, there exists a finite Galois covering 7:X — M Dbranch-

ing along D = elD1 + e+ est'

Note that Theorem 4. 1 follows from Theorem 4. 2, putting
M = P2, Dj = Lj (1 < j<s) and Ak = the linear pencil given

by the projection with the center point Py € A. See Namba [22]

for the proofs of Theorem 4. 2 and the following theorem:

Theorem 4. 3. Let €y» "7, C, Dbe distinct irreducible

conics on P2 such that, for any Cj’ there is a Ck which is

tangent to Cj at two distinct points. Then, for any positive

integers ey ""', e, greater than 1, there exists a finite

Galois covering 7w : X —— Pz branching along D =’elD1 + ... F

est'

20
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- Chapter 2. Abelian Coverings.

5. Abelian D-unilversal COVerings. Let M be an n-

diemensional connected complex manifold. Let B = DlLJ---LJDS,
= .--. - — <'< P =
D 21D1 + i est’ P, € M B, Y (1 <3 <s) and J:
T
< vy 1 s Vg ®>"1 pe as in §1 and 82. Put
3

where [G, G] is the commutator subgroup of G. Then we can

easily prove the following lemma.

Lemma 5. 1. wl(M - B, po)/3 =

B OF - By D/ (egyy) + e+ Tegyy)).

Here Hl(M - B; Z) is the first homology group of M-B and

Z(elyl) + .. 4 Z(esys) is the subgroup of Hl(M - B Z)

2

generated by €1Y1s "> €5Ygs which are regarded as elements

of Hl(M - By 7).

Moreover, we can prove:

Proposition 5. 2. 3 is a normal subgroup of wl(M - B; po)

which contains J and is locally cofinite.

The covering WO : XO —> M which branches at most along

D, corresponding to J by Theorem 2. 1 is an abelian covering.
Moreover, for any abelian covering 4 : ¥ —3% M which branches

at most along D, the relation m_ > m holds.

~ Definition 5. 3. . An abelian covering 7

ab * Mab<D) — M

is called  an abelian DFuniversal covering if (i) ﬁab' branches

21
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along D and (ii) for any abelian covering m : X — M which

branches at most along D, the relation 7 > 1 holds.

ab

By the above consideration, if an abelian D-universal

covering T : Mab(D) — M exists, then it must be isomorphic

ab

to Ty Xo — M. Conversely, if Ty XO —> M branches along

D, then it i1s an abelian D-universal covering. Thus

Theorem 5. 4. There exists an abelian D-universal covering

Ty ﬁab(D) —> M if and only if the following condition is

satisfied: if dy, € Z(e ) o + Z(eSYS); then d = 0 (mod ej)

171

J
for every 1 < J < s. In this case, the covering transformation

group of ﬁab is isomorphic to éab = HlCM - B3 Z)/(Z(elyl) +
+ Z(eSYS)j.
For example, let M = C2, B = Dl and D = QDl be as in
Case 1 of 83. Then we have Hl(C2 - B3 7)) = Zyl and the
condition in Theorem 5. I is clearly satisfied. 1In this case,
ﬁab : ggéb(D) —_— 02 is nothing but the cyclic covering

3 2

'ITQ!XQ={(X,,V, Z)ECBIZQ':X —yz}——rc
(Xs Yo Z)‘__—"(X: y)

considered in Case 1 of §3.

Let M = Pz, B = DlU L and D = QDl + mL_  be as in

Case 2 of 83. Then we have
2 -
Hy(P™ - B 3 2) = (Zyy + Zy,)/2(3y; + v5).

Hence the condition in Theorem 5. 4 is equivalent in this case
to the condition: &/(3, %) = m, where (3, 2) dis the GCD of

~
3 and %. If this is the case, ﬁab :IP2ab(D)->-IP2 is a finite

22



covering.
In general, if M = En, Dj is an irreducible hypersurface
of degree’ dj (1 < js<s) and B = DlU "'lJDS, then we. have

Hy@" - B3 Z) = (Zyg + <-- + Ty )/(Z(ayyq + =°° + dgy ).
Thus : , . . )

Theorem 5. 5. Let Dj be distinct irreducible hypersurfaces
of degree dj (1 <j <s) of the complex projectiVe space p"
Put D = elD1 + .- + eSDS. Then there exists an abelian D-

N\
universal covering T : Pnab(D) — P" if and only if

ab

ej/(dj’ ej) divides
<eq/(dysey)s ey 1/(dy g5ey 9)sey49/(dgyy58540)5 7 750/ (dgseg)>

fof every J (1 <j <sg), where (---) and <...> denote the

GCD and LCM of the coﬁponents, respectively. In this case,

s
m

ab is ‘a finite covering.

As for a compaét Riemann surface M, fheorém~5. I can Dbe

rewritten as

Theorem 5. 6. Let p; (1 <j<s) be distinct points on

a compact Riemann surface M of genus g. Put D = e

ePy- Théh there exists an abelian D-universal covering
Top ° Mab(D) —> M if and only if ?j divides.

<el, -o-, ejq-l’ ej+1’ ..u, eS>

for every j (1 <J <s). In this case, ﬁab is an infinite

covering if g = 1.

Finally, as for finite abelian coverings of a complex mani-

fold M, we have
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Theorem 5. 7. Let M be a connected complex manifold,

B= Dlu ---.LJ:D‘

s’ D =

€1Y1

as before. Then there exists a one-~to-one correspondence

“on ' <3<
D, + + e D, and Y5 (1 J s) be

m — K = K(m) between isomorphism classes of finite abelian
coverings w : X —» M which branches at most along D, and

subgroups K of finite index of

G, = Hy(M - B3 2)/(2Z(e

“ab 1Y1) oo +‘Z(esys))‘

The correspondence satisfies (1) G1T - Gab/K(ﬂ), (2) ﬂl< s

if and only if K(WI)D K(ﬂz) and (3) 7 branches along D
if and only if K(w) satisfies the following condition: if

ay..

3 € K(m), then d = 0 (mod ej) for 1 <j < s.

6. TFinite Abelian Coverings of Projective Manifolds. 1In

this section, we suppose that M 1is a projective manifold. We
discuss finite abelian coverings of M. Here are two typical

examples of abelian coverings.

Example 6. 1. Let ﬁ‘: L — M. be a holomorphic line
Qe

bundle on M and ¢§ = {Eu} be a holomorphic section of L
(the e-times tensor product of L for a postive integer e
greater than 1), where Ea is a holomorphic function on an

open set Ua on which L is trivial. Suppose that the zero

divisor (&) of & has no multiple component:
(g) = Dy + == + Dg,

where Dj' are distinct prime divisors. Put

D=e(E) =¢eD, + ~-- + eD,.
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D
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Put

X = g{(p, 7o) € UyxC | 2, = E (@)}

Then X can be considered as an irreducible normal hypersurface

of the bundle space L. Put
T o= ﬁ[X : X — M,

Then w 1s a cyclic covering which branches along D.

Example 6. 2. Let L be a holomorphic line bundle on

M and gl, I Es be holomorphie sections of L. Suppose that
D, = (51), "tt, Dy o= (ES) are distinct prime divisors such that
Dl N "'f“Ds = ¢. For a positive integer e greater than 1,
put
= DU..
B = Dy UD_,
D = eDy, + +-+ + eDg

Consider the Kummer extension
_ /e .. 1/e
Fo= B0 ((5/E) T, ee, (g1 8T
of the field €(M) of meromorphic functions on M. Let

T ¢+ X —> M

be the F-normalization of M, (see Iitaka [14]). Then w is.

a finite abelian covering of M which branches along D such

that G1T = (Z/e Z)Swl. The covering w : X —> M is called a

Kummer covering. In this case, we can prove that, if B 1s

simple normally crossing, then X is non-singular.

Now, let B'= D1U ---\JDS and D = elDl + .. + esD

be as in §1. We rewrite Theorem 5. 7 using language of rational

S

ps . o) ) .
divisors. A rational D-divisor is a rational divisor E on M
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of the following type:
E = (al/el)D1 + -0 4+ (as/eS)Ds + E,

where aj (1 <j <s) are integers and E 1is an integral divisor.
Rational D-divisors form an additive group Din(M, D). Let
DivOQ(M, D) Dbe the subgroup of DiVQ(M, D) consisting of all
E such that \

cg(B) = (a1/e1)cq(ID 1) + =+ + (ag/e oy (IDST) + cq(E)
0 € H(M 5 @),

where [Dj] is the line bundle determined by Dj and
cq ¢ Pic(M) —> HZ(M;; ®) 1s the homomorphism of rational Chern
class.

Two rational D-divisors £ and ﬁ' are said to be linearly

~

equivalent, ﬁ ~ E', if E - E' 1is an integral and principal

divisor. Consider the additive group

PioOQ(M, D) = Dion(M, DY/~ .

Theorem 6. 3. There exists a one-to-one correspondence

T —> S = S(m) betwéen isomorphism classes of finite abelian
coverings m : X —> M which branches at most along D, and
subgroups S of finite index of PicoQ(M, D). The correspondence
satisfiles (1) GTT = S(w) and (2) Ty < T if and only if

S(wl)(:S(ﬂ2).

Theorem_6. 4., There exists a finite abelian covering
m : X —> M which branches along D 1if and only if there 1s a
subgroup S of finite index of 'PicOQ(M, D) with the following
condition: for every J (1 <j < s), there is an element
ﬁ(j)/wes such that (aj, eJ.) = 1, where

26
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E(J) = (ay/e))Dy + =+ + (a;/e )y + ==+ + (a /e )D_ + E,
(E : an integral divisor).

For the proofs of the above theorems, we make use of the
" theory of harmbhic'integrals4by de Rham-Kodaira [3].
For example, the cyclic covering m : X — M in Example

6.1 corresponds to
s = {(a/e) (D + SR D) -2k | 0 <a<e - 1}/ ~,

Where 'E 1is an integral divisor on M such that [E] = L.
The Kummer covering =m : X —> M 1in Example 6. 2 corre=-

sponds to
S f Si, * 823 + "'H+ Sn—l,n + Sn,l s
where

8., = {(a/e)D; - (a/e)D, | 0 <a <e -1} /n, ete..

As applications of Theorem 6. U,

Theorem 6, 5. Let D,, ---, D (s 2 2) be linearly

equivalent distinct prime divisors on a projective manifold M.

Suppose that, for every J (1 < J < 8), ej divides

e_>.

< e T, ej—-l’ ej"‘l’ Ttts €9

15
Then there exists a finite abelian covering m : X — M which

branches along D é elD1 + .- 4+ esps'

Theorem 6, 6. Let“pl, e, Py be distinct points of a

compact‘Riemanh surface M, Put D = e,pq + .- + e Py (e'j > 2).
Then there exists a finite abelian covering m : X —> M which
branche; along D 1if and only if, for every J (1 <Jj < s), ey
divides
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<e]-, 'o\n, ej'—l, ej+l, .-, s .

Finally, we move D and consider various PicoQ(M, D)'s.i
Let DiVQ(M) be the additive group of all rational divisors on

OQ(M) be the subgroup of Din(M) consisting of

M, and Div
all rational divisors whose rational Chern classes vanish. Two

rational divisors £ and £' are said to be linearly equivalent,

A

B .R', if E - E' 1is integral and principal. Consider the
additive group

PicoQ(M_) = D:'LVOQ(M)//\,.

Let €(M) be the fieid of meromorphic functions on M.
Note that isomorphism classes of finite Galois (resp. abelian)
branched coverings w @ X — M and (isomorphism classes of)
finite Galois (resp. abelian) extensions F/C(M) of €(M) are

in one-to-one correspondence under

i —""_’F= C(X)g
F‘ — F-normalization of M.

Then, by Theorem 6. 3, we have

Theorem 6',7' For a projeétive manifold M, there exists

a one-to-one correspondence F —s S = S(F) between the set of
all (isomorphism classes of) finite abelian extensions F/C(M)
and the set of all finite subgroups S of PicOQ(M). The
correspondence satisfies (1) S(F) - Gal(F/€(M)) and (2)

F.CF

1 5 if‘and only if 'S(Fl)C g(Fz).

Note that the class field theory for fields of algebfaic

functions (of one variable) asserts the dual version of this
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theorem, using the generalized Jacobian variety, (see Serre [27]).

The content of this section can be generalized to finite
Galols coverings of a projective manifold, using language of

unitary flat generaligzed vector bundles, along the line of Weil

[30]. See Namba [22] for detail.

7. Equivalence Problem and Autonomorphism Groups of Kummer

Coverings. Tet 7 : X —— M be a Galois covering of M branch-
ing along- D = elD1 + e + est with the covering transformation
group G = Gy. In this case, we also write in this section
T : (G, X) — (M : D).
For a second Galois covering w' : (G', X")—(M' : D'),

a biholomorphism h : X — X' 1s refered to as an equivalence,

written h : mam', 1f there is a biholomorphism h : M — M

making a commutative diagram:

M .

ly.

M
For a biholomorphism h : X — X', if we put

h

G!' {h_lg'h | gr€a},

Then we have P N .
“h : 1 <t::> G = G'h-

Let E(m) be the subgroup of Aut(X) consisting of
equivalences of 7w onto itself. We have an obvious short exact

seguence:

{1} > G > E(m) — Aut (M, D),

29



*
‘where Aut(M, D) = {f € Aut(M) | £ D = D}.

" Definition 7. 1. A Galois covering m : X —s M dis said

to be rigid, if E(w) = Aut(X).

" Equivalence Problem. Are which kinds of (Galois coverings

rigid?

This problem in the case of cyclié branched coverings of
Pl was .proposed by H. Shiga in Wakabayashi's problem session,
Wakabayashi [29].

The second némed author, Namba [21] showed that cyclic
branched coverings of El are rigid under some conditions.
Moreover, by making use of a theorem of Matsumura-Monsky, he
proved that an m-fold cyclic covering 7 : X — = branching
along a non-singular hypersurface of degree m in Pt is rigid,
provided that
(1) m>1L4, if n = 1,

(i1) m >3, if n > 2, and
(1i1) m,n) ¥ (4, 2).

T. Kato [19] improved the results of Namba in the cése of
cyclic branched coverings of Pl.

Let L =1L, + +++ + L, be a reduced divisor of P con-

1

sisting of s distinct hyperplanes Ll’ Tty Ls’ which will be

refered to as a hyperplane configuration of Em.

A Kummer covering
Tt (G, X) —— (@7 : mL)

of P! branching along mL is nothing but a branched covering
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obtained as the Fox completion of a covering spread

Xo—e+ P~ L C P" associated with a Z/mZ-Hurewicz homomorphism
n N n : o n
ﬂl(P - L, #) — Hl(P‘ -L 3 7)) — Hl(P - L ; Z/m7).

Thus

¢ = H @ -1L; 7/n2) = (Z/mz)5~%

and G 1s generated by covering transformations 815 *°"s &g
corresponding to the normal loops Yo " ts Vg of Ll’ sy Ls’
respectively.
We are interested in the case where n = 2,
Let q@ be an r-ple point of L ; g = Li.ﬂ teeN Li .
Let 6 : Bq(PZ) PZ
be the blowing up of P2 . at g. Then ¢ 1(q) = E 1is a non-
singular rational curve and we have a reduced divisor
pl+.o- +pr
on E, where
_ _ Y
pk= (¢Lk—E) nE

for k=1, *°°, I,

Definition 7. 2. If a Kummer covering of E branching
‘ _ 5

along m(pl + e+ pr) is rigid, then (P" : mL) is said to
2

be rigid at q. We shall say that  (P :mL) is locally rigid,

if for each r-ple (r > 14) point q of L, (P°: mL) is rigid

at q.

" In M. Kato [18], the first named author proved essentially
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Theorem 7. 3. Let = : (G, X) —> (P2 : mL) and

T s (G, X') ——+—(P2 :mL") be kummer coverings of Eg‘ such-

that L and L' are line configurations of P2. ~Suppose that

(1) m > 6,

(2) each Lj contains at least three singular points of Lz
and

(3) (P°

: mL) is locally rigid.
If a biholomorphism h : X — Xt exists, then h ' 71 7n'.

In particular, m : X —> P2 is rigid.

Since the Kummer covering = : (G, X) —> (Pn :mL) 1is an
abelian mL-universal covering, it follows that a natural homomor-

phism
E(m) —> Aut(En,‘L) (= Aut (F®, mL), (m > 0))

is surjective. Thus we have

Corollary 7. 4. 7Under the assumption of Theorem 7. 3, we

have a short exact sequence:

{1} — G( 2 (Z/m?)5™ ) — Aut(X) — Aut (P2, L) — {1}.

The following results about rigidit&‘of’a Kummer coVering

T X —> PT branching along ‘m(pl'+ cee 4+ ps) are known:

‘Theorem 7. 5. (1) if x(X) >0, i.e., either s =2 or

s =3 and m < 3, then m 1is not rigid.
(2) if s =3 and m > U4, then., 7 is rigid (see Namba [21]).
(3) if s >4 and m=>5(s - 1), then 7 is rigid (see M. Kato

[181).
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Therem 7. 6. (Sakurai-Suzuki [26]).V‘Supposevthat x{(X) < 0,

s > 4 and that for any subset P' of {pys "7, Dy} with

4p' > 4,4Aut(P1, p').= {1}. Then = is rigid.

Remark 7. 7. Recently, Sakurai is improving the result

above extensively. He has announced in February, 1987, that
m 1is rigid, if x(X) < 0 and m = 11. It is plausible that

m 1s rigid, if x(X) < 0, 1. e., Aut(X) 1is finite.

The proéf_of Theorem 7. 3 is based on the following facts:
(I) If X 4is a surface of. general type, then Aut(X) is finite.
(ITI) The covering transformation group G 1is generated by
'complex reflections'! 84 T, By of the surface.rx;
(IITI) If a finite unitary reflection group of Cz contains a
unitary reflection of order =6, then if 1s abellan, refer

to Shephard-Todd [28].
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