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ON THE VECTOR BUNDLES WHOSE ENDOMORPHISMS YIELD
QUATERNION ALGEBRAS OF CYCLIC TYPE
OVER A PRODUCT OF TWO ELLIPTIC CURVES

Hajime KAJI B T~

Waseda University
80. Introduction

Let X be a non—singular projective variety over an algebraically
closed field k with arbitrary characteristic p, let n be a
positive integer prime to p, and let us consider the following

diagram of eétale cohomology sets:

1
H™ X, Gm)
il ¢
1 1 U 2
(FD) H® X, un)XH X, un) > H X, un)
1 &End 1 A dn 9 &
H™ X, GLn) - H™ X, PGLn) - H® X, Gm).

The definition of each map above is this: The lower horizontal
sequence is induced from a well—known, fundamental sequence of
eétale sheaves of group schemes over X

(FS) 1 - Gm - GLn - PGLn - 1,

so this sequence is exact; The right vertical sequence is
induced from the Kummer sequence for the étale topology 6ver X
KS 1 - My - Gm - Gm - 1,

so this sequence is also exact; The upper horizontal map U is
(non—canonically) defined by the cup—product on X with a fixed
primitive n—th root ¢ of unity in k; The left vertical map A is

defined by a generalization of the construction of a cyclic

algebra over a field to the case over a scheme, which makes the
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diagram abové commutative. We shall give a construction of an
- Azumaya algebra, denoted by ACL, M), of rank n® over X from a
pair of n—torsion line bundles L. and M over X such that the
diagram above commutes (see Sections 1 and 2).

We here note that (see, e.g., (1, §4J and (3, III and IV)):
HI(X, GLn) is equal to the set of isomorphism classes of vector
bundles of rank n4over X (for the Zariski tﬁpology), in
particular, HI(X{ Gm) coincides with the Picard group Pic(X) of
X; HI(X, un) coincides with its n—torsion part Pic(X)n :

Hl(X, PGLn) is equal to the set of isomorphism classes of
Azumaya algebras of rank n2 over X, whose elements correspond
bijectively with the isomorphism classes of fibre bundles over X
for the étale topology with a geometric fibre Pn—l, namely,
projective spacé bundles of rark n over X.

Now, for a pair of n—torsion line bundles L and M over X,
the commutativity'and the exactness of the diagfam above imply
the equivalence of the following conditions:

(1> The Azumaya algebra A, M) is isomorphic to &rd (V) for

some vector bundle V over X;

2 Thekcup—prbduct LUM is equal to“cX(Z) for some line bundle

Z over X.

So, one may expect that there would exist some relation between
V and Z above. We here propose the following problem (see (7)):
How can one construct the vector bundle V From
the line bundle Z?
where one should note that V is uniquely determined by the
algebra A(., M) up to tensoring line bundles over X.

In case n = 2, it will turn out that our problem is reduced

to finding rational solutions of certain quadratic forms over

the function field of X. The purpose of this article is to‘give
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an answer to this problem in case X is a product of two elliptic
curves and n = 2. Namely, in this case, we shall construct atll
such vector bundles V from the line bundles Z.

Throughout this article, we always assume that the base X
ig a norn—singular, quasi—projective variety over a field k, the
integef n is positive, prime to the characteristic p of k, and k
contains a primitive n—th root & of unity. For full details on

the contents of this article, we refer to (7).
g1. Construction of Azumaya Algebras

In this section, we give a construction of an Azumaya algebra of
rank n2 over X from a pair of n—torsion line bundles, strictly

speaking, we define a map

1 1 1

H™ X, un) x H™ X, un) - H" X, PGLn),
which, in the special case n = 2, has been given by D. Mumford
(10, &3).
Remark 1. 1. Taking cohomology of the sequence (KS), one can

interpret HI(X, un) as the set of isomorphism classes of couples

(L, ® such that L is an n—torsion line bundle over X and & is
an isomorphism OX*Lan. In case X is a complete variety defined

over an algebraically closed field, it follows that

1 : .
H™ X, un) e PlC(X)n

In case X is a spectrum of a field K, it follows that

!, u) = KK

2
H" (K, un)

i

2
H* (K, G -

Now, let L and M be n—torsion line bundles over X with

isomorphisms ¢:OX*L®n and T:OX*Mgn. For a pair of such couples
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(L, ® and (M, ¥), we consider a vector bundle

A:= ® L®ieM® over X. Using the isomorphisms @& and ¥,
0<i, j<n-—1

defining the following maps:
. . ' gjk . . :
(LQIGMGJ)G(LQk@M®l) e [ ®1g) Bk @] oy®L R L gM®S |

with itk r, j*+2 = s modulo n, and 0 £ r, s < n-1, we obtain an

oX—algebra A over X.
Now, we locally investigate this algebra A, Take an affine

open neighborh00d U of an arbitrary point in X over which

LIU = Oy L ~ 0y,

M|U = Oy'm = Oy
where &, m are generators of L, M over U, respectively. Since
both ¢(1)|U and 2®" generate L®" y » there exists a unit a in
r{u, OU) such thatk

asd () |y = £
Similarly, as for M, there exists a unit b in rd, OU) such that

by (D [y = m®,
Then, we see that the restriction A U is isomorphic to an
OU—algebra gene}ated by elements £, m with relations |

ot o= a,’mn = b, and 4m = g&ml.
Particularly, jn case n = 2, A U is isomorphic to an OU—algebra
generated By 2, mwith relations

12 = a,\m2 = b, and &m = —m4,
namely, a gquaterniorn algebra over U, Hence, A is an Azumaya
algebra of rank n2 over X, in particular, a quaternion algebra
over X when n = 2 (see, e.g., (8, IV, (2.1))>. The algebra A
obtained from a pair of these couples (L, ®), M, ¥) is denoted
by ACL, ®, M, ¥)), and the projective space bundle naturally
corresponding to the algebra A is denoted by P((, ®, MM, V).

Thus, our construction gives the required map.
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Remark 1. 2. In case X is a spectrum of a field K, by the
isomorphism HI(K, “n)'* K*/K,’:n in Remark 1.1, the couples
@, o, (M, ¥ are assigned to the elements a, b modulo K*n,
respectively. So, in this case, the map above gives the

construction of ordinary cyclic algebras over the field K.

Next, we study the case n = 2 in detail. In this case, we have
another method for constructing projective space bundles of rank
2, namely, brojective line bundles, from a pair of 2—-torsion

line bundles as follows: For any 2—-torsion line bundles L and M

®2

with isomorphisms ¢:OXaL and W:QX»MQZ, let E be a direct

summand OXeLeM of the algebra A:=ACL, ), M, ¥)). Let q be
the restriction to E, of the reduced norm of the quaternion
algebra A, which is a quadratic form on E. In other words, the
quadratic form q on E is this: We have three global sections

1/1(1) € IreX, 0.¥%%) ¢ rex, s2aEY)

X
/01> € rX, LV®%) < rx, sZ2aEY))

2

1/%C1) € rX, MY®2) ¢ rx, sZ2aEY),

®2. Put

where ¢ is a natural isomorphism OX—>Ox

q:= 1/t (D-1/6(D-1/9(1).
Then, we obtain a quadratic divisor C of PEY) defined by q,
which is a conic bundle over X.

Now, we locally investigate the bundle C. For the
2—torsion line bundles L. and M, we take an affine open
neighborhood U of an arbitrary point in X over which both L and
M are trivial, as before. Then, we get an isomorphism

v

E U= OU'1/1$OU°1/QGOU-1/m o OUGOUGOU ,

Furthermore, we have an expression of the restriction of q:
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1
Uy = 1/1(1)—1/43(1)—1/‘}'(1),U x> ( -a b }

via the isomorphism EY U= OUQOUQOU above, which is nothing but
the restriction of the reduced norm of the quaternion algebra

A U - Since both a and b are units in rd, dU)’ the quadratic
form ¢ has maximal rank at every point in U: In fact, q is the
restriction of a reduced norm of a quaternion algebra, so it is
non—degenerate everywhere. Hence, the conic bﬁndle C over X has
no singular fibres. Using an étale cover of X associated to a
2-torsion line bundle, for example, L, we see that C is locally
trivial over X for the étale topology, namely, a projective line
bundle over X.

{Thus, we obtain a projective line bundle C from a pair of
these couples (L, ® and (M, ¥, which is denoted by CdL, ),
M, ¥). The'vector bundle E used above and the quadratic form
g on E defining C are denoted by E((, ®, M, ¥)) and q((L, @,
(M, ¥)), respectively.

Since C((, ®, M, ¥) is naturally corresponding to the
quaternion algebra AC, @, M, ¥)) (see, e.g8., (1, 84), or
(14, XIV, 82, Remark 3, p207)), the bundles CCC(L, &, M, ¥))
and PCCL, @, (M, ¥)) are isomorphic over X, and our projective

line bundles are explicitly given in terms of conic bundles.

Therefore, we get the diagram (FD) in the introduction, which is

called the fuﬁdamental diagram for X.

To conclude this section, we define Hilbert symbols over the

base X

Definition 1. 3. For any elements a and b of HI(X, un), the
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value dn(A(a, b))=dn(P(a, b)) is called the Hilbert Symbol of a

and b over X, and denoted by {a, b}n .

Remark 1. 4. Our Hilbert Symbols over X coincides with the

classical one when X is a spectrum of a field.

The next proposition follows directly from the exactness of the

diagram (FD) and Definition 1.3 above.

Proposition 1.5. For any elements a, b of HI(X, nn), the

following conditions are equivalent:

(1> PCa,b) =~ PWY), or equivalently, ACa, b) =~ &24d (V) for some
vector bundle V over X; |

(2 {a, b}n = 0.

Under the equivalent conditions above, we say that P, M), or

AL, M) comes from the vector bundle V.
82. Commutativity of the Fundamental Diagram

In this section, we shall show the commutativity of the

fundamental diagram (FD).

Lemma 2. 1. If X is a spectrum of a field, then the fundaméntal

diagram (FD) for X is commutative.
Proof. See, e.g., (14, XIV, 82, Proposition 5).

Lemma 2. 2. LLet K be the function field of a general- X. Then,

the natural map
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2 , 2
H™ X, G - H® (K, G’

is injective.
proof. See (8, III, (2.22)),

Corollary 2. 3. For any elements a, a’, b and b’ of Hl(X, nn),

the following conditions are equivalent:

(1> PdCa, b> and P(a’, b’) are birational over X, or
equivalently, ACa, b) and A(a’, b’) are isomorphic at the
generic point of X;

2 {a, b}n = {a’, b’}n.
Now, we have

Theorem 2. 4. The fundamental diagram (FD) for a general_X is

commutative.
Proof. Combine Lemmas 2.1 and 2.2 (see (7, Theorem 2.6)).
From the above theorem, we get the following cqrollaries‘

Corollary 2.5. For any elements a, b and ¢ of HI(X, un), we
have: .

(a) {a®b, c}n = {a, c}n+{b. C}n :

(b> {a, b@c}n = {a, b} _+{a, c}n :

n
(¢ Aa, b}n+{b, a}n = 0.

Proof. The required results follow directly from the fact that

the cup—-product U is bilinear and alternating.



Corollary 2.6. For any elements a and b of/Hl(X, nn), the

following conditions are equivalent:

(1> The projective space bundle P(a, b), or equivalently, the

Azumaya algebra ACa, b) comes from some vector bundle over

X

(2) The cup-product aub in H2(X, un) is equal to cX(Z) for some

line bundle Z over X;

3D {a, b}n = 0.

Proof. Combine Proposition 1.5 and Theorem 2. 4.

Under the equivalent conditions above, we say that the

cup-product aub comes from the line bundle Z over X.

Therefore, in terms of the cup—-product of torsion line bundles,

we can compute the obstruction for our projective space bundle,

or our Azumaya algebra to come from some vector bundle.

Corollary 2.7. For any elements a, b and ¢ of Hl(X, un), we

have:

ad I1f two of three P(a, ¢), P(, ¢) and P(a®b, ¢) come from

vector bundles, then so does the other;

(b> If two of three P(a, b), P(a, ¢) and P(a, b®c) come from

vector bundles, then so does the other;

(¢c) The bundle PCa, b) comes from vector bundle if and only if

so does P, ad.

Proof. Combine Corollaries 2.5 and 2. 6.

Definition 2. 8. For elements a, b and ¢ of HI(X, un), we define

the compogsition of the pairs (a,

¢) and (b, ¢) to be (a®b, c¢) in



HI(X, un)le(X, un). In this case, we define the compogition of.
the pbrojective space bundles P(a, ¢) and P, ¢) to be P(a®b, cJ.
Furthermore, if P(a, ¢) and P(b, ¢) come from vector bundles Va
and V, , respectively, then we define the composition of the
pvector bundles Va and Vb to be a vector bundle Vab modulo line
bundles over X such that P(a®b, c¢) comes from Vab . By virtue

of Corollary 2.7, the existence of the composition Vab is
guaranteed. But, one should note that, for isomorphism classes
of projective space bundles, or vector bundles, the composition
of them are not well—defined since it depends upon the choice of
the pairs (a, ¢> and (b, ¢). So, we shall specify the pairs of
the elements of Hl(X,iun) whenever we use this terhinology.
Similarly, we define the composition of the pairs (a, bd) and

(a, ¢) to be {(a, b®c) in Hl(X, un)xHI(X, un), and so on.

Finally, we give a sufficient condition for Br(X) = Br® (X)) (see
(8, 1V, (2.9)), where Br’ (X) is the cohomological Brauer group
2
H® X, Gm)tor of X.
Corollary 2.9. If the map
1 1 2
H™ X, un)GH X, un) - H” X, un)
defined by the cup—product U is surjective, then the set
. 1
{ {a, b}n | a, b € H* (X, nn) }
generates the n—torsion part Br’(X)n . In particular, we have

BrX>_ = Br* & _.
n n
Proof. See Theorem 2.4 (see (7, Corollary 2.12).

Remark 2.10. For example, abelian varieties defined over an

algebraically closed field satisfy the assumption of Corollary

10
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2.9 above.

Remark 2. 11. The rank of our projective space bundles P{(a, b)
whose obstructions generate Br(X)n is equal to the order n of
the group Br(X)n , so that it does not depend on the dimension

of X (compare (3), (4, Theorem 1) and (6, pp235-236, A2)).
€3. Rational Sections and Vecctor Bundles

In this section, we study the relation between rational sections
of conic bundles C and vector bundles V such that C comes from V.

So, we always consider the case n = 2.

Lemma 3.1. Let P be a projective line bundle over X with

projection xw, and let oL be the relative canonical bundle of .

Then we have:

(ad P is isomorphic to a quadratic divisor C of PEY) for some
vector bundle E of rank 3 over X, which is a conic bundle
over X; 7

(b> Any such E as above 1is uniquely determined by P, and

isomorphic to the vector bundlev( I*(mnv))v modulo line

bundles over X.
Proof. See (7, Lemma 3. 3).

Lemma 3.2. Let K be the function field of X, let C be a
projective line bundle over X,vand let ¢ be a quadratic form
over X which defines C as a conic bundle C‘as in Lemma 3. 1.
Then,rthe following conditions are equivalent:

(1> C comes from a vector bundle over X;

11
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(2> C has a rational section over X;

(3) q has a K-rational solution at the generic point Spec K of

X.

proof. See (13) and (14, X, &6, Exercise 1).

Now, we have

Theorem 3.3. Let C be a projective line bundle over X, and let

E be a vector bundle of rank 3 over X such that C is isomorphic

to a quadratic divisor of PEY) as in Lemma 3.1. Assume that C

has a rational section over X, and identify C with the divisor

of P(EY) above.

(a) For a ratioﬁal section of C over X, there exist a unique
line bundle S over X and a unique homomorhism s:S -» E
satisfying the following conditions:

(1> s is injective as a homomorphism of sheaves;

(2> The zero locus (s)0 of s as a homomorphism of vector
bundles has codimension at least 2 in X;

(3> The cokernel V0 of s is a torsion—free sheaf of rank 2;

(4> The rational map from X = PSY) to P(EY) defined by s
gives a section of C defined over the complement
X-(s)y , which coincides with the given rational
section of C over X.

Thus, we have an exact sequence over X

s
0 - S -~ E - V0 - 0.
(b) Let V be the double dual of the torsion—free sheaf VO‘

Then, V is a vector bundle of rank 2 over X and the bundle

C comes from V.

12
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Proof. See (7, Theorem 3.6).

Example 3. 4. Let L, L’ and M be 2—torsion line bundles over X

with isomorphisms ¢:OXeL®2, Q’:OxaL’az and W:OX*Maz

®2

. and_let»t
be a natural isomorphism OX*OX Then, the vector bundle
OX$L®L’ is the compositioﬁ of the vector bundles OXGL and OXGL’

defined by the pairs ((OX, ), (L, ®) and (O O, @&, ¢’

XI
(see (7, Example 3.7 and Proposition 3. 8)).

84. Composition of Vector Bundles

We first study geometric meaning of the composition of our
projective line bundles (see Definition 2.8). In this section,

we always consider the case n = 2.

Proposition 4.1, Let L, L and M be 2—torsion line bundles over

®2, 9’ :04>L’ ®2 and ¥:0,oM%%.  Let C

X with isomorphisms ¢:OX*L
and C’ be the projective line bundles C((, @, M, ¥)) and
carr, >, M, ¥)), let C” be the composition of C and C', and
let E, E', and E” be the vector budles EC(L, &, M, ¥, ECL’,
'), (M, ¥)), and ECL”, ®">, M, ¥)), respectively, where we
put (L”, ®"):= (L, ®H+A’, @) in HI(X, o). Let (X:Y:Z),
X’:Y*:Z’), and (X":Y”ﬁZ”) be the global coordinates of E =
OXQLGM, E’= OXQL’GM, and E”= OxeL”eM, respectively. Let ¢ be
the morphism from P(E') x,P(E'") to P(E"Y) defined by

PCX:Y:ZOxX? 1Y :Z2°))=(X":¥":Z") with

X":= XeX’ +¥ l.zez’
Y":= YeY’
7" 1= XeZ’ +ZeX’.

13
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Then we have:

(a) The image of the restriction ¢ C x.C* is dense in C”;
X

() The base locus of ¢ C x.C’ is contained in the fibre
X .
product H XXH’, where H, H’ are tautological divisors of
P(EV), PE'Y) defined by the natural inclusions

OxeM - E, OyeM -» E’,

X
respectively.

Using Proposition 4.1, one can define the composition of the
maps s in Theorem 3.3 (a) in the obvious way, by which we define
the composition of rational sections of our projective line

bundles.

Theorem 4.2, .With the same notations as above, assume that the

bundles C and C’ have rational sections over X and the eiement

M, ¥ in H' (X, uy) is not zero (see Example 3.4). Let

s=(X:Y:2), s'=X*:Y’:Z’> be the maps S » E, S’ - E’

corresponding to the rational sections as in Theorem 3.3 (a),

respectively, let s” be the composition of s and s’, and let V,

V’ and V" be the double dual of the cokerﬁels of s, s’ and s”,

respectively. Then:

(ad (s”)0 c (s)OU(s’)OU((Y)On(Y’)O );

b> (s”)0 is a proper subset of X;

(¢) s” defines a rational map from X = P(S'®S’") to PE"Y),
which gives a rational section of C” over X;

d> If (s")0 has codimension at least 2 in X, then V" is a
vector bundle of rank 2 over X, and the bundle C” comes
from V”. In other words, the vector bundle V” is the

composition of V and V' defined by the pairs (L, o,

14
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M, ¥>)) and (L, ®*>, M, ¥,
Proof. See (7, Theorem 4. 4).

Definition 4.3. By virtue of Theorem 4.2 (c) above, from
rational sections of the bundles C and C' over X, we obtain a
rational section of C” over X, which is called the composition
of the rational sections of C and C’° over X (defined by the

pairs (L, ®, (M, ¥) and (L’°, @O, (M, ¥)I).

Therefore, using rational sections, we can construct the
composition of vector bundles under the conditions above, which

will play a key role in Section 7.
€5. Cycle Map on a Product of Two Elliptic Curves

In this section, we investigate the cycle map Cx from Pic{X) to

H2

X, un) when the base X is a product of two elliptic curves
defined over an algebraically closed field. From now on, we
shall assume that the ground field k is algebraically closed.

For any elliptic curve E, we always fix the unity of group

. A
structure of E. By the isomorphism from E to its dual E defined

by the point of unity, we sometimes identify them.

Lemma 5. 1. Let X be a product of elliptic curves El and E2’ and

A A
let R be the group Hom(El, E2) = Hom(Ez, El) of correspondences

between E1 and E2. " Then, we have the following commutative

diagram

15
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0 0
(o] ®C
. E,""Ey .
Pic (Ee@Pic (Ey) > H2(E1, un)eHz(Ez, )
) 1 c 3
X 2
Pic (XD > HZ X, u)
3 ' 3
R 3 nl yeHl g )
1°* un o ﬂn
kR 3
0 0

with exact rows, where we denote by ¥ the map induced by the

cycle map Cx - Moreover, the top horizontal map is surjective.

Proof. See, e.g., (7, Lemma 5.5).

Now, looking at the meaning of the induced map Y above, we find

that ¥ is composed of the following:

A 1,0 1
EpD > Homg, ,H Ep, u), H By, u))

R = Hom(Ez, 1

A
1 1
- HomTUnZ(H (El, un), “n)@Z/nZH (Ez, un)

- chEl, un)ez/nzﬂl

(E,, n,
where one should note that, by the en—pairing over E1 (see,
e.g., (8, V, (2.4 (£)), there is a canonical isomorphism of

Z/nZ-modules

1.4 oyl
Homz/nZ(H (El’ un), un) ~ H (El’ nn).

Proposition 5.2, Let X be a product of elliptic curves El‘and

E2 with i—th projection P let L and M be n—torsion line
bundles over X, written

oo X * - X *

L =p; Lyepy Ly, M=rp Mepry, My,
with n—torsion line bundles Li , Mi over Ei , i=1, 2, and let v
be as in Lemma 5. 1. Then:
(a) LUM = (LIUMI)e(LZUMz)e(LIQszMleLz)

16
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via the decomposition

2 _ 2 2 1 1
H® X, un)— H (El’ un)eH (E2. un)eH (El’ un)@H (E2, un);
A
(b) Assume that Ll’ M1 are a basis for Hl(El, un), and let Pl’

Ql be the points of E1 corresponding to Ll’ Ml’

A
respectively. For a homomorphism ¢:E2 - E1 such that

$(P1) = Lo, 6(@1) = M,
we have
Y@ = L eM,~M, el

in H! (E

1
1° un)QH (E2. un).
Proof. (a) This is obvious.
(b) From the meaning of the map ¥, one can compute the value

. 1 1
() in H (El, un)®H (E2, un).

Remark 5. 3. Using Proposition 5.2, one can easily compute the
relations on the set of generators of the group Br(X)n of a

product X of two elliptic curves (see Example 8. 4).

Theorem 5. 4. With the same notations above, the following

conditions are equivalent:

(1> The projective space bundle P(., M), or equivalently, the
Azumaya algebra A(., M) comes from some vector bundle over
X

(2) The elements L eMy-M;®L, in H'(E,, u d@H'(E,, u ) is equal

to v(p) for some correspondence ¢ between E1 and E2;

D {L, M} = 0.
n

Proof. Combine Corollary 2.6, Lemma 5.1 and Proposition 5.2 (a).

17
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Under‘the equivalent conditions above, we say that the element
Llst—Ml&Lz comes from the correspondence ¢ between E1 and E2.
In Section 7, we shall explain the relation between the
correspondences and the vector bundles above.

As an application of Theorem 5.4, we obtain an elementary,
concrete example of projective space bundles which &o not come
from any vector bundles (see also Example 8.4)). Such an
example in the case over the complex number field € has been

given by J.-P. Serre (13, 6.4),.

Example 5.5. With the same notations as above, assume that El
and E2 are not isogenous and LLUM is not zero. Then, it follows
from Theorem 5.4 that the projective space bundle P(L, M) does
not come from any vector bundle. Note that, in case n = 2, P(L,

M) is concretély given in terms of a conic bundle.
€6. Some Properties

In this section,kwe state some properties of our projective
space bundles (and our Azumaya algebras) over an abelian variety.

For proofs, see (7, 86).

Proposition 6.1. Let X be an abelian variety, and let L. and M
be n-torsion line bundles over X. Then the projective space
bundle P(L, M) is homogeneous. In particular, if the bundle
P(L, M) comes from a vector bundle V over X, then V is
homogeneous up to tensoring line bundles over X, namely,

sem£4homogeneous (see (9, (5. 2))).

Proposition 6. 2. With the same notations as above, assume that
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the.projective space bundle P(, M) comes from a vector bundle V

over X. Then the following conditions are equivalent: _

(1> P, M), or equivalently, V ié simple (see (12, I, 4.1.1)0
and (15, 81));

(2) LuM has order n in H2(X, ud.

Propbsition 6. 3. With the same notations as above,‘for an

integer d, the following conditions are equivalent:

(1> P, M), or equivalently, A, M) is a pull-back from an
abelian variety of dimension d;

(2> Both L and M are pull-backs from an abelian variety of

dimension d.

87. Vector Bundles over a Product of Two Elliptic Curves

This section contains the main results of this article. From
now on, we consider only the case n = 2, so the characteristic p
is not 2.

Example 7.1. Let X be an elliptic curve, and let P_ be the
point of X corresponding to the unity of the group X. For any
2-torsion line bundles L and M over X such that the cup-product
LUM is not zero, let P0 and P1 be the points of X corresponding
to them, respectively, where we note that the conditions LUM = O
and P0 # P1 are equivalent.

It follows from Tsen’s theorem that the Hilbert symbol
{L, M}2 is zero. In other word, the projective line bundle C (L,
M) has a rational section over X, and comes from some vector
bundle over X.

We here construct a global section of C(L, M) and the

19



vector bundle over X. One may assume that X is given by the
equation
v2 = xx=1) (x=2 with a2 = 0, 1

in Pz such that P_ is the point at infinity and PO’ P1 have
coordinate (0, 0>, (1, 0), respectively. Let P, be the point of
X with coordinate (, 0). In terms of the group structure of X,
we have that PO+P1 = PA.

Now, for such a pair (L, M), according to the local
investigation of conic bundles over X at Section 1, the

quadratic form q:= q({L, M) on the vector bundle E:= E(, M) is

represented by a matrix

1 N
-(x-1)

at the generic poiht Spec K of X. Clearly, it has a K-rational
solution (1:1:i), with i2 = -1 By the ratio (1:1:i), we embed
a line bundle S:= Oy(-P_> into E as a subbundle; we define a map
s from S to E = OXQLQM by s := (x:e:iet). Then, we find that s
gives a global section of the bundle C(L, M) over X. According
to Theorem 3.3 (b)), with the same notations as there, C(L, M
comes from the cokernel V0 =V of s, where one should note that
(s)0 is empty, in other words, s is an injection of vector

bundles, so its cokernel V0 is already locally free. From the

exact sequence of vector bundles over X

s
0 - S - E - \' - 0,

we find that the vector bundle V is indecomposable, of rank 2,
with the first Chern class Px , where one should note that Px is
the point of X corresponding to the 2-torsion line bundle L&M.
According to M. F. Atiyah (2, 11, Theorem 7}, such a vector
bundle V is characterized by the properties above. In this

article, a vector bundle V over an elliptic curve X is called of
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type Atiyah (determined by a point P of X) if the bundle V is
indecomposable, of rank 2 and degree 1 (whose first Chern class
is represented by the point P). Using the characterization
above, we see that a vector bundle of type Atiyah is
semi—homogeneous (see (2, II, Corollary, p434)), which follows
also from Proposition 6.1. On the other hand, it is well-known
that a vector bundle of type Atiyah is simple (see (2, III, &2,

Lemma 22)), which follows also from Proposition 6. 2.

Now, we study what vector bundle comes to our quaternion algebra.
(or, projective line bundle) obtained from a pair of 2-torsion
line bundles over a product of two elliptic curves.

Let X be a product of elliptic curves E1 and E2. For any
2—torsion line bundles L and M ovér X, there exist 2—torsioh
line bundles L, and M. over Ei , with i=1, 2, such that
L= p"Li+pg Ly, M = by M4p, My,
where Py is the i—th projection from X to Ei , and the tensor
products of line bundles are written additively.

Now, assume that the Hilbert symbol (L, M)2 is zero. It
follows from Theorem 5.4 that the element L1®M2—M1®L2 in HI(EI,
u2)®H1(E2, "2) comes from a correspondence ¢ between E1 and Ez:

y(p) = L1®M2—M1®L2.
Using ¢, we shall consiruct the vector bundle which comes to the
quaternion algebra A, M) (or, projective line bundle Cdd, M.

In order to do this, we use Examples 3.4, 7.1, Theorem 4.2 -
and Proposition 7.2 below. Essentially, we first find a
rational solution of the quadratic form q(L, M) defining C(L, M)
over X, secondly we construct the rational seétion of CCL, M,

and, thirdly we construct the required vector bundle (see (7,

€7).
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Proposition 7. 2. With the same notations as above, let Ni be a
non—trivial 2-torsion line bundle over Ei , i=1, 2. Assume that
the Hilbert symbol {pl*Nl, pz*Nz}2 is equal to zero. Then we
have:

(a) The element leNz in Hl(El, u2)®H1(E2, u2) comes from a
correspondence ¢ between E1 and E2;

() For each index i, if Ni’ is a 2—torsion line bundle over Ei
such that Ni and Ni’ are a basis for Hl(Ei, ”2)’ and Vi is
the vector bundle of type Atiyah over Ei determined by the
point corresponding to the 2—torsion line bundle Ni+Ni’,
then the bundle C(pl*Nl’ pz*Nz) comes from the composition
of Qi*vi and pi*Vi , Wwhere ¢i is the homomorphism from X to

‘Ei defined by ¢, and the compositions above are defined by
the pairs

*
(pl*Nl, Py N1‘+p2*N2) and (pl*Nl’ pl*

Nl’),
(pl*N1+p2*N2’ ’p2*N2) and (pz*Nz’, p2*N2),,
»respehtively; |
(¢c) The composition above is constructed as described in

Theorem 4. 2 (4.
Proof. See (7, Proposition 7.2).
Thus, we have
Theorem 7. 3. Let X be a product of elliptic curves E1 and E2
with i—th projection P; let L. and M be 2—torsion line bundles
over X, written

_ X * _ X *
L =p; Litpg Ly, M =p; M+py M,

with n—torsion line bundles Li’ Mi over Ei , i=1, 2, and let Pi
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be the 2—-torsion point of Ei corresponding to the line bundle

Li+Mi , i=1, 2. Assume that the Hilbert symbol (L, M}2 is equal

to zero, and let Qi be the homomorphism from X to Ei defined by

the correspondence between E1 and E2 which comes to the element

L,@My~M &L, in H'(E,, ny)@H' (Ey, ny). Then, we have:

(a) In case the cup—product LUM is zero, the quaternion algebra
A, M) comes from either OXeL or OXGM; corresponding to |
whether L is non—trivial or not , or whether M is trivial
or not;

(b> In case the cup—product LiUMi is not zero for some index i,
let Vi be the vector bundle of type Atiyah over Ei
determined by Pi . Then, the algebra AL, M) comes from the
pull-back mi*vi ;

(c) In case both cup-products L1UM1 and L2UM2 are zero but the
element L1®M2—M1®L2 is not zero, let Vi’ be the vector
bundle of type Atiyah over Ei determined by a non-zero
2—torsion point other than Pi . Then the algebra A, M
comes from the composition of ¢i*Vi’ and pi*Vi’, which is
constructed as in Proposition 7. 2. In this case, AL, M

is uniquely determined by the value L1®M2—M1®L2.

Corollary 7.4. With the same notations as above, if the Hilbert

symbol (L, M}2 is equal to zero, then the quaternion élgebrak

A, M) comes from one of the vector bundles of the following

three types:

(1> A direct sum OXQL or QXQM;

(2> A pull-back of a vector bundle of type Atiyah o?er either
E1 or E2 by a morphism defined by LUM, which is
semi—homogeneous and simple;

(3 A composition of vector bundles of type (2) above, which is
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semi—homogeneous and simple.
proof. See Propositions 6.1, 6.2 and Theorem 7. 3.

Remark 7.5, For a vector bundle of type (3) in Corollary 7.4
above, we have both examples, such that the bundle is a
pull-back of a vector bundle over some elliptic curve, and such
that the bundle is not any pull-back of any vector bundle over

any elliptic curve (see Example 8.5).
€8. Examples

Throughout this section, we consider the case n = 2, so that the
characteristic p is not 2. We shall discuss about some examples
over a product of two elliptic curves E given b& the equation

in Pz,

First, we fix some notations and state some elementrary
facts on the elliptic curve E. Let P_ be the point of E at
infinity. Considering P_ as a unity, define a group structure
on E. Via the isomorphism from E to its dual defined by P_, we
sometimes identify them. Let P—l’ PO and P1 be the points of E
with coordinates (-1, 0>, (0, 0) and (1, 0), respectively. Let
L and M be the 2-torsion line bundles over E corresponding to
the points P0 and Pl’ respectively, which form a basis for- the
group HI(E, “2)‘

Computing the Hasse invariant of E, we have .

Lemma 8.1. E is supersingular if and only if p = 3 modulo 4.
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Let R be the ring of endomorphisms of E, and let ¢ be the

endomorphism of E defined by t(x, y):= (-x, iy), with i2 = -1,
It clearly follows that

t2+1 = o,

TPy =L, TP = LM, | ¢))
Moreover, we have
Lemma 8. 2. If E is not supersingular, then R is freely

generated by 1 and ¢t as a Z-module.

Proof. See, e.g., (5, IV, (4.19) and (11, IV, 822, Second

example).

If, -on the contrary, E {s supersingular, then R is a maximal
order of the quaternion division algebra R@ZQ over Q) (see, e.8g.,
(loc. cit.)). To get a typical example of funny phenomenon in
this case, we assume p = 3 (see Lemma 8.1>. Let a be the linear
transformation n of Pz defined by n(x, y):? (x+l; y). Then, =n
is an endomorphism of E, and satisfies

nZ+n+1 = 0.
It clearly follows that

>=L. ‘ (2)

A — A
n(PO)—L+M, | n(Pl

Remark 8.3. Furthermore, one can easily show that R is freely

generated by 1, t, n and tn as a Z-module.

Now, let X be a product of elliptic curves E1:= E and E2:= E

with i—th projection P,

Example 8.4 (for Remark 5.9). It can be shown that: If E is
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supersingular, then the 2-torsion part Br(X)2 is zero;
Otherwise, it is a Z/2Z-module of rank 2 (see, e.g., (7,
Corollary 5.7j).‘ We assume that E is not supersingular.
Here, we shall find a free generator of Br(X)2 over Z/27.

By virtue of Lemmas 5.1 and 8.2, we see that Br(X)2 is
isomorphic to a Z/2Z-module generated by LeL, LeM, M®L and MeM
with relations p(1) = (1> = 0. Using Proposition 5.2 (b) and
the equalities (1), we have

® L, by M, = 0, "M, b, L), (3

o, "L, p, L, = 0. 4
Thus, Br(X)zis freely generated by (pl*L, pz*M)2 = {pl*M, pz*L)2
and {pl*M, pz*M}2 over Z/27Z. According to Corollary 2.3, the
equality (3) means that the quaternion algebra A(pl*L, pz*M) and
A(pl*M, pz*L) are isonmorphic at the generic point of X.
According to Proposition 1.5, the equality (4) means that the
algebra A(pl*L, pz*L) comes from some vector bundle over X. We
note that the algebras At "L, py M), AG,*M, p, L) and Al *M,

pz*M) do not come from any vector bundles over X.

Example 8.5 (for Remark 7.5). According to Theorem 7.3, the
quaternion algebra A(pl*L. pz*L) comes from a vector bundle of
type (3) in Corollary 7.4. We shall show that: In case p = 3,
A(pl*L, pz*L) comes from a pull-back of a vector bundle over an
elliptic curve; In case p = (0, A(pl*L,kpz*L) does not come from
any pull—-back of any vector bundle over any elliptic curve.

First, assume p = 3. Let ¥ be the endomorphism t+n+tn of
E, and define a homomorphism ¥:X » E to be the composition of ¥
X 1¢'with the group law of E. Using the equalities (1) and
(2), we find

A @M, M = A(pl*L, *Ly.

Po
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Acéording to Example 7.1, AC(L+M, M) comes from a vector bundle
V3 over E which is of type Atiyah determined by the point PO.

Thus, our bundle A(pl*L, *L) comes from the pull-back W*V

Po
Next, assume p = 0. In order to prove our claim, by

3¢

Proposition 6.3, we have only to show that both line bundles
pl*L and p2*L are not pull-backs of any line bundles over any
elliptic curve. In this case, we may assume that k is the
complex number field {, and E is given by

E = cl/r, r=z-leZ-i,
with i2 = -1 (see, e.g., (b, IV, (4.20.1))), so that

X = ¢2/r x r.
Identifying X with its dual, the line bundles p,"L and p,'L |
correspond to the vectors ( l%i, 0 ) and ( 0, l%i ) of €2 modulo
r)x r, respectively. Now, assume that both line bundles are
pull-backs of some line bundles over an elliptic curve. Then,
taking dual, there should exist a 1—-dimensional vector subspace
of €2 which contains both ( l%i, 0 ) and ( 0, l%i ) modulo I x F.

Therefore, we have
1—+—1—+a

b
2
det . = 0
1+
C —2'—+d
for some elements a, b, ¢ and d of TI. It follows that the
complex number 1;1 is integral over ' = Z(i). This contradicts

the fact that the ring Z(i) of Gaussian integers is integrally
closed in its quotient field QCi). Hence, our algebra

A(pl*L, pz*L) does not come from any pull-back.

Finally, we refer to a rational solution of a quadratic form
over the function field K of X. Chasing the construction of the
vector bundles at Section 7, one can find a K-rational solution

of all the quadratic form q(LL, M) with 2-torsion line bundles L
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and M over X.

Example 8. 6. Let g be the quadratic form q(pl*L, pz*L).
According to the local investigation of conic bundles at Section

1, @ is represented by the matrix

(L

at the generic point Spec K of X, where (xi, yi) is the affine
coordinate of Ei in Pz, with i = 1, 2. The quadratic form ¢
defines the projective line bundle C(pl*L, pz*L), which is of
type (3) in Corollary 7.4. So, chasing the construction of

vector bundles of this type, we find a solution (X:Y:Z) of gq,

where
L 1-i 2 i 2 1+i, 2 _ i
X:= '2"( X1 xot 5V, ) + "1( =1 (x;7+Dxg 2”1”2)
L= 1+ ; -1y - i -
Y:= i yl(x1+1)(x2 1 2y2x1(x1 i)
= l-if 2 i 2 "_1(1+__i 241y — 4 ),
:= =3 ("1 Xot 5Yy ) M 1"+ DXy~ 5v1¥5)s
with i2 = -1.
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