

Title	Buchsbaum Rings and Cone Singularities
Author(s)	MIYAZAKI, Chikashi
Citation	数理解析研究所講究録 (1987), 621: 60-72
Issue Date	1987-04
URL	http://hdl.handle.net/2433/99898
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

Buchsbaum Rings and Cone Singularities

官崎 誓 (Chikashi MIYAZAKI) (早大理工)

Let S=k (X_0,\ldots,X_N) be the polynomial ring. Let us regard the polynomial ring S as a graded ring in which the degree of X_j is one for every $0 \le j \le N$. Let m=e S_d . Let M be a finitely generated graded S-module of dimension n+1. Then M is called a Buchsbaum S-module (resp. a quasi-Buchsbaum S-module) if M_m is a Buchsbaum S_m -module (resp. a quasi-Buchsbaum S_m -module). That is, M is a quasi-Buchsbaum module if and only if $mH_m^i(M)=0$ for any $0 \le i \le n$. On the other hand, M is a Buchsbaum module if and only if the difference l $(M/qM)-e_q(M)$ is an invariant for any homogeneous parameter ideal q $(\subseteq m)$ for M, where l, respectively e, denotes length, respectively multiplicity of q.

In this paper, we search for the condition that a graded S-module M is a Buchsbaum module. In particular, our purpose is to clarify the difference between Buchsbaum property and quasi-Buchsbaum property.

For this, we introduce the notion of quasi-Buchsbaum modules of type r in Section 1. Then we give a criterion (Theorem 1.7) for it, which explicitly describes "Surjectivity Criterion" through spectral sequence. In Corollary 1.10, we give a sufficient condition that M is Buchsbaum.

only by the vanishing of its local cohomologies. This generalizes a result of Goto-Watanabe (4, Proposition 3.1). Also, the theorem enables us to calculate the length of $\operatorname{Ext}^{n+1}_S(k,M)$ in Corollary 1.12.

In Section 2, we investigate the divisors of Segre products. In particular, we construct very concrete examples of quasi-Buchsbaum but not Buchsbaum rings.

§1. Quasi-Buchsbaum modules of type r

Definition 1.1. M is a quasi-Buchsbaum module of type r if, for every homogeneous system f_1, \ldots, f_{r-1} of parameters, $M/(f_1, \ldots, f_k)M$ is a quasi-Buchsbaum module for every $k \le r-1$.

Remark 1.2. In the above definition, we have only to take elements of degree one as homogeneous systems of parameters, by Goto-Suzuki (6, Theorem 1.9) or Suzuki (19, Theorem 3.6).

Remark 1.3. M is a quasi-Buchsbaum module of type n+1 if and only if M is a Buchsbaum module, by Stückrad-Vogel (14).

Let U_i be an open set $D_+(X_i)$ in Proj S for $0 \le i \le N$. Then $U = \{U_i\}_{0 \le i \le N}$ is an open covering of Proj S. Let us consider a Zech complex C' = C'(U; M), where M is the sheaf associated to the graded S-module M on Proj S. Then we define a complex

L'=(0 \longrightarrow M $\stackrel{\epsilon}{\longrightarrow}$ C'(-1)), where ϵ is a natural map. (e.g. See Godement (2).)

Let K. be the Koszul complex associated to $\langle X_0, \ldots, X_N \rangle$, that is, $K_{p} = \wedge^{d} \begin{pmatrix} N \\ \oplus Ae_{k} \end{pmatrix} = \begin{pmatrix} \oplus Ae_{i} \wedge \dots \wedge e_{i} \\ \otimes e \end{pmatrix}, \text{ where } \langle e_{0}, \dots, e_{N} \rangle \text{ is a}$ free basis.

In this way, we have a double complex K' = Hom(K., L'). let us consider two "stupid" filtrations, that is,

$$K_t = \sum_{p \ge t} K^{p,q}$$
 and $K_t = \sum_{q \ge t} K^{p,q}$.

As usual, we get the spectral sequence for each filtered complex:

$$E_1^{p,q} = \text{Ker d}^{-p,q}/\text{Im d}^{-p,q-1}$$

$$H^{p+q}(K^{\cdot \cdot})$$

Under the above conditions, we have the Lemma 1.4. following things.

$$(1) \quad E_1^{p, q} = \bigwedge^p \left(\underset{k=0}{\overset{N}{\oplus}} \operatorname{H}_{\mathfrak{m}}^q(M) e_k^* \right) ,$$

$$k=0 \quad \text{where } \langle e_0^{}, \dots, e_N^{} \rangle \text{ is the dual basis of } \langle e_0, \dots, e_N^{} \rangle, \text{ and}$$

$$(2) \quad E_1^{p, q} = \begin{cases} \operatorname{Ext}_S^p(k, M) & \text{if } q=0 \\ 0 & \text{otherwise.} \end{cases}$$
This implies that $\operatorname{H}^{p+q}(K^{\cdot, \cdot}) = \operatorname{Ext}_S^{p+q}(k, M).$

From now on we will treat the first filtration.

write $E_r^{p,q}$ for $E_r^{p,q}$.

Lemma 1.5. The spectral sequence $\{E_r^{p,q}\}$ does not depend on the choice of coordinates $< X_0, \dots, X_N >$.

Now then we will study the relation between the spectral sequence and Buchsbaum property.

Proposition 1.6. Notations being above, the following conditions are equivalent.

- M is a quasi-Buchsbaum S-module.
- (b) $d_1^{p,q}: E_1^{p,q} \longrightarrow E_1^{p+1,q}$ is a zero map for $q \le n$. (c) $d_1^{0,q}: E_1^{0,q} \longrightarrow E_1^{1,q}$ is a zero map for $q \le n$.

Proof. By (1.4.1.), $E_1^{p,q} = A^p (\bigoplus_{k=0}^{N} H_{\mathfrak{m}}^q(M) e_k^*)$. From the construction of the double complex K., we see that

 $d_1^{p,q}(e_{i_1}^* \wedge ... \wedge e_{i_p}^*) = \sum_{j=0}^{N} X_j e_{j}^* \wedge e_{i_1}^* \wedge ... \wedge e_{i_p}^*$. Thus the assertion follows from the definition of quasi-Buchsbaum module.

Suppose that M is a quasi-Buchsbaum module and that every subset I of $\{X_0, \ldots, X_N\}$ such that #I=n+1 makes a system of Setting $\overline{M}=M/X_jM$, we have the following parameters of M. exact sequence:

 $0 \longrightarrow (0:X_j)_M \longrightarrow M \xrightarrow{\cdot X_j} M \longrightarrow \overline{M} \longrightarrow 0 \ .$ Since $H^q_\mathfrak{m}((0:X_j)_M)=0$ for $q\geq 1$ and M is a quasi-Buchsbaum module, we have the following short exact sequence:

 $0 \longrightarrow H^{q-1}_{\mathfrak{m}}(M) \longrightarrow H^{q-1}_{\mathfrak{m}}(\overline{M}) \longrightarrow H^{q}_{\mathfrak{m}}(M) \longrightarrow 0 \quad .$ for $1 \leq q \leq n$. Thus we have the following commutative diagram with exact raws:

$$0 \longrightarrow H_{\mathfrak{m}}^{q-1}(M) \longrightarrow H_{\mathfrak{m}}^{q-1}(\overline{M}) \xrightarrow{\alpha} H_{\mathfrak{m}}^{q}(M) \longrightarrow 0$$

$$(1.7.1) \qquad \phi \qquad (1) \qquad \overline{\psi} \qquad (2) \qquad \phi \qquad \qquad 0$$

$$0 \longrightarrow H_{\mathfrak{m}}^{q-1}(M) \xrightarrow{\beta} H_{\mathfrak{m}}^{q-1}(\overline{M}) \longrightarrow H_{\mathfrak{m}}^{q}(M) \longrightarrow 0$$

for $1 \le q \le n$, where ϕ , ϕ and $\overline{\psi}$ are multiplication maps $\cdot X_i$'s. Since M is a quasi-Buchsbaum module, ϕ and ϕ are zero maps. By snake lemma, we get a graded S-homomorphism of degree 2 $\psi: H^q_\mathfrak{m}(M) \longrightarrow H^{q-1}_\mathfrak{m}(M)$ such that $\psi \cdot \alpha = \beta \cdot \overline{\psi}$. Let us write $(X_i \wedge X_j)$ for this map ψ . Since $\psi = 0$ is equivalent $\overline{\psi} = 0$, we see that \overline{M} is a quasi-Buchsbaum module if and only if $(X_i \wedge X_j)$ is a zero map for any i. In other words, M is a quasi-Buchsbaum module of type 2 if and only if and only if $(X_i \wedge X_j)$ are zero map for any i and j.

Comtinuing the similar steps, we have the following theorem.

Theorem 1.7. Let S be the polynomial ring $k(X_0, \ldots, X_N)$.

Let M be a finitely generated graded S-module with dimension n+1. Suppose that M is a quasi-Buchsbaum module of type r-1. Then

$$(X_{1}) = (X_{1}, \dots, X_{1}) : H_{\mathfrak{m}}^{\mathfrak{q}}(M) \longrightarrow H_{\mathfrak{m}}^{\mathfrak{q}-r+1}(M)$$

is well-defined.

Furthermore, M is a quasi-Buchsbaum module of type r if and only if $(X_{\bar{1}})$ defined above is a zero map for any I.

Now there still remains to link between the spectral sequence $\{E_r^{p,\,q}\}$ and the maps (X_I) 's constructed above.

Lemma 1.8. Let M be a quasi-Buchsbaum graded S-module of type r-1 and with dimension n+1. Then we have

- (1) $E_r^{p,q} = \wedge^p (\stackrel{N}{\text{e}} H_{\mathfrak{m}}^q(M) e_k^*)$ for any $q \neq n+1$.

 By (1), we can write $(d_r^{p,q})_{J,K} : H_{\mathfrak{m}}^q(M) \xrightarrow{} H_{\mathfrak{m}}^{q-r+1}(M)$ for the map from e_K^* -component to $e_J^* \wedge e_K^*$ -component of the map $d_r^{p,q}$.

 Then we have
- (2) $(d_r^{p,q})_{J,K} = (-1)^{(r-1)(p+q-r)}(X_J)$, where (X_J) is the map defined in (1.7).

Then we have the following theorem.

Theorem 1.9. Notations being above, the following conditions are equivalent.

(a) M is a quasi-Buchsbaum S-module of type r.

- (b) $d_s^{p,q}: E_s^{p,q} \xrightarrow{} E_s^{p+s,q-s+1}$ is a zero map for $s \le r$ and $q \le n$.
- (c) $d_s^{0,q}: E_s^{0,q} \xrightarrow{} E_s^{s,q-s+1}$ is a zero map for $s \le r$ and $q \le n$.

Corollary 1.10. Let M be a finitely generated graded S-module. Let us define

 $\mathfrak{S} = \{(i, \ell) \mid 0 \leq i \leq n, \ell \in \mathbb{Z}, H^{i}_{\mathfrak{m}}(M) \neq \emptyset\}.$

Suppose that 5 satisfies the following condition (*).

(*) For any (i, l) and (j, m) of 5, if $i \ge j$, then $i+l+1 \ne j+m$.

Then M is a Buchsbaum module.

Proof. Since $(E_1^{p,q})_{\ell=\bigoplus H_{\mathfrak{m}}^q(M)_{\ell}}$, $(E_1^{p+s,q-s+1})_{\ell+s}=\bigoplus H_{\mathfrak{m}}^{q-s+1}(M)_{\ell+s}$ and $d_s^{p,q}$ is a graded homomorphism of degree s, the assumption gives that $d_s^{p,q}$ is zero for any p, $q(\leq n)$ and s. By Theorem 1.9 (or (1.7)), M is a Buchsbaum module.

Remark 1.11. (1.10) is a generalization of Goto-Watanabe (4) and Schenzel (13, Theorem 3.1) and is "best possible" in the following sense. Unless 6 satisfies (*), we cannot see only by the vanishing of its local cohomologies whether or not M is a Buchsbaum module. In fact, Goto abstractly and systematically constructed such examples in his papers (3, 5). Moreover, his method gives the construction

of quasi-Buchsbaum ring of type r but not of type r+1 by virtue of Evans-Griffith (1).

Now then, let us calculate the length of $\operatorname{Ext}^{n+1}_S(k,M)$ written by r(M). By (1.9), we have the following result.

Corollary 1.12. Suppose that M is a Buchsbaum S-algebra, we have

 $\begin{array}{c} \sum\limits_{j=0}^{n} \binom{N+1}{n+1-j} \text{ dim } H^{j}_{\mathfrak{m}}(M) + 1 \leq r\left(M\right) \leq \sum\limits_{j=0}^{n} \binom{N+1}{n+1-j} \text{ dim } H^{j}_{\mathfrak{m}}(M) + \mu\left(K_{M}\right), \\ \text{where } K_{M} = \operatorname{Ext}_{S}^{N-n}\left(M,S\right) \text{ and } \mu\left(K_{M}\right) \text{ is the minimal number of } \\ \text{generators of } K_{M}. \end{array}$

§2. Divisors on Segre products

Let k be a field. Let X be an arithmetically Cohen-Macaulay subscheme of $\mathbb{P}_k^N=\operatorname{Proj} S$, that is, its affine cone $C(X)=\operatorname{Spec} S/J$ is locally Cohen-Macaulay, where $J=\bigoplus_{\ell\in\mathbb{Z}}\Gamma(\mathscr{F}_{X/\mathbb{P}}(\ell))$. Let V be a subscheme of X such that $0<\dim V=n<\dim X$. Let A be the coordinate ring of V. The following proposition shows that the results of Section 1 can be applied to geometric case.

Proposition 2.1. Under the above conditions, we have $\tau_0^{n+1} \mathbb{R}^{r} (\underset{\ell \in \mathbb{Z}}{\oplus} \mathscr{I}_{V/X}(\ell)) \simeq \tau^{n+1} \mathbb{R}^{r}_{\mathfrak{m}} (A)$

in the derived category $\mathrm{D}_{\mathrm{h}}^{+}(\mathrm{S})$ of complexes bounded below of

graded S-modules.

Example 2.2. Let $X=\mathbb{P}_{k}^{r}\times\mathbb{P}_{k}^{s}$ be Segre embedding in $\mathbb{P}=\mathbb{P}_{k}^{rs+r+s}$ Let V be a divisor of X corresponding to $\mathbb{Q}_{X}(a,b)=\mathbb{P}_{k}^{r}$ (a) \mathbb{Q}_{E}^{r} (b).

- (1) V is an arithmetically Cohen-Macaulay subscheme of P if and only if $a-r \le b \le a+s$.
 - (2) The following things are equivalent.
 - (a) V is an arithmetically Buchsbaum subscheme of P.
 - (b) V is an arithmetically quasi-Buchsbaum subscheme of P.
 - (c) $a-r-1 \le b \le a+s+1$.

Proof. It is given, for example, by Goto-Watanabe (7), Stückrad-Vogel (18) or Schenzel (13, Proposition 5.1). We will prove it, however, because our proof indicates the motivation of the next example.

Now let us assume $a \ge b$. First of all, let us find the numbers $1 \le i < r + s$ and $\ell \in \mathbb{Z}$ satisfying $H^1(\mathcal{F}_{V/X}(\ell)) = 0$. By the way $\mathcal{F}_{V/X}$ is isomorphic to $\mathcal{O}_X(-a,-b)$. By Künneth formula, we have $H^1(\mathcal{F}_{V/X}(\ell)) = 0$ if and only if i = r and $b \le \ell \le a - r - 1$. This shows (1) and "(c) (a)" of (2). It is trivial that (a) implies (b). Thus it still remains to prove that if a - r - 1 > b, then V is not an arithmetically quasi-Buchsbaum subscheme of P.

Let us take $\mathbb{P}^r \times \mathbb{P}^s = \text{Proj } k(X_0, \dots, X_r) \times \text{Proj } k(Y_0, \dots, Y_s)$.

Then we can show

$$\cdot X_j: H^r(0_{\mathbb{P}^r}(\ell-a)) \longrightarrow H^r(0_{\mathbb{P}^r}(\ell+1-a))$$

is surjective and

$$\cdot Y_{j}: H^{0}(\emptyset_{\mathbb{P}^{s}}(\ell-b)) \longrightarrow H^{0}(\emptyset_{\mathbb{P}^{s}}(\ell+1-b))$$

is injective. On the other hand we see

$$\operatorname{H}^{r}(\mathscr{I}_{V/X}(\ell)) \simeq \operatorname{H}^{r}(\mathfrak{O}_{\mathbb{P}^{r}}(\ell-a)) \otimes \operatorname{H}^{0}(\mathfrak{O}_{\mathbb{P}^{S}}(\ell-b)) \ .$$

Hence we have that $\bigoplus_{\ell \in \mathbb{Z}} H^i(\mathcal{F}_{V/X}(\ell))$ is not a k-vector space if a-r-1>b. This gives V is not an arithmetically Buchsbaum subscheme of \mathbb{P} .

In Example 2.2, we need not distinguish Buchsbaum rings from quasi-Buchsbaum rings. However, taking $X=\mathbb{P}_k^\Gamma\times\mathbb{P}_k^\Gamma\times\mathbb{P}_k^\Gamma$, we can find the examples clarifying the difference between them.

Theorem 2.3. Let $X=\mathbb{P}_k^r\times\mathbb{P}_k^r\times\mathbb{P}_k^r$ be Segre embedding in $\mathbb{P}=\mathbb{P}_k^{(r+1)^{3}-1}$. Let V be a divisor of X corresponding to $\mathbb{Q}_X^{(a-r-1,a,a+r+1)}$. Then V is an arithmetically quasi-Buchsbaum subscheme of type r in \mathbb{P} but not an arithmetically quasi-Buchsbaum subscheme of type r+1.

Proof. For simplicity, we will prove only in case r=1. Let <X, Y>×<Z, W>×<U, T> be a coordinate of $X=\mathbb{P}_k^1\times\mathbb{P}_k^1\times\mathbb{P}_k^1$. By Künneth formula, we have

$$H^{2}(\underset{\boldsymbol{\ell}\in\mathbb{Z}}{\oplus}\mathcal{I}_{V/X}(\boldsymbol{\ell})) = k \cdot 1 \otimes k \cdot \frac{1}{Z} \otimes (k \cdot \frac{1}{U^{3}T} + k \cdot \frac{1}{U^{2}T^{2}} + k \cdot \frac{1}{UT^{3}})$$

and

$$H^{1}(\underset{\ell \in \mathbb{Z}}{\oplus} \mathscr{I}_{V/X}(\ell)) = (k \cdot X^{2} + k \cdot XY + k \cdot Y^{2}) \otimes k \cdot 1 \otimes k \cdot \frac{1}{U T}.$$

Then we see

 $(X \otimes Z \otimes U) \wedge (Y \otimes W \otimes T) : H^{2}(\bigoplus_{\ell \in \mathbb{Z}} \mathscr{I}_{V/X}(\ell)) \longrightarrow H^{1}(\bigoplus_{\ell \in \mathbb{Z}} \mathscr{I}_{V/X}(\ell))$

is not zero. By Theorem 1.7, V is not arithmetically quasi-Buchsbaum of type 2. Further, it is easy to show V is arithmetically quasi-Buchsbaum. Thus the assertion is proved.

References

- 1. E. G. Evans and P. Griffith, Local cohomology modules for normal domains, J. London Math. Soc. 19(1979), 277-284.
- 2. R. Godement, Topologie algébrique et theorie des faisceaux, Hermann, Paris (1958).
- 3. S. Goto, On Buchsbaum rings, J. Algebra, 67(1980), 272-279.
- 4. S. Goto, Buchsbaum rings of maximal embedding dimension, J. Algebra, 76(1982), 383-399.
- 5. S. Goto, A note on quasi-Buchsbaum rings, Proc. Amer. Math. Soc. 90(1984) 511-516.
- 6. S. Goto and N. Suzuki, Index of reducibility of parameter ideals in a local ring, J. Algebra, 87(1984), 53-88.
- 7. S. Goto and K.-i. Watanabe, On graded rings I, J. Math. Soc.

Japan, 30(1978), 179-213.

- 8. A. Grothendieck, Local cohomology, Lecture Note in Math.
- 41, Springer-Verlag, Heidelberg (1967).
- 9. R. Hartshorne, Residue and duality, Lecture Note in Math.
- 20, Springer-Verlag, Heidelberg (1966).
- 10. M. Hochster, Topics in the homological theory of modules over commutative rings, Regional Conference Series in Math. 24, Amer. Math. Soc., Providence, 1975.
- 11. M. Hochster, Canonical elements in local cohomology modules and the direct summand conjecture, J. Algebra, 84(1983), 503-553.
- 12. M. Ishida, On the dualizing complexes of normal isolated Du Bois singularities, Preprint.
- 13. P. Schenzel, Application of dualizing complexes to Buchsbaum rings, Advances in Math. 44(1982), 61-77.
- 14. P. Schenzel, Dualisierende Komplexe in der lokalen Algebra und Buchsbaum-Ringe, Lecture Note in Math. 907, Springer-Verlag, Heidelberg (1980).
- 15. J. Stückrad, Über die kohomologische Charakteriseurung von Buchsbaum-Moduln, Math. Nachr. 95(1980), 265-272.
- 16. J. Stückrad and W. Vogel, Eine Verallgemeinerung der Cohen-Macaulay-Ringe und Anwendungen auf ein Problem der Multiplizitätstheorie, J. Math. Kyoto Univ. 13(1973), 513-528.
- 17. J. Stückrad and W. Vogel, Toward a theory of Buchsbaum singularities, Amer. J. Math. 100(1978), 727-746.
- 18. J. Stückrad and W. Vogel, On Segré product and

applications, J. Algebra, 54(1978), 374-389.

- 19. J. Stückrad, P. Schenzel and W. Vogel, Theorie der Buchsbaum-Moduln, Preprint der Sektion Mathematik, No. 23/24 Martin-Luther-Universität, Halle, 1979.
- 20. N. Suzuki, On quasi-Buchsbaum modules an application of theory of FLC-modules, Preprint.
- 21. N. V. Trung, Toward a theory of generalized Cohen-Macaulay modules, Nagoya Math. J, 102(1986), 1-49.
- 22. W. Vogel, A non-zero-divisor characterization of Buchsbaum modules, Michigan Math. J. 28(1981), 147-152.
- 23. K.-i. Watanabe, Some remarks concerning Demazure's construction of normal graded rings, Nagoya Math. J. 83(1981), 203-211.

Department of Mathematics

School of Science and Engineering

Waseda University

3-4-1, Okubo, Shinjuku-ku,

Tokyo, 160 Japan