View metadata, citation and similar papers at core.ac.uk

Kyoto University Research Information Repository

-

P
brought to you by .{ CORE

provided by Kyoto University Research Information Repository

KYOTO UNIVERSITY

Title

Model Inference Incorporating Generalization

Author(s)

ISHIZAKA, Hiroki

Citation

O0o0Oo0obooOgono (1987), 618: 1-15

Issue Date

1987-04

URL

http://hdl.handle.net/2433/99865

Right

Type

Departmental Bulletin Paper

Textversion

publisher

Kyoto University

https://core.ac.uk/display/39231163?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

goooboooogon
0 6180 19870 1-15

Model Inference Incorporating Generalization

Hiroki ISHIZAKA (F3R#%})
IIAS-SIS, FUJITSU LIMITED
140, Miyamoto, Numazu,
Shizuoka 410-03, Japan

ABSTRACT

This paper is concerned with a strategy for inductive inference of logic programs.
In the strategy an inference machine infers the head of a program clause by the least
generalization of positive facts. Hence, the inference machine has only to enumerate
the body of a program clause. This makes the inference machine efficient. However, if
the inference machine computes the least generalization of all positive facts, it may
occur that the atom becomes too general for the head of a program clause. The atoms
which fall in such a situation are said to be “too general”. In the strategy the main
problem is to decide whether the least generalization of positive facts is too general or
not. In this paper we shall formulate this problem and discuss its decidability.

1. Introduction

Model inference is a kind of inductive inference based on the first order
logic. In this péper we shall restrict the domain of model inference to logic
programs. On the domain, an inference machine receives as its input exam-
ples concerning some unknown model which are pairs of a ground atom and
its truth value in the model, then produces as its output a logic program
whose least Herbrand model is equal to the model.

In this paper, we assume that a first order language L with finitely
many predicate and function symbols is given. We shall identify a model
with a subset of the Herbrand base Bj, for L. The pairs of a ground atom in
Br, and its truth value in a model are called facts about the model. The
ground atom which has a truth value ‘True’ is called a positive fact, while the
ground atom which has a truth value ‘False’ is called a negative fact. " From
the point of view of automated program synthesizing by examples, positive

facts mean correct input/output samples, and negative facts mean incorrect
ones. An enumeration of a model M is an effective enumeration of facts
about M: Fi, Fg, . . . where any ground atom in Bj, occurs in a fact F; for
some i>0. The output produced by inference machine is called a conjecture.
We say that a conjecture is too strong iff the conjecture implies some negative
facts, and too weak iff it cannot imply some positive facts.

Ehud Shapiro designed an efficient strategy for the model inference al-
gorithm in 1981 [6]. Although his strategy is essentially based on the enu-
meration technique [1, 3] designed by Gold, it makes enumeration efficient by
taking full advantage of the semantic and syntactic properties of logic. He
constructed the Model Inference System (MIS) [7] based on his strategy. MIS
is expected to be applicable to knowledge acquisition in the knowledge
processing system such as an expert system, automated program synthesizing
or program debugging and so forth.

However, there are some shortcomings in his strategy. For example, in
his strategy, the initial hypothesis is the most general one, and the inference
machine gradually makes it less general. A general hypothesis is only
refuted by negative facts. Therefore in his strategy, negative facts are more
useful than positive facts. But it is very important for inductive inference to
use much information from positive facts. In this paper, on the contrary, we
consider a model inference strategy incorporating Plotkin’s least generaliza-
tion [5] in which information from positive facts is more eagerly utilized. In
order to elaborate the strategy we construct a tentative system GEMINI
(GEneralization aided Model INductive Inference system) based on the
strategy.

In the strategy, the inference machine will infer the head of a program
clause by taking the least generalization from positive facts. Therefore, it
has only to enumerate the body of a program clause. This makes the infer-
ence machine efficient. However, if the inference machine computes the least
generalization of all positive facts, it may occur that the atom to be the head
of a program clause becomes too general. We call such an atom “too
general”. The main problem of our strategy is to decide whether a resultant
atom is too general or not. In the present paper we shall formulate this -
problem and present a sufficient condition for its decidability. The reader is
assumed to be familiar with rudiments of logic programs [4].

2

2. The Least Generalization

First, we recall the notion of the least generalization by Plotkin [5].

A word is a literal or a term. An index is a finite sequence (possibly
empty) of integers: <ijy, i2, ... ,in>. Let W be a word and ¢ be a subword
of W. The index I of t in W is defined inductively as follows:

(1) If W=t then I=<>,

(2) If W=4d(#, t2, . . . ,tm) and the index of ¢t in ¢;, (1=i1=m) is <ig, . . .,
in> then I=<iy, ig, . . ., in>.

For example, in p(a,b,g(X,Y)), the index of X is <3, 1>, the index of b is

<2>. W(I) denotes the subword of W which has an index I.

Let t1 be a subword of W; and f2 be a subword of Wgo. We say that #;

and #g9 (t1 7 tg) are replaceable in Wy and Wy iff:

(1) The index of #; in Wy is equal to the index of t in W9 and

(2) t1 and t9 begin with different function symbols or at least one of them
is a variable. A '

We say Wi is more general than Wy iff W10=W2’for some substitution
o, and we denote it by Wi=Wg. For example, p(a,g(X,Y))= p(a,g(h(W);U)).

~ Two words are compatible iff they are both terms or have the same
predicate symbol and sign.

Definition 1: Let W be a word and K be a set of words. W is the least
generalization of K iff:
(1) For every V.in K, W=V,
(2) 1If for every Vin K, Wy =V, then W1 =W,

Theorem 2 (Plotkin): Every non-empty set has the least generalization
iff any two words in the set are compatible. Furthermore, if W1 and W2 are
compatible then Algorithm 1 terminates and computes the least generaliza-
tion of {Wy, Wa}. '

In our strategy, an inference machine, such as GEMINI, infers the head
of a program clause by computing the least generalization of positive facts.
At each step of inference, there exist only a finite number of known positive
facts. Hence, the above theorem ensures that the inference machine is able
to compute the least generalization of known positive facts.

3

Input: Compatible words W;, Wa.
Output: The least generalization of {Wy, Wg}.
Algorithm:
Vi:=Wy; Voi=Wy;
while there exist #; and 2 replaceable in V1, Vo do;
choose a variable X which does not occur in Vi, Vg;
while there exists I such that Vi(I)=¢1, Vol)=t2 do
Vi:=X; Vo=X
output Vi (=Vy)

Algorithm 1

3. An Outline of the Strategy

In this section we state an outline of our strategy via a simple example
of GEMINI’s behavior. It is an example of synthesizing a logic program for
“append”:

append({X[Y], Z, [X[U]) < append(Y,Z,U).
append([], X, X).

We take a pure-Prolog program as an example of the logic program, and
follow the DEC-10 Prolog in notational conventions [2].

Basically, the way how to modify a current conjecture is as follows. If a
current conjecture is too strong then it should be specialized. GEMINI spe-
cializes a conjecture by adding a condition to the body of a clause in the
conjecture. If a conjecture is too weak, then it is generalized by generalizing
a clause in the conjecture. GEMINI usually replaces the head of a clause by
a least generalization of uncovered positive facts in order to generalize the
clause. When the clause is unit, it is sufficient to replace its head. When
the clause is not unit, however, transformations of variables in the body of
the clause must be considered. In this version, GEMINI generalizes a clause
with a non-empty body if the resultant clause satisfies some conditions.
Although the problem about generalization of the non-unit clause is impor-
tant, the present paper is not concerned with the problem.

4

Figure 1 below shows how GEMINI modifies conjectures. In fact, each
conjecture is a logic program, that is, a set of definite clauses. As a matter
of convenience, the figure only shows alternations of a clause in the
conjecture. |

An enumeration of a model Conjectures

(1) <ap(la,b],lc],[a,b,c]), True>

{ — > (a) ap(la,b],[c],[a,b,cl).
(2) <ap(lal,[],la]), True>

{ —————> (b) ap([aX], Y, [afZ]).
(3) <ap(lal, [b],[a]), False>

V ——— © ezl ¥, (alz]) +~ap(X. ¥, Z).
(4) <ap((1],[],[1]), True>
: —e (d) ap(, [A/X], Y,[AlZ]) «ap(X,Y,Z).

Figure 1: An outline of modifications of conjectures

In the figure, first, a positive fact ap({a,b], [c], [a,b,c]) is given. If a
current conjecture cannot imply some positive facts then GEMINI modifies
the conjecture by generalizing it. At this stage since the conjecture is not
yet produced, GEMINI simply returns the received positive fact intact as its
conjecture. |

At the next stage, a positive fact ap(fal,[],[a]) is given and the current
conjecture (a) cannot imply it. Then GEMINI returns ap([afX], Y, [afZ]) the
least generalization of (a) and the positive fact as its conjecture.

Next, a negative fact ap(la, [b], [a])is given and the current conjecture
(b) implies it. In such a case, GEMINI usually adds an atom to the body of
a clause in the conjecture in order to specialize the conjecture. In fact,
GEMINI executes this operation by enumerating bodies and searching for an
appropriate one. |

Again, a positive fact ap([l 1,[1,[1]) is given, and the current conjecture
(c) cannot imply it. In this case, GEMINI replaces the head of a clause by
the least generalization of the fact and the head. Thus we will obtain the
intended program clause for “append”.

GEMINI basically modifies a conjecture in the above way. Although .
Figure 1 shows a successful example, GEMINI may be in trouble in some
cases. In the following section, we shall present such an example and point
out the main problem in our strategy.

4. A Problem in the Strategy

Figure 2 below shows a failure example of a modification of a conjecture.

An enumeration of a model Conjectures

(1) <ap(la,b],lcl,[a,b,cl); True>
{ —_— > () ap(la,b],[c], [a,b,c]).

(2) <ap(lal,[],la]), True>
; —3 (b) ap((afX], Y, [a]Z]).

(3) <ap(l],lal,lal), True>
| ——— ©wXvla2).
(4) <ap(la],[b],[a])‘, False>
¢ —— () ap(X, Y, [afZ]) < ?2?

Figure 2: An example of too general atoms

The figure is different from Figure 1 at stage (3). A positive fact ap(/],
[al, [a]) given at the stage cannot be implied from the current conjecture (b).
Hence GEMINI returns the least generalization of (b) and the fact as its new
conjecture, |

At the next stage (4), a negative fact ap(la/, [b], [a])is given, which can
be implied from the current conjecture (¢). Hence GEMINI will try to find a
body in order to specialize the clause in the conjecture (¢). But, in this case,
it will not be able to find an appropriate body to specialize the clause.
Because, in a successful recursive clause for “append” program, the first
argument of ap(pend) in the head of the clause should be a compound term.
In this paper, such an atom is said to be too general.

The main problems of our strategy are as follows.
(1) How does an inference machine identify too general atoms?

6

(2) How does it modify the conjecture when it has identified them?

The first problem is closely related to the power of the device which enumer-
ates bodies of a clause. For the second problem, the current GEMINI parti-
tions a set of known positive facts by using too general atoms, then computes
the least generalizations of each set successively and returns them as its new
conjectures. ‘

In the following, we shall further discuss the above-mentioned something
more detail.

Suppose that a target model M is partitioned as in Figure 3, where M;
contains the elements of M whose first argument is not [], and Mgy others.
In such a case, the least generalization of My will be ap({X[Y], Z, [X[U]), and
the one of My will be ap([], X, X). In fact, they are both the heads of the
clauses in the successful program for “append” given in the previous section.

‘Model M (=M1UM>9) Least generalizations

ap(la,b],[c], [a,b,c])

M |
ap(ls], [a], [s,a]) (XIY]. 7. [XIV])
ap([d], [],[d]) —> ap((X[Y],Z, [X[V

M, ap((], [al, [a])
ap(l],[s,al,[s,al) — ap(l], X, X)
ap((1,[1,[1])

Figure 3: A partition of the model and the derived clause heads

In a practical model inference, 'however, the information about the
boundary line in the model is not given. Hence the inference machine has to
detect the boundary line for itself. GEMINI detects it using too general
atoms. The way to do it is as follows.

~ For example, in Figure 2, the positive facts (1), (2), (3) are given and
the least generalization of them becomes ap(X, Y, [afZ]). Now suppose
GEMINI can identify it to be too general in one way or another. Then
GEMINI partitions the set of known positive facts into two subsets in which

the least generalization for each subset is strictly less general than the too
general atom ap(X, Y, [afZ]) (Figure 4). In the example, there are three

Partitions of a known model Least generalizations

ap({a,b], [c],[a,b,c])
ap(lal,[], [a])
ap((1,(al,[a])

_—— ap(X)Y, [a/Z])

(1)

ap(la,b], [c], [a,b,c]) 1Y
ap(lal,[],[a]) ap((afX],Y,[a[Z]) .

ap([1, la],[a]) ap(l 1,[al,[a])

(1)

ap(la,b],[c],[a,b,c])
ap([1, [a], [a])

—_— ap(X,[Y],[afZ])

ap(lal,(1,[al) —> ap((a],[],[a])

(1)

ap(lal,[],[a])

\ X
ap(l],[a], [a]) —> ap(X,Y,/[a])

ap([a,b],[c],[a,bec])/ —> ap([a,b],[cl],[a,b,c])

Figure 4: Partitions of the known model according to too general atom

cases. But in the second and the third cases, ap(X, (Y], [afZ]) and ap(X,Y,
[a]) are too general (because the both first arguments are not compound
term). By the assumption, GEMINI will identify them as too general atoms.
Hence GEMINI will reject these partitions and adopt the first partition
eventually. In fact, this partition corresponds to the boundary line of the
model in Figure 3.

In the result, the main problem of our strategy is to determine whether
an inference machine can identify too general atoms or not. In the following
two sections we shall formulate these problems and present conditions of its
decidability.

5. The Head of a Program Clause

In this strategy, an inference machine takes the least generalization of
a set of known positive facts as the head of a clause which should cover
them. In general, however, the head of a clause does not need to be the
least generalization. Hence, first, we shall show that the least generalization
is sufficient to be the head of a clause.

Definition 3: Let M be a subset of By, and A’ be an ground atom. We
say that a clause A«Bj,...,By covers A’ in M iff there is a substitution 6
such that A’=A0 and B;0 is in M for every i (1=i=n).

- Mc denotes the set of all ground atoms covered by the clause C in the
model M. A clause C is true in M iff Mg c M, and false otherwise. A logic
program P is true in M iff every clause in P is true in M.

Theorem 4: Let M be a model. For any clause C, there exists a clause
C’ whose head is the least generalization of M¢ such Vthat Mc=Mc.

Proof: Suppose C be a clause of the form:
‘ A<By, By, ...,B, (0=n)

and A’ be the least generalization of M¢. Without loss of generality, we may
assume that A’ does not share variables with A. Since A’ is the least gener-
alization of M¢, we know that A=A’. Hence there exists a substitution 6
such that AG=A’, where we may assume that 0 operates only variables
occurring in A. '

“Let C’ be CO0. We show that M¢'=Mc.

For any a in Mc, there exists substitution o such that a=Ao and Bjo is
in M for 1=i=n, where we may assume o operates only variables occurring
in C. Since A’ is the least generalization of M, there exists a substitution n
such that a=A’y=A06n, where we may assume that 1 operates only variables

9

10

occurring in A’. Thus we have a=Ac=A06n for any a in M. From the as-
sumptions for 0, ¢ and n, there exists a substitution 1’ such that 6nn’=o.
Let V(A) be a set of all variables occurring in A. Then n’ obtained from o
by deleting any binding v/t for any v in V(A). Hence there exists a
substitution 6nn’ such that, for any a in M¢, a=A0nn’ and Bifnn’ is in M
for 1=i=n. Thus C’ (=C0) covers a in M for any a in M¢.

Conversely, for any a in M, there exists a substitution o such that
a=A80 and Bifo is in M for 1=i{=n. Thus C covers a in M for any a in
Mc. g '

The above theorem shows that the head of a clause may be the least
generalization of the set of ground atoms (a subset of a model) that should be
covered by the clause. As we have seen in the previous section, GEMINI
distinguishes such a subset by using too general atoms. Hence, GEMINI
must be able to identify too general atoms. Now, we shall discuss the
decidability of too general atoms.

6. Decidability of Too General Atoms

First, we shall define the notion of too general atoms.

Definition 5: Let A be an atom, P be a logic program and S be a non-

empty set of logic programs. ’

(1) We say that A is too general for P iff for any clause C in P, head(C)=A,
where head(C) denotes the head of C.

(2) We say that A is too general for S iff for any program P’ in S, A is too
general for P’

For example, let P be the logic program:
insert(X, [Y/Z], [X,Y/Z]) «X=Y.
insert(X, (Y/[Z], [YIW]) «Y=X,insert(X,Z, W).
insert(X,[], X).
Then the atom such as “insert(X, Y, [Z[W])” or “insert(X, [X[Z],[Y[W])” is too
general for P. '

10

Now we shall define a clause enumerator, which produces candidates for
target program. A clause enumerator CE is the device which receives an
atom A for its input and produces a sequence of the clauses of the form:

AeBy, By, ..., By (0=n)
as its output. CE(A) denotes the set of all clauses enumerated by CE for
input A. CE(A); denotes the ith clause in the enumeration. Furthermore,
CE* denotes the set of all clauses enumerated by CE for any input atom.

Definition 6: We say CE is finite iff CE(A) is finite for any atom A.

Definition 7: We say CE is sufficient iff for any atoms A and A’ if
AO=A’ for some substitution 8 which operates only variables occurring in A
then CE(A)6cCE(A’). Where CE(A)0={C8|C € CE(A)}.

Definition 8: We say CE is complete for a model M iff there exists a
finite subset P of CE* such that M(P)=M. Where M(P) denotes the least
Herbland ‘model of P, that is, M(P)= N{M;CBL|P is true in M;}.

CE s denotes a set of all finite subsets of CE*, the least Herbland model
of which is equal to M, that is, CEp={PCCE*|P is finite and M(P)=Mj}.

Lemma 9: Let M be a model, A be an atom and CE be a complete
clause enumerator. If A is too general for CEp then any clause C in CE(A)
is false in M. '

Proof: Assume that there exists a clause C in CE(A) such that C is
true in M. Since CE is complete for M, there exists a program P in CE*
such that M(P)=M. Put P’=PU{C}. Clearly M(P’)2M. Since C is true in
M, P’ is also true in M. Thus M(P’)CM. Hence P’ is in CEpy. Consequently,
A is not too general for CEy. g

Theorem 10: Let M be a model, A be an atom and CE be finite and
complete. Assume that Algorithm 2 is given an enumeration of M. If A is
too general for CEp then Algorithm 2 terminates with output “A is too
general”,

11

11

12

Input: An atom A and an enumeration of a model M.
Output: A sequence of clauses in CE(A), or “A is too general”

Algorithm:
i:=1; STrue:={} SFaise:={0}
repeat
read the next fact <F, V>;
Sy:=SyU{F};
while there exists ain Sgyise such that CE(A); covers a in S,y do;
n=i+1;

if CE(A); does not exist then
output “A is too general”; HALT
output CE(A);
forever

Algoritm 2

Proof: By Lemma 9, if A is too general for CEp then every clause in
CE(A) is false in M. Hence, for any clause in CE(A), the condition of the
while loop will be satisfied after reading in some finite number of facts
respectively, then the value of i will be increased. Since CE is finite, CE(A);
will be exhausted eventually. Thus Algorithm 2 terminates with output “A
is too general”.

Theorem 11: Let M be a model, A be an atom and CE be sufficient
and complete. Assume that Algorithm 2 is given an enumeration of M. If
A is not too general for CEpy then the outputs of Algorithm 2 converges a
clause true in M.

Proof: Every clause CE(A); which is false in M will be discarded at
the while loop in some finite steps. But if CE(A); is true in M then i will be
never changed. Hence it is sufficient to prove that if A is not too general for
CEps then there exists a clause in CE(A) which is true in M.

Since CE is complete for M, CEp is not empty. If A is not too general
for CEp then there exists a program P in CEjps such that for some clause C
in P, head(C)=A. Let 6 be a substitution which operates only variables oc-
curring in head(C) such that head(C)80=A. Since CE is sufficient, there

12

exists a clause C’ in CE(A) such that C’=C60, while C is true in M (=M(P)).
Thus C’ is true in M.

The above two theorems show that the inference machine equipped with
a finite, sufficient and complete clause enumerator can identify too general
atoms. The sufficiency and the completeness of CE should be assumed neces-
sarily in the enumeration strategy. The finiteness, however, seems to be so
restricted. But we will be able to implement such a clause enumerator by
restricting the size of the atom adding to the body of a clause, or the number
of the occurrences of the same predicate symbol in the body.

7. Concluding Remarks

We have given an outline of model inference incorporating generaliza-
tion, and discussed decidability on “too general” atoms. We have shown that
the inference machine equipped with a finite, sufficient and complete clause
enumerator can identify too general atoms. GEMINI is equipped with such a
clause enumerator. GEMINI restricts an enumeration of whole clauses to one
of bodies of a clause. The restriction leads to efficiency of an enumeration.
For example, GEMINI can infer the program for the reverse of a list defined
as follows:

reversé([X/Y], Z)<reverse(Y, U), append(U, [X], Z).
reverse([],[]).

This program cannot be inferred by MIS. Because in the first program
clause, a compound term [X] occurs at the second argument of append(__, __,
__) in the body, and the refinement operator employed in MIS [7] cannot
produce such a clause. Of course the capacity of the refinement operator
may be increased to enumerate such a clause. But the increase of the
capacity will require a heavy cost of efficiency. |

We conclude this paper by presenting some problems which should be
considered for a future study.

(1) Partitions of a known model

In Figure 4, there are three partitions of a known model for three
positive facts. In general, the number of partitions is O(2") for n positive

13

13

14

facts. Further, if the known model needs to be partitioned into three or
more subsets then it will be more increasing. GEMINI tries to find out an
appropriate partition ainong them by testing for the least generalization of
each partitioned subset to be not too general. Hence the more the number of
known positive facts will increase, the more GEMINI will be inefficient. But
there are many partitions to be rejected without testing. For example, we
shall denote a partition of M by (M1, M9), where M; and Mg are subsets of
M such that M{UM2=M and M1NMz=¢. Suppose there is some partition
(M;q, Mz) of M such that the least generalization of M; is too general. Then,
we know that every partition (Ml’, M9’) such that M{CM;’ should be rejected.
Thus, we may expect to decrease the number of partitions of the known model.

(2) Generalization of a clause with non-empty body

As we have mentioned in section 3, the problem of generalization of a
clause with non-empty body should be considered. Such a generalization cuts
down much useleSs enumeration. For example, as in Figure 1, if the clause
(c) is generalized to the clause (d) by a positive fact ap([1],[],[1]), then the
enumeration of CE(ap([A[X],Y,[A[Z])) can be eliminated. We would like to
investigate the problem of generalization of a clause with non-empty body by
a positive fact. ‘

ACKNOWLEDGEMENTS

- The author wishes to acknowledge Prof. S. Arikawa, Kyusyu University,
for many helpful suggestions and encouragement. He is also indebted to Dr. T.
Kitagawa, the president of IIAS-SIS, and Dr. H. Enomoto, the director of IIAS-
SIS, for their ceaseless support and advice.

14

[1]

[2]

[3]

(4]
[5]

[6]

(7]

REFERENCES

Blum, L. ,Blum, M. : ToWard a Mathematical Theory of Inductive Infer-
ence, Information and Control 28, 125-155, 1975.

Clocksin, W. F. , Mellish, C. S. : Programming in Prolog, Springer-Verlag,
1981.

Gold, E. M. : Language Identification in the Limit, Information and Control
10, 447-474, 1967. ,

Lloyd, J. W. : Foundations of Logic Programming, Springer-Verlag, 1984,
Plotkin, G. D. : A Note on Inductive Generalization, Machine Intelligence
6, Edinburgh University Press, 153-163, 1971.

Shapiro, E. Y. : Inductive Inference of Theories From Facts, Technical
Report 192, Yale University, 1981. ,

Shapiro, E. Y. : Algorithmic Program Debugging, MIT Press, 1982.

15

15

