
Title Monitoring Ada Tasking Programs Correctly

Author(s) CHENG, Jingde; ARAKI, Keijiro; USHIJIMA, Kazuo

Citation 数理解析研究所講究録 (1987), 618: 110-129

Issue Date 1987-04

URL http://hdl.handle.net/2433/99859

Right

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University

$\perp\perp\cup$

Monitoring Ada Tasking Programs Correctly

程 京徳 荒木 啓二郎 牛島 和夫
Jingde CHENG, Keijiro ARAKI, and Kazuo USHIJIMA

Department of Computer Science and Communication Engineering
Kyushu University

Hakozaki, Higashi-ku, Fukuoka 812, Japan

Abstract A new correctness concept, called partial-order preserving property,
for event-driven execution monitoring of Ada tasking programs is presented. By
using this concept, we can describe whether or not the tasking behavior of
monitored Ada programs refrains from interference by monitoring actions of an
event-driven execution monitor. In this paper, we define the equivalence of
dynamic concurrent structures with respect to Ada program transformation, and
propose this equivalence as a partial-order preserving criterion of the program
transformation used in a preprocessor of an event-driven execution monitor of Ada
tasking programs. The equivalence is formally based on the lattice of dynamic
concurrent structure of Ada programs which provides an abstraction of the tasking
behavior ofAda programs in terms of task interactions.

1. Introduction
In a software development environment, monitoring the behavior of programs is

very important in order to verify if a monitored program satisfies both functional
and performance requirements [Fairley-80, Plattner-81, Snodgrass-84, Taylor-85].
This is particularly critical in concurrent applications, where it is often hard to
discover errors and faults (e.g., time-dependent errors, deadlocks, and livelocks)

which can be traced by accurate execution monitoring [German-84, Helmbold-85a,
85b, LeBlanc-85, LeDoux-85, Maio-85].

Execution monitoring is one of the facilities to be supported by an Ada
programming support environment (APSE) [DoD-80, Fairley-80, Taylor-85]. On
the basis of this requirement, we are developing an event-driven execution monitor
for Ada tasking programs. Our execution monitor is a testing andlor debugging
tool. It monitors the execution of a target Ada tasking program, reports
information about dynamic tasking behavior of the program, detects tasking
communication deadlocks (if any) during execution of the program, saves traces of
tasking behavior of the program, analyses timing of task interactions, and answers
the queries about saved tasking behavior of the program to users.

\copyright Ada is a registered trademark of the U. S. Government (Ada Joint Progam Offce).

1

数理解析研究所講究録
第 618巻 1987年 110-129

111

When we develop the event-driven execution monitor for Ada tasking programs,
it is indispensable to make certain that the monitor should always report correctly
the information about tasking behavior of target programs.

In our approach, execution monitoring is achieved through interaction between
a target Ada tasking program and the execution monitor running in parallel. In
order to let the monitor follow what is happening in the program, the program
must tell the monitor what its tasks are doing. To this end, the target program
undergoes a series of transfornations at source code level. These transformations
introduce the monitor implemented as an Ada task, assign a unique identifier to
each task, and insert calls to the monitor. So the monitor can follow the task
interactions of the program at run time, collects information about tasking
behavior from the program, and detects deadlocks.

The major factors afTecting correctness of information reported by the execution
monitor are as follows:
1) Because of interference by monitoring actions of the monitor, tasking

behavior of the transformed program P’ may be so different from that of the
original program P that the constraints on the ordering of events of P are
changed. This problem arises not only in monitoring Ada tasking programs,
but also in determining the correctness ofAda-to-Ada program transformation;

2) Because of fault of transforming and/or monitoring algorithms, the “tasking
behavior of the target program” reported by the monitor may be incomplete or
false even if the real tasking behavior of the transformed program P’ preserves
constraints on the ordering of tasking events of the original program P.

This paper discusses how to solve the first problem. The second problem relates
to the “completeness” and ”pertinence” of the execution monitor which have been
discussed in detail in [Plattner-81]. These concepts can also be applied to develop
an event-driven execution monitor of Ada tasking programs and further discussion
is beyond the scope of this paper.

Several execution monitors of Ada programs have been developed for various
aims [German-84, Helmbold-85a,85b, LeDoux-85, Maio-85], but, these literatures
have not discussed how to preserve constraints on the ordering of events of the
original program during execution monitoring. So they fail to prove formally the
correctness of the transforming and/or monitoring algorithms used in the
execution monitors.

In this paper, we present a new correctness concept, called partial-order
preserving property, for event-driven execution monitoring of Ada tasking
programs. By using this concept, we can describe whether or not the behavior of
monitored Ada tasking programs refrains from interference by monitoring actions
of the event-driven execution monitor. In section 2, we define the tasking state
space of Ada programs for determining the domain of our discussion. In section 3,
we formalize the task interactions of Ada programs by using the lattice theory in
order to provide an abstraction of the tasking behavior of Ada programs in terms of
task interactions. In section 4, we define the equivalence of dynamic concurrent
structures with respect to Ada program transformation and propose it as a partial-

2

112

order preserving criterion of program transformation used in the preprocessor of
an event-driven execution monitor ofAda tasking programs. In section 5, we give
some simple examples. Concluding remarks are given in section 6.

For the following discussion, knowledge of the semantics of Ada tasking [DoD-
83] are prerequisites.

2. Tasking State Space ofAda Programs
The primary mechanism for Ada task interactions is the rendezvous form of

remote procedure call. Because comnunication and synchronization among tasks
using message passing are more general than those using shared variables, we
concentrate attention on only task interactions in terms of rendezvous even though
the Ada tasks may interact by using shared variables. It is assumed that the tasks
of all Ada tasking programs referred in this paper interact by using only
rendezvous form. Thus, the tasking behavior of such Ada programs is determned
by the input and the rendezvous among tasks.

Because we would like to be able to understand an Ada tasking prpgram in
terms of its component tasks and their interaction, without regard for how they are
executed, we make no assumption about execution rates of concurrently executing
tasks, except the finite progress assumption (i.e., rates of tasks all are positive).

On the other hand, the main program of an Ada program acts as if called by some
environment task [DoD-83]. In this paper, such an environment task is called the
main task. It is assumed that the main task starts its execution at the elaboration
of all library units needed by the main program, and terminates its execution at
the termination of all tasks and the main program.

According to the semantics of Ada tasking [DoD-83], a task may be in any one of
the following states:
1) Starting activation : The elaboration of the declarative part of the task is

started.
2) Activating: The declarative part of the task is being elaborated.
3) Activated: The declarative part of the task has been elaborated.
4) Executing: A statement in the body of the task or a subprogram called by the

task is being executed.
5) Delay: The task is being delayed as a result of execution of a delay statement

in its own body.
6) Entry calling: The task has issued an entry call (simple or conditional or

timed) to another task but this entry call has not yet been accepted.
7) Accepting: The task is waiting at an accept statement for any corresponding

entry call.
8) Selective waiting : The task is waiting at a selective wait for any one of its

opened select alternatives to be selected.

3

113

9) Starting block activation: The elaboration of the declarative part of a block
statement in the body of the task is started; or the elaboration of the declarative
part of a subprogram called by the task is started.

10) Block Activating: The declarative part of a block statement in the body of the
task is being elaborated; or the declarative part of a subprogram called by the
task is being elaborated.

11) Block Activated: The declarative part of a block statement in the body of the
task has been elaborated; or the declarative part of a subprogram called by the
task has been elaborated.

12) Block completed: The execution of a block statement in the body of the task
has been completed; or the execution of a subprogram called by the task has
been completed.

13) Block termination waiting : The task is waiting at the end of a block
statement in its own body for all tasks dependent on that block statement to
terminate; or the task is waiting at the end of a subprogram called by itself for
all tasks dependent on that subprogram to terminate.

14) Block terminated: The execution of a block statement in the body of the task
has been completed, and all dependent tasks of the block statement have
terminated; or the execution of a subprogram called by the task has been
completed, and all dependent tasks of the subprogram have terminated.

15) Abnormal : The task is abnormal as the result of the execution of an abort
statement.

16) Completed: The execution of statements in the body of the task has been
completed.

17) Termination waiting: The task is waiting at the end of its own body for all
dependent tasks to terminate.

18) Terminated : The execution of statements in the body of the task has been
completed, and all dependent tasks of the task have terminated.

19) Rendezvous : The task has issued an entry call to another task which has
accepted this entry call; or the task has accepted an entry call issued by another
task.

20) Suspended by rendezvous: The task has issued an entry call which has been
accepted by the called task, but the execution of the corresponding accept
statement has not yet been completed.

21) Continue: The task which has issued an entry call resumes its execution as
the result of the completion of the corresponding rendezvous; or the task has
completed the execution of an accept statement and continues its execution.

A sequence of states of a task from ”Starting activation” to “Terminated” is
called a life cycle of the task.

Definition 2.1 A dynamic concurrent state of a task is specified by a
quintuplet (T, t, s, e, m) , where,

4

114

T is a task identifier by which the task can be uniquely identified during the
execution of the program;

t is $time^{*}$ when the state of the task T is changed;
s is a state of the task T;

e is a communicating entry between the task T and the other task, and is defined
if and only if s is in any one of the following states:

Entry calling,
Accepting,
Rendezvous,
Suspended by rendezvous, and
Continue,

otherwise, e is not defined and denoted $by\perp$;

m is a set of messages which are passed between the task T and the other task
during their rendezvous, and is defined if and only if s is in any one of the following
states:

Entry calling,
Accepting,
Rendezvous, and
Continue,

otherwise, m is not defined and denoted $by\perp$. \square

Definition 2.2 A tasking state space $TSS(P, I)$ created by an execution of Ada
tasking program P with input I is a set of dynamic concurrent states passed by any
task ofP asaresult ofthe execution ofP which readsI as input. \square

Note that repeated executions of an Ada tasking program P with the same input
I may create different tasking state spaces even without regard for the time in
dynanic concurrent states. Because P may contain nondeterministic statements,
repeated executions of P with the same input I may execute different paths in P.

We also note that $TSS(P, I)$ will be infinite when the execution ofP does not halt.

3. The Dynamic Concurrent Structure of Ada Programs
We now formalize the task interactions of Ada tasking programs for providing

an abstraction of the tasking behavior of Ada programs to discuss partial-order
preserving property of event-driven execution monitoring.

A relation \leqq on the set A is called a partial order if it satisfies the three
conditions [Birkhoff-61]:

R (Reflexivity): For every a in $A,$ $a\leqq a$.
A (Antisymmetry): For every $a,$ a

’ in A, if both a $\leqq a$’ and $a’\leqq$ a hold,
then $a=a’$.

* This time may be physical time in an interleaved implementation of Ada, or may be
virtual time in a distributed implementation of Ada [Lamport-78, Jefferson-85].

5

115

T (Transitivity): For every $a,$ $a’,$ a
’ in A, ifboth $a\leqq a$’ and $a’\leqq a$’ hold,

then $a\leqq a’$.
If \leqq is a partial order on A, we eall the pair (A, \leqq) a poset (short for partially

ordered set) [Birkhoff-61].

Two elements $a,$ a
’ of a poset (A, \leqq) are called to be incomparable with respect

to $\leqq ifneithera\leqq a$’ nor $a’\leqq$ a [Birkhoff-61].

We assume that change of state of a task is an event in an execution of the task.

There may exist a binary relation ”happened after“ between two states of a
tasking state space $TSS(P, I)$ which describes the occurrence order of two states
according to Ada tasking semantics. For example, a tasks must be created after
the start of execution of its master, and must terminate before the termination of
execution of its master.

The relation “happened after” is only a panial order of the states in the tasking
state space $TSS(P, I)$ because it is sometimes that no order between two states is
detemlined by the semantics of program P. This partial order can be viewed to be a
minimum constraints on the occurrence order of tasking events during the
execution of program P, and is detemined only by the semantics of program P.

The relation “happened after” can be fornally defined as follows.

Definition 3.1 Given any Ada tasking progran P, for any two tasks A and B

during an execution of the P, the task A is called the parent of the task B , and the
task B is called a child of the task A if and only if they satisfy any one of the
following conditions:
1) The task A is the master on which the task B depends directly.
2) The task A is the master on which the task B depends indirectly, but there

exists no task which is the master of the task B and depends on the task A.
3) The task A is the main task, and the master on which the task B depends

directly is a library package.
4) The task A is the main task, and the master on which the task B depends

indirectly is a library package, but there exists no task that is the master of the
task B and depends on the library package. \square

Definition 3.2 Given any $TSS(P, I)$, a binary relation DS: $TSS(P, I)arrow TSS(P$,
I) is defined as follows:

For any two elements $S_{1}=(T_{1}, t_{1}, s_{1}, e_{1}, m_{1})$ and $S_{2}=(T_{2}, t_{2}, s_{2}, e_{2}, m_{2})$ in the
$TSS(P, I),$ $(S_{1}, S_{2})\epsilon$ DS if and only if S_{1} and S_{2} satisfy any one of the following
conditions:
1) $T_{2}=T_{1}$,

$t_{2}=\min\{t|(T, t, s, e, m)\in TSS(P, I)\wedge t\geqq t_{1}\wedge T=T_{1}\wedge s\neq s_{1}\}$,
$s_{2}\neq s_{1}$.

2) T_{2} is a child ofT_{1} ,
$t_{2}=\min\{t|(T, t, s, e, m)\in TSS(P, I)\wedge t\geqq t_{1}\wedge$ (T is a child ofT_{1}) \wedge

$s=Staning$ activation},
6

116

$s_{2}=StaRing$ activation,
$s_{1}=Starting$ activation $vs_{1}=Starting$ block activation.

3) T_{2} is a parent of T_{1} ,
$t_{2}=\min\{t|(T, t, s, e, m)\in TSS(P, I)\wedge t\geqq t_{1}\wedge$ (T is the parent ofT_{1}) \wedge

($s=Activatedvs=Block$ activated)},
$s_{2}=Activatedvs_{2}=Block$ activated, $s_{1}=Activated$.

4) T_{2} is the parent of T_{1} ,
$t_{2}=\min\{t|(T, t, s, e, m)\in TSS(P, I)\wedge t\geqq t_{1}\wedge$ (T is the parent ofT_{1}) \wedge

($s=Terminated\vee s=Block$ terminated)},
$s_{2}=Tern\dot{u}natedS_{2}=Block$ terminated, $s_{1}=Terminated$.

5) An entry ofT_{2} is called by T_{1} , $t_{2}=t_{1}$, $s_{2}=s_{1}=Rendezvous$, $e_{2}=e_{1}$.
6) T_{2} called an entry ofT_{1} , $t_{2}=t_{1}$, $s_{2}=s_{1}=Continue$, $e_{2}=e_{1}$.
If $(S_{1}, S_{2})\in$ DS, then S_{2} is called a direct successor ofS_{1} . \square

\nwarrow

Definition 3.3 Given any $TSS(P, I)$, the transitive reflexive closure of DS on
the $TSS(P, I)$ is called tasking partial ordering relation of Ada program P and is
denoted by \leqq_{TPO} for DS’. \square

Lemma 3.1 Given any $TSS(P, I)$, then \leqq_{TPO} is a partial order on the $TSS(P$,
I), i.e., (TSSIP, I)

$,$
\leqq_{TPO}) is a poset. \square

Let (A, \leqq) be a poset. An element of A, denoted by 0 , is called the least element
ofA if $0\leqq$ a for every a in A. An element of A, denoted by 1, is called the greatest
element ofA if $a\leqq 1$ for every a in A. [Birkhoff-61]

Lemma 3.2 Given any $(TSS(P, I),$ \leqq_{TPO}), then it has the least element 0 given
by $0=$ ($M,$ t_{0} , Starting activation, $\perp,$ \perp); if $(TSS(P, I),$ \leqq_{TPO}) is finite, then it also
has the greatest element 1 given by $1=$ ($M,$ t, Terninated, $\perp,$ \perp); where M is the
identifier of the main task ofP. \square

A poset (A, \leqq) is called a chain if either a $\leqq a$’ or $a’\leqq$ a for every $a,$ a
’ in A

[Birkhoff-61].

Lemma 3.3 Given any $(TSS(P, I),$ \leqq_{TPO}), then any subset of the $(TSS(P, I)$,
$\leqq_{TPO})$ in which any elements have the same task identifier is a chain. \square

Lemma 3.1\sim Lemma 3.3 can be proved by Definition 3.1\sim 3.3.

Let (A, \leqq) be a poset. Let A’ be a subset of A. An element b of A is called an
lower bound (1.b.) for A’ ifb \leqq a for every a in $A’,$ b is called greatest lower bound $($

g.l.b .) for $A’$, if $b’\leqq bfor\cdot every$ l.b. b’ for $A’$. An element b of A is called an upper
bound (u.p.) for A’ if $a\leqq b$ for every a in $A’,$ b is called least upper bound (l.u.p .)

for A’ ifb $\leqq b$’ for every u.b. b
’ for $A’$. We denote g.l.b . and l.u.p . for $A’ by\cap A$’ and

U A’ respectively. If A’ has only two elements, we write $a_{1}\cap a_{2}$ (read: a_{1} meet a_{2})

and $a_{1}\cup a_{2}$ (read: a_{1} join a_{2}), respectively, for $\cap\{a_{1}, a_{2}\}$ and $U\{a_{1}, a_{2}\}$ [Birkhoff-

61].

A meet-semilattice is a poset L any two of whose elements have a g.l.$b.$; a join-
semilattice isaposetL any two of whose elements havea l.$u.b.;alatticeisaposet$

7

117

L which is both a meet-semilattice and a join-semilattice; a complete lattice is a
poset L in which every subset has both a g.l.b . and a l.u.b . [Szasz-63].

Theorem 3.1 Given any Ada program P, then any $(TSS(P, I),$ \leqq_{TPO}) is a meet-
semilattice; if $(TSS(P, I),$ \leqq_{TPO}) is finite, then it is not only a lattice but also a
complete lattice. \square

Theorem 3.1 can be proved by Lemma $3.1\sim 3.3$ and Ada tasking semantics;
further discussion is given in the appendix of this paper.

Lattice $(TSS(P, I),$ \leqq_{TPO}) (both semilattice and lattice) is called the lattice of
dynamic concurrent structure of Ada programs; it provides an abstraction of the
tasking behavior ofAda prograns in terms of task interactions.

We may represent a poset (A, \leqq) by Hesse diagrams. In where, the nodes
represent the element of A, there is a path from a to a

’ which goes entirely in the
downward direction if and only ifa $\leqq a’$.

An example of the lattice of dynamic concurrent structure of a simple Ada
program P (see Fig.1 (a)) is shown in Fig. 1 (b) by using Hasse diagrams.

procedure M is
task type ADD is

entry $ADD\lrcorner$ ($X,$ Y : in INTEGER; Z : out INTEGER);
entry $ADDR-$ ($X,$ Y : in REAL; Z : out REAL);

end ADD;
type TP is access ADD;
task body ADD is
begin

loop
select

accept $ADD\lrcorner$ ($X,$ Y : in INTEGER; Z : out INTEGER) do $Z:=X+Y$; end;
or

accept ADD–R (X, Y : in REAL; Z : out REAL) do $Z:=X+Y$; end;
or

terminate;
end select;

end loop;
end ADD;
A, B, $C,$ S : INTEGER; $D,$ $E,$ F : REAL; Tl: ADD; T2: TP;

begin
$A:=1$; $B:=2$; $D:=3.3$; $E:=4.4$; $T1.ADD\lrcorner(A, B, C)$;
T2: $=new$ ADD; T2.all.$ADDR-(D, E, F)$;
$S:=C+INTEGER(F)$;

end M ;
Fig. 1 (a) A simple Ada tasking program P

8

118

Fig. 1 (b) Lattice of dynamic concurrent structrue of program P

9

119

4. The Equivalence of Dynamic Concurrent Structures on
Ada Program Transformation

In our approach, it is obvious that the “tasking behavior of the target program”
reported by the event-driven execution monitor is meaningful only if the partial
order of tasking events during the execution of target program is not interfered by
monitoring actions of the execution monitor. This means that the event-driven
execution monitoring must preserve the partial order of tasking events which is
determined only by the semantics of the target program.

We say that an event-driven execution monitoring is partial-order preserving if
it preserves the partial order of tasking events which is deternined only by the
semantics of the target program.

We also say that an event-driven execution monitor of Ada tasking programs is
partial-order-transparent if its execution monitoring is always partial-order
preserving for any target Ada program. In other words, the existence of such a
monitor is transparent for any target Ada program with respect to the partial order
of tasking events during execution of the program which is determined only by the
semantics of program.

On the basis of the lattice of dynamic concurrent structure of Ada programs, we
can..discuss the equivalence between a target Ada program P and a transformed
Ada program P’ with respect to preserving the partial order of tasking events
during execution of P which is determined only by the semantics ofP.

We assume that an Ada-to-Ada program transformation is a partial mapping
between two sets of Ada programs, and can specified by a set of program
transformation rules. A progran transformation rule is also a partial mapping
from a set ofAda programs to the other.

We write Φ : $P(Ada)arrow RP(Ada)$ for an Ada-to-Ada program transformation,
where $P(Ada)$ is a set of Ada programs and R is a set of Ada program
transformation rules, R can be omitted when it need not be shown explicitly.

We now define a series ofbasic concepts which will be used in later discussions.

Definition 4.1 Let (S_{1}, \leqq_{1}) and (S_{2}, \leqq_{2}) be two posets.
1) A mapping Ψ : $S_{1}arrow S_{2}$ is called an order homomorphism or an isotone or an

order preserving mapping if $s_{1}\leqq_{1}s_{2}$ then $\Psi(s_{1})\leqq_{2}\Psi(s_{2})$ for any $s_{1},$ s_{2} in S_{1}

[Birkhoff-61, Szasz-63].

2) A mapping Ψ : $S_{1}arrow S_{2}$ is called a conservative homomorphism or a
conservative mapping if s_{1} and s_{2} are incomparable with respect to \leqq_{1} then $\Psi(s_{1})$

and $\Psi(s_{2})$ are incomparable with respect to \leqq_{2} for any $s_{1},$ s_{2} in S_{1} .
3) A mapping Ψ : $S_{1}arrow S_{2}$ is called a partial-order homomorphism or a partial-

order preserving mapping if and only if it is both an order homomorphism and a
conservative homomorphism. \square

Definition 4.2 Let (L_{1}, \leqq_{1}) and (L_{2}, \leqq_{2}) be two meet-semilattices.

10

120

1) A mapping Ψ : $(L_{1}, \leqq_{1})arrow(L_{2}, \leqq_{2})$ is called a meet-homomorphism if $\Psi(a\cap b)$

$=\Psi(a)\cap\Psi(b)$ for any $a,$ b in L_{1} [Birkhoff-61, Szasz-63].

2) A meet-homomorphism is called a meet-homomorphous one-to-one if it is also
one-to-one.

3) A meet-homomorphism is called a meet-homomorphous onto if it is also onto.
4) A meet-homomorphism is called a meet-isomorphism if it is both a meet-

homomorphous one-to-one and a meet-homomorphous onto. \square

Lemma 4.1 Let Ψ : $(L_{1}, \leqq_{1})arrow(L_{2}, \leqq_{2})$ be a bijection. Then Ψ is a partial-
order homomorphism if and only if it is a meet-isomorphism. \square

The proofofLemma 4.1 is given in the appendix of this paper.

Based on Lemma 4.1, we have

Definition 4.3 A program transformation Φ : $P(Ada)arrow P(Ada)$ is called an
equivalence transformation for dynamic concurrent structures if and only if for
every P in the $P(Ada)$ and any given input I there exists a meet-homoInorphism
Ψ : $(TSS(P, I),$ \leqq_{TPO}) $arrow(TSS(\Phi(P), I),$ \leqq_{TPO}) which is a meet-isomorphism from
$(TSS(P, I),$ \leqq_{TPO}) to $(\Psi(TSS(P, I)),$ \leqq_{TPO}). \square

In fact, Definition 4.3 means that an equivalence transfornation Φ : $P(Ada)arrow$

P(Ada) for dynamic concurrent structures preserves the partial order of tasking
events oforiginal program P in the transformed program $\Phi(P)$.

Note that the equivalence of dynamic concurrent structure defined by
Definition 4.3 describes only a correspondence between the original and the
transformed programs in terms of abstract algebraic structure, and no concrete
semantics of original programs such as the identifier or the tasking state of a task
is considered in this equivalence.

We can consider a strong equivalence of dynamic concurrent structure which
describes the complete tasking semantics of original programs as follows:

Definition 4.4 A program transformation Φ : $P(Ada)arrow P(Ada)$ is called a
strong equivalence transformation for dynamic concurrent structures if and only if
for every P in the $P(Ada)$ and any given input I, there exists a meet-
homomorphism Ψ : $(TSS(P, I),$ \leqq_{TPO}) $arrow(TSS(\Phi(P), I),$ \leqq_{TPO}) which is a meet-
isomorphism from $(TSS(P, I),$ \leqq_{TPO}) to $(\Psi(TSS(P, I)),$ \leqq_{TPO}) and satisfies the
following condition:

For any $(T_{1}, t_{1}, s_{1}, e_{1},m_{1})$ in the $(TSS(P, I),$ \leqq_{TPO}), if $\Psi((T_{1}, t_{1}, s_{1}, e_{1}, m_{1}))=$

$(T_{2}, t_{2}, s_{2}, e_{2}, m_{2})$ then $T_{1}=T_{2},$ $s_{1}=s_{2},$ $e_{1}=e_{2},$ $m_{1}=m_{2}$. \square

A strong equivalence transformation for dynamic concurrent structures
preserves the partial order of tasking events and the complete tasking semantics of
original programs in the transformed programs. Therefore we have the following
proposition.

Proposition If the program transformation used by an event-driven execution
monitor of Ada tasking programs is a strong equivalent transformation for

11

$12]_{\sim}$

dynamic concurrent structures, then the event-driven execution monitor is partial-
order-transparent. \square

Definition 4.5 Let $\Phi;P(Ada)arrow RP(Ada)$ be a program transformation. Then
the program transfornation rules of R are said to be superposable if they satisfy
the following condition:

For any P in the $P(Ada)$, there exists a sequence of indices $i_{1},$ $i_{2},$
$\ldots,$

i_{n} for
which the following formula holds:

$\Phi(P)=r_{i_{n}}$ $(... (r_{i_{2}}(r_{i_{1}}(P)))\ldots)$, where, $r_{k}\in R,$ $k=i_{1},$ $i_{2},$
$\ldots,$

i_{n} . \square

Lemma 4.2 Let Ψ_{1} : $(L_{1}, \leqq_{1})arrow(L_{2}, \leqq_{2})$ and Ψ_{2} : $(L_{2}, \leqq_{2})arrow(L_{3}, \leqq_{3})$ are two
meet-homomorphisms, then their composite $\Psi_{2}\cdot\Psi_{1}$: $(L_{1}, \leqq_{1})arrow(L_{3}, \leqq_{3})$ is also a
meet-homomorphism. \square

Theorem 4.1 Let Φ : $P(Ada)arrow RP(Ada)$ be a program transformation. If R

satisfies the conditions:
1) The program transformation rules of R are superposable;
2) For any program transformation rule r in R, and for every P in $P(Ada)$ and

any given input I, there exists a meet-homomorphous Ψ_{r} : $(TSS(P, I),$ \leqq_{TPO}) $arrow$

$(TSS(r(P), I),$ \leqq_{TPO}) which is a meet-isomorphism from $(TSS(P, I),$ \leqq_{TPO}) to
$(\Psi_{r}(TSS(P, I)),$ \leqq_{TPO}),

then Φ is an equivalent transformation for dynamic concurrent structures.
Ifin addition to the above conditions R satisfies the following condition:

3) For every Ψ_{r} in the condition 2) and for any $(T_{1}, t_{1}, s_{1}, e_{1}, m_{1})$ in $th_{\wedge}e(TSS(P$,
I), \leqq_{TPO}), if $\Psi_{r}((T_{1}, t_{1}, s_{1}, e_{1}, n_{1}))=(T_{2}, t_{2}, s_{2}, e_{2}, m_{2})$ then $T_{1}=T_{2},$ $s_{1}=s_{2},$ $e_{1}=$

$e_{2},$ $m_{1}=m_{2}$,

then Φ is a strong equivalent transformation for dynamic concurrent structures. \square

Theorem 4.1 can be proved by Definition 4.3\sim 4.5 and Lemma 4.2.

Theorem 4.1 means that the equivalence problem of dynamic concurrent
structure of a program transformation can be reduced into the meet-
homomorphous problem of every transformation rule of the program
transfornation. In general, the latter problem is easier to solve than the former
because it only needs to discuss local properties of target programs.

Consequently, for developing a partial-order-transparent event-driven
execution monitor of Ada tasking programs on the basis of above discussion, we
must do two things. The first is to design program transformation rules which are
superposable (and of course, satisfy the requirements of execution monitoring), and
the second is to check whether or not every program transformation rule of the
execution monitor satisfies the conditions ofTheorem 4.1.

5. Examples
We now give two examples. The first example is a program transformation

which introduces an entry SET–ID for every task type of a target program to
12

122

accept unique identifier, but it is not strongly equivalent for dynamic concurrent
structures. In the second example a revised transformation is applied to the same
target programs as in the first example. It is strongly equivalent for dynamic
concurrent structures.

5.1 Program Transformation without Strong Equivalenc\’e
Let us consider the following transformation [German-84]. It consists of a

pattern and a replacement, where, a numeral in square brackets, for instance [1],

is a pattern variable, the program text covered by a pattern variable is copied into
the replacement. The pattern variables may be restricted; i.e., for instance, [2-

statements] can only match a sequence of statements.

pattern:
task type T is [11 ;
task body T is [2-declsl begin [2-statementsl ; end;

replacement:
task type T is

entry SET–ID (N : in INTEGER) ;
[1];

task body T is
ID: INTEGER;

begin
accept SET–ID (N : in INTEGER) do ID: $=N$; end;
declare

[2-declsl

begin
[$\dot{2}$-statements];

end;
end;

This transfornation moves the declarative part of the task body of a target
program into an inner block in order to accept the identifier inside of the task body
before elaborating the task’s declarative part. But this transformation is not
strongly equivalent for dynamic concurrent structures.

Let us assume that some task, for instance Tl, is declared in the declarative part
of task T, then the outline of lattice of dynamic concurrent structure of a target
program and its transformed program is shown in Fig.2 (a) and Fig.2 (b)

respectively.

Obviously, there exists no meet-isomomorphism that satisfies the conditions of
Definition 4.4 because elements a_{5} and a_{14} are incomparable in lattice A but b_{15}

and b_{14} are comparable in lattice B.

As a result of the transformation, because it is not strongly equivalent for
dynamic concurrent structures, the transformed program may not preserve
equivalence with respect to some tasking behavior of the target program such as
exceptions raised during the elaboration of the declarative part of the task
[German-84].

13

12,3

T Tl

(a) A : Lattice of target program (b) B : Lattice of transformed program

Fig. 2 An example of program transformation without strong equivalence

However, note that this transformation is equivalent for dynamic concurrent
structures and a meet-isomomorphism which satisfies the conditions of Definition
4.3 has been shown in Fig.2 by the same indices of the corresponding elements.

5.2 Program Transformation with Strong Equivalence

The second example is a revision of the program transformation given by the
first exanple. The revised transformation is shown below. Every task is assigned
a unique identifier by initialization of task identifier ID by calling a function
$GET-TASK-ID$.

14

$\perp \mathcal{L}q$

pattern:
task type T is [1] ;
task body T is [2-decls] begin [2-statements] ; end;

replacement :
task type T is [1] ;
task body T is

ID: INTEGER: $=$ GET–TASK–ID;
[2-decls]

begin
[2-statementsl ;

end;

where the function GET–TASK–ID is defined as follows:

function GET–TASK–ID return INTEGER is
ID: INTEGER;

begih
TASK–ID–MANAGER. GET–ID (ID); return ID;

end;

This transformation is strongly equivalent for dynamic concurrent structures. A
meet-isomomorphism which satisfies the conditions of Definition 4.4 is shown in
Fig. 3 by the same indices of the corresponding elements.

6. Conclusion
This paper has presented a new correctness concept, called partial-order

preserving property, for event-driven execution monitoring of Ada tasking
programs. By using this concept, we can describe whether or not the tasking
behavior of monitored Ada programs refrains from interference of monitoring
actions of the event-driven execution monitor.

We have presented an approach to solve the partial-order preserving problem
which is important for both monitoring and transformng Ada tasking prograns.
The features of our approach are to abstract the tasking behavior of Ada programs
in terms of task interactions by using lattice theory, and to discuss the
correspondence between target programs and transformed programs in terms of
abstract algebraic structure on the basis of this abstraction.

The equivalence of partial-order preserving property on transformation of
concurrent programs is an important research area. In order to solve the partial-
order preserving problem on monitoring Ada tasking programs, we have defined
the equivalence of dynamic concurrent structures with respect to Ada program
transformation. This equivalence can be used as a partial-order preserving
criterion of program transformation used in a preprocessor of an event-driven
execution monitor of Ada tasking programs. It can be easily extended to
applications to other concurrent languages based on message-passing mechanism
such as CSP [Cheng-86].

On the basis of the correctness concept presented in this $paper_{f}$ we have designed
an event-driven execution monitor for Ada tasking programs and implemented its
prototype system on an Ada processor named ADE [DGC-84]. The correctness of

15

125

T Tl

(a) A : Lattice of target program (b) B : Lattice of transformed program

Fig. 3 An example of program transformation with strong equivalence

monitoring andlor transforming algorithms used by our event-driven execution
monitor can be proved with the help of the strong equivalence of dynanic
concurrent structures with respect to Ada program transformation.

References
[Birkhoff-61] Birkhofr,G. : Lattice Theory, Revised Edition, Am. Math. Soc., 1961.

[Cheng-86] Cheng,J., Araki,K. and Ushijima,K. : The Equivalence of Dynamic Concurrent
Structures on Concurrent Program Transformation, Proc. 32th Annual Convention IPS Japan, 4C-
7, pp. 13-14, 1986 (in Japanese).

[DGC-841 Data General Corp. : Ada Development Environment (ADE) (AOSNS) User’s
Manual, 1984.

[DoD-80] United States Department of Defense : ”STONEMAN”, Requirements for Ada
Programming Support Environment, 1980.

[DoD-831 United States Department of Defense : Reference Manual for Ada Programming
Language (ANSI/MIL-STD-1815A), Jan. 1983.

16

126

[Fairley-80] Fairley,R.E.: Ada Debugging and Testing Support Environments, ACM SIGPLAN
Notices, Vol.15, No.11, pp.16-25, 1980.

[German-84] German,S.M. : Monitoring for Deadlock and Blocking in Ada Tasking, IEEE
Trans. Softw. Eng., Vol.SE-10, No.6, pp.764-777, 1984.

[Helmbold-85a] Helmbold,D. and Luckham,D. : Debugging Ada Tasking Programs, IEEE
Software, Vol.2, No.2, pp.47-57, 1985.

[Helmbold-85b1 Helmbold,D. and Luckham,D.C. : Runtime Detection and Description of
Deadness Errors in Ada Tasking, ACM Ada Letters, Vol.4, No.6, pp.60-72, 1985.

[Jefferson-851 Jefferson,D.R. : Virtual Time, ACM Trans. Program. Lang. Syst., Vol.7, No.3,
pp.404-425, 1985.

[Lamport-781 Lamport,L. : Time, Clocks, and Ordering of Events in a Distributed System,
Comm. ACM, Vol.21, No.7, pp.558-565, 1978.

[LeBlanc-85] LeBlanc,R.J. and Robbins,A.D. : Event-Driven Monitoring of Distributed
Programs, Proc. of the 5th International Conference on Distributed Computing Systems, pp.515-
522, 1985.

[LeDoux-851 LeDoux,C.H. and Parker,Jr.D.S. : Saving Traces for Ada Debugging, Ada in Use,
pp.97-108, Proc. of the Ada International Conference, Paris 14-16 May 1985.

[Maio-851 Maio,A.D, Ceri,S. and Reghizzi,S.C. : Execution Monitoring and Debugging Tool for
Ada Using Relational Algebra, Ada in Use, pp.109-123, Proc. of the Ada International Conference,
Paris 14-16 May 1985.

[Plattner-811 Plattner,B. and Nievergelt,J. : Monitoring Program Execution: A Survey, IEEE
Computer, Vol.14, No.11, pp.76-93, 1981.

[Snodgrass-84] Snodgrass,R. : Monitoring in a Software Development Environment: a
Relational Approach, ACM SIGPLAN Notices Vol.19, No.5, pp.124-131, 1984.

[Szasz-63] Szasz,G. ; Introduction to Lattice Theory, Academic Press, 1963.

17

127

Appendix
Proof ofTheorem 3.1

For any $S_{1}=(T_{1}, t_{1}, s_{1}, e_{1}, m_{1}),$ $S_{2}=(T_{2}, t_{2}, s_{2}, e_{2}, m_{2})$ in the $(TSS(P,$I), \leqq_{TPO}), if
$T_{1}=T_{2}$, then by Lemma 3.3, the following formula hold:

g.l.b. $\{S_{1}, S_{2}\}=\{\begin{array}{l}S_{1}whenS_{2}\leqq_{TPO}S_{l}S_{2}whenS_{1}\leqq_{TPO}S_{2}\end{array}$

$IfT_{1}\neq T_{2}$, then by Lemma 3.2, $\{S_{1}, S_{2}\}$ has at least one l.b. such as 0 .
If we assume that there exists no g.l.b . $\{S_{1}, S_{2}\}$, then $\{S_{1}, S_{2}\}$ must have two l.b.’s

$b_{1}=(T_{1}, b_{1}, s_{b_{1}}, e_{b_{1}}, m_{b_{1}})$ and $b_{2}=(T_{2}, t_{b_{2}}, s_{b_{2}}, e_{b_{2}}, m_{b_{2}})$ which are incomparable
because $\{S_{1}, S_{2}\}$ has at least one l.b.; i.e., $b_{1}\leqq_{TPO}S_{1},$ $b_{1}\leqq_{TPO}S_{2},$ $b_{2}\leqq_{TPO}S_{1},$ b_{2}

$\leqq_{TPO}S_{2}$, but neither $b_{1}\leqq_{TPO}b_{2}$ nor $b_{2}\leqq_{TPO}b_{1}$.
According to Definition 3.2, the above assumption is true if and only if there are

two elements $S_{1}’=(T_{1}, t_{1}’, s_{1}’, e_{1}’, m_{1}’)$ and $S_{2}’=(T_{2}, t_{2}’, s_{2}’, e_{2}’, m_{2}’)$ of the $(TSS(P$,
I), \leqq_{TPO}) which satisfy the following conditions:

1) $b_{1}\leqq_{TPO}S_{1}‘\leqq_{TPO}S_{1}$, $b_{2}\leqq_{TPO}S_{2}’\leqq_{TPO}S_{2}$;

2) $(b_{1}, S_{2}’)\in$ DS, $(b_{2}, S_{1}’)\in$ DS;

i.e., there is a valid combination of the conditions 2\sim 6 of Definition 3.2 for which
$(b_{1}, S_{2}’)\in$ DS and $(b_{2}, S_{1}’)\in$ DS $a\tilde{r}e$ to be true.

We now consider every combination of the condition $2\sim 6$ of Definition 3.2 as
follows; note that b_{1} and b_{2} are incomparable, and the number of combinations of
those conditions is $(^{5+2_{2}-1})=15$:
1) b_{1} and S_{2}

’ satisfy the condition 2; b_{2} and S_{1}
’ satisfy the condition 2:

This means that T_{2} is a child of T_{1} and started activation at $t_{2}’$; and T_{1} is a
child ofT_{2} and started activation at $t_{1}’$.

2) b_{1} and S_{2}
’ satisfy the condition 2; b_{2} and S_{1}

’ satisfy the condition 3 :
This means that T_{2} is a child of T_{1} and started activation at $t_{2}’$; and T_{1} is a

parent ofT_{2} and T_{2} is activated at $t_{b_{2}}$.
3) b_{1} and S_{2}

’ satisfy the condition 2; b_{2} and S_{1}
’ satisfy the condition 4:

This means that T_{2} is a child of T_{1} and started activation at $t_{2}’$; and T_{1} is a
parent ofT_{2} and T_{2} teminated at $t_{b_{2}}$.

4) b_{1} and S_{2}
’ satisfy the condition 2; b_{2} and S_{1}

’ satisfy the condition 5:
This means that T_{2} is a child of T_{1} and started activation at $t_{2}’$; and T_{2} called

an entry ofT_{1} and this call is accepted by T_{1} at $t_{1}’$.
5) b_{1} and S_{2}

’ satisfy the condition 2; b_{2} and S_{1}
’ satisfy the condition 6:

This means that T_{2} is a child of T_{1} and started activation at $t_{2}’$; and T_{1} called
an entry ofT_{2} and corresponding rendezvous finished at $t_{b_{2}}$.

18

128

6) b_{1} and S_{2}
’ satisfy the condition 3; b_{2} and S_{1}

’ satisfy the condition 3 :
This means that T_{2} is a parent of T_{1} and T_{1} started activation at $t_{b_{1}}$; and T_{1} is

a parent ofT_{2} and T_{2} started activation at $t_{b_{2}}$.
7) b_{1} and S_{2}

’ satisfy the condition 3; b_{2} and S_{1}
’ satisfy the condition 4:

This means that T_{2} is a parent ofT_{1} and T_{1} started activation at $t_{b_{1}}$; and T_{1} is
a parent ofT_{2} and T_{2} terminated at $t_{b_{2}}$.

8) b_{1} and S_{2}
’ satisfy the condition 3; b_{2} and S_{1}

’ satisfy the condition 5:
This means that T_{2} is a parent of T_{1} and T_{1} started activation at $t_{b_{1}}$; and T_{2}

called an entry ofT_{1} and this call is accepted by T_{1} at $t_{1}’$.
9) b_{1} and S_{2}

’ satisfy the condition 3; b_{2} and S_{1}
’ satisfy the condition 6:

This means that T_{2} is a parent of T_{1} and T_{1} started activation at $t_{b_{1}}$; and T_{1}

called an entry of T_{2} and corresponding rendezvous finished at $t_{b_{2}}$.
10) b_{1} and S_{2}

’ satisfy the condition 4; b_{2} and S_{1}
’ satisfy the condition 4 :

This means that T_{2} is a parent of T_{1} and T_{1} termnated at $t_{b_{1}}$; and T_{1} is a
parent ofT_{2} and T_{2} terminated at $t_{b_{2}}$.

11) b_{1} and S_{2}
’ satisfy the condition 4; b_{2} and S_{1}

’ satisfy the condition 5:
This means that T_{2} is a parent ofT_{1} and T_{1} terminated at $t_{b_{1};}$ and T_{2} called an

entry ofT_{1} and this call is accepted by T_{1} at $t_{1}’$.
12) b_{1} and S_{2}

’ satisfy the condition 4; b_{2} and S_{1}
’ satisfy the condition 6 :

This means that T_{2} is a parent ofT_{1} and T_{1} terminated at $t_{b_{1}}$; and T_{1} called an
entry of T_{2} and corresponding rendezvous finished at $t_{b_{2}}$.

13) b_{1} and S_{2}
’ satisfy the condition 5; b_{2} and S_{1}

’ satisfy the condition 5 :
This means that T_{1} called an entry of T_{2} and this call is accepted by T_{2} at $t_{2}’$;

and T_{2} called an entry ofT_{1} and this call is accepted by T_{1} at $t_{1}’$.
14) b_{1} and S_{2}

’ satisfy the condition 5; b_{2} and S_{1}
’ satisfy the condition 6:

This means that T_{1} called an entry of T_{2} and this call is accepted by T_{2} at $t_{2}’$;
and T_{1} called an entry of T_{2} and corresponding rendezvous finished at $t_{b_{2}}$.

15) b_{1} and S_{2}
’ satisfy the condition 6; b_{2} and S_{1}

’ satisfy the condition 6:
This means that T_{2} called an entry of T_{1} and corresponding rendezvous

finished at $t_{b_{1}}$; and T_{1} called an entry of T_{2} and corresponding rendezvous
finished at $t_{b_{2}}$.

However, any one of these 15 situations can not occur because of the semantics of
Ada tasking [DoD-83]. This means that our assumption is not true. Therefore,
there must exist g.l.b . $\{S_{1}.’ S_{2}\}$.

Consequently, for any $S_{1},$ S_{2} in the $(TSS(P, I),$ \leqq_{TPO})
$,$

$\{S_{1}, S_{2}\}$ has a g.l.$b.$, i.e., the
$(TSS(P, I),$ \leqq_{TPO}) is a meet-semilattice.

On the other hand, if the $(TSS(P, I),$ \leqq_{TPO}) is finite, then for any $S_{1},$ S_{2} in the
$(TSS(P, I),$ \leqq_{TPO}), the discussion of l.$u.b$. $\{S_{1}, S_{2}\}$ holds as well as that of g.l.b . $\{S_{1}$,
$S_{2}\}$. Therefore, the $(TSS(P, I),$ \leqq_{TPO}) is a lattice. Because any finite lattice is
complete lattice [Birkhoff-61, Szasz-631, the $(TSS(P, I),$ \leqq_{TPO}) is a complete lattice.
口

19

Proof of Lemma 4.1

Let Ψ : $(L_{1}, \leqq_{1})arrow(L_{2}, \leqq_{2})$ be both a bijection and a partial-order
homomorphism. Then for any $a,$ b in L_{1} ,

(1) $a\leqq_{1}biff\Psi(a)\leqq_{2}\Psi(b)$.
Suppose $a\cap b=c$, then $c\leqq_{1}$ a and $c\leqq_{1}b$. By (1),

(2) $\Psi(c)\leqq_{2}\Psi(a),$ $\Psi(c)\leqq_{2}\Psi(b),$ $i.e.,$ $\Psi(c)\leqq_{2}\Psi(a)\cap\Psi(b)$.
Suppose $\Psi(a)\cap\Psi(b)=\Psi(d)$, then
(3) $\Psi(c)\leqq_{2}\Psi(d)$, and
(4) $\Psi(d)\leqq_{2}\Psi(a),$ $\Psi(d)\leqq_{2}\Psi(b)$.
By (1) and (4),

(5) $d\leqq_{1}a,$ $d\leqq_{1}b,$ $i.e.,$ $d\leqq_{1}a\cap b,$ $i.e.,$ $d\leqq_{1}c$.
Therefore, by (1),

(6) $\Psi(d)\leqq_{2}\Psi(c)$.
By (3) and (6), $\Psi(d)=\Psi(c)$, i.e., $\Psi(a\cap b)=\Psi(a)\cap\Psi(b)$.
Consequently, Ψ is a meet-isomorphism.

Let $\Psi:(L_{1}, \leqq_{1})arrow(L_{2}, \leqq_{2})$ be a meet-isomorphism. Then for any $a,$ b in L_{1} ,

(7) $\Psi(a\cap b)=\Psi(a)\cap\Psi(b)$.
Suppose $a\leqq_{1}b$, then a $\cap b=a,$ $\Psi(a\cap b)=\Psi(a)$. By (7)

(8) $\Psi(a)=\Psi(a)\cap\Psi(b),$ $i.e.,$ $\Psi(a)\leqq_{2}\Psi(b)$.
On the other hand, suppose $\Psi(a)\leqq_{2}\Psi(b)$, then $\Psi(a)\cap\Psi(b)=\Psi(a)$. By (7)

(9) $\Psi(a\cap b)=\Psi(a)$.
Therefore,

(10) $a\cap b=a$, i.e., $a\leqq_{1}b$.
Consequently, Ψ is a partial-order homomorphism. 口

20

