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Some Algebraic Algorithms Based on
Head Term Elimination over Polynomial Rings
AN
Tateaki Sasaki

The Institute of Physical and Chemical Research
Wako—shi, Saitama 351-01, Japan

Abstract
Let Fl, Fr be polynomials in Xl' Xn with coefficients in K[ul,.,.,um],,
Many algebraic problems can be reduced to éalculating polynomials in K[ul,...,um]
by eliminating Xl’ Xn from Fl’ Fr. We formulate this elimination in
terms of the Gribner basis of polynomial ideal (Fl""'Fr) over K[ul,,_.,um]. The
elimination theory developed is applied to several typical problems. Furthermore,

some ideas for making the elimination efficient are presented, with timing data by

actual  implementation,

81. Introduction

Many algebraic calculations are reduced to the elimination of variables, The
conventional elimination method is the leading term elimination, For polynomials F
and G in main variable X, the leading term elimination is defined by the formula

lem lem

+.F —
2t(F) 2t(G)

- G, lem = Lem(£t(F),£2t(G)), (1)

where 2t _and Lcm denote-the "leading term" and "least common multiple”,
respectively, (The resultant calculation ‘is nothing but a successivé applicatidn
of the leading term elimination,)

Another kind of elimination is the head term elimination which plays an essen-
tial role in the construction of Grdbner basis of the polynomial ideal [Buchf5].
(For precise definition of "head term”, see §2.) For polynomials F and G with
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coefficients in a field, the head term elimination is defined by the formula

lcm lem
+F —
ht(F) ht(G)

. G, lem = Lem(ht(F),ht(G)), (2)

where ht denotes the head term., (This formula is nothing but the S-polynomial of F
and G.) Note the similarity between the formulas (1) and. (2).

Although ‘the leading term elimination is employed in many algorithms, the
superiority of head term elimination is being recognized in many calculations,
This is because that the head term elimination is more general than the leading
term elimination in that the latter can be attained by successive application of
the former. Furthermore, we can determine the term ordering variously for head
term elimination, while the term ordering for leading term elimination is wunique
when we have determined the main variable,

In many algorithms, the following elimination is required: given polynomials Fl’
v Fooin R[Xl,...,Xn], where R = K[ul.._.,um], calculate polynomial(s) in u,
N by eliminating Xl, Xn from Fl’ Fr, Following Buchberger
[Buchf5,84], we formulate this elimination as a construction of Grdbner basis of
the polynomial ideal over ring R = K[u,...u_].

In §2, we develop a theory of GrObner basis of the polynomial ideal over polyno-
mial ring R. Some typical problems which can be solved simply and efficiently by
the use of head term elimination in R[Xl,...,Xn] are described in 3. In many
cases of elimination, we are unnecessary to calculate the full set of Gr6bner basis
but to calculate only a subset of GrGbner basis., Exploiting this, we can avoid
unnecessary computation and save ‘the time largely, which is explained in §4. The
algorithms to be presented in this paper have been implemented on the Japanese

algebra system GAL, and 84 shows the timing data also.

§2. Grdbner basis of polynomial ideal over polynomial ring

After Buchberger's pioneering work on Gfiibner basis [Buchf5], which is for
polynomials with coefficients in a field, various extensions have been made., As
for extending the coefficient domain, Lauer [Lauer76] and Buchberger [see Buch84]
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developed Grdbner basis theories over the integer ring, and Kandri-Rody and Kapur
extended them to Euclidean rings [Ka&Ka84]. In this section, we extend the
coefficient domain to polynomial rings, which is straightforward.

We denote the set of nonnegative integers by ZZU and the Cartesian product
Zox---xﬂo by ZZB. Let K be a field and R a ring K[ul,...,um]. We abbreviate
the rings K[ul,,,.,um] and R[Xl,....Xn] to K[u] and R[X], respectively. Similarly,
we abbreviate monomials cuihuu;lm and CX?I---X':’*, where ceK and C e R,

to cu® and CXA, respectively, The ideal generated by F Fr is denoted by

1* oot

(F .F }. Furthermore, we denote the pair of a and b by <a,b>,

JEERETE A

Definition 1 [order > for elements of Zf)]. Let a = (al,,.,,ar) and b =
(bl'”"br) be elements of ZB. We define a > b iff there exists an integer k such

that a, > bk and a, = b,, i=1,....k-1 when k > 1. /~/

k
Definition 2 [total degree]. Let t = cujl---u'™ and T = CX}i---Xe, with

c e K and C ¢ R, be monomials in K[u] and R{X], respectively, Total degrees of t

and T, which are abbreviated to tdeg(t) and Tdeg(T), respectively, are a, + .- +

a_ and A + o0+ AL Va4

Definition 3 [order |> for monomials in K[u] and R{X]]. Let t, = cau?*-nu;m
and t, = cbulil---u;m, with c_,c, € K, be monomials in K[u]. The lexicographic

order [> between t and t, is defined as t, > ty iff (al,,,,,am) > (bl""’bm)'

The total-degree order [> 1is defined as t, > t, iff (tdeg(ta),al,,,T,am) >

(tdeg(t,), b,,....b ). Let T, = C,Xft---x® and T, = CpXii---XC%, with

CA,CB e R, be monomials in R[X]. We define the lexicographic order [> between 'I‘A
and Ty by n-tupples (Al“"’An) and (Bl,...,Bn) and the total-degree order [> by
(n+1)-tupples (Tdeg(TA). Al,...,An) and (Tdeg(TB), Bl,...,Bn), respectively, just
the same as for the monomials in K[u]. //

Defiﬁition 4 [head term]. Let f be a polynomial in K[u] and t the highest order
monomial in f We call t the head term of f and abbreviate to ht(f). Similarly,
the head term is defined for polynomial F in R[X], with abbreviation Ht(F). //
Definition 5 [head power product, head coefficient], Let f e K[u] and ht(f) = cu®,
with ¢ ¢ K. We call u® and ¢ the head power product of f and the head coefficient
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of f, respectively, and abbreviate to hp(f) and hc(f). Similarly, for polynomial F
in R[X] with Ht(F) = CXA, C ¢ R, we call X* and C the head power product of F and
head coefficient of F, respectively, with abbreviations Hp(F) and Hc(F). //
Definition 6 [order [> fér monomials in K[u,X]]. Let T, = cauaXA and T, = cbubXB.
with c_,c, ¢ K, be monomials in K[u,X]. We define T, > T, iff either X* > X" or
A=Band v b u’

Remark. We can define > similarly as [>. For example, if [> is the total-degree
order in both K[u] and R[X], then we can define the order [>» for monomial

a a A A
leooeyg?my21... Y%
cuy u X1 Xn

, wWith ¢ € K, by the order of (m+n+2)-tupple

(ZAJ., AlLAL 2a,, ay,....a;).

Definition 7 [abbreviations Hhp and Hhc]. We abbreviate hp(Hc(F))-Hp(F) and
hc(Hc(F)) to Hhp(F). and Hhc(F), respectively. //

Definition § [S-polyromial in R[X] = K[u][X]]. Let F,G ¢ R[X]. The S-polynomial
of F and G, to be abbreviated to Spol(F,G), is defined as

LCM LCM  Hhc(F)

-F - . -G, (3)
Hhp(F) Hhp(G) Hhc(G) » _

Spol(F,G) =

where LCM = Lcm(Hhp(F),Hhp(G)). ./~
Example 1. Let [> be the total-degree order and

F = (2u2u

2 2
14y + 3u2 + 2u1)X1X2 + (terms of less order),

G = (3u1u§ - Zuf + 3u2)X§X2 + (termé of less order).
Then, Hhp(F) = u?uzoxng and Hhp(G) = ulug-Xfxz, and

Spol(F,G) = u,X;*F - u,X,(2/3)G

= ((4/3)11? + 3u§)xfxg + (terms of less order),

Definition § [M-reduction in R[X]1]. Let F,G ¢ R(X]. If a monomial T of F is such
that T = X*Hp(G){ -+ + cu®ht(Hc(G)) + -++ }, then F' = F - cu’X™G is a
procedure of replacing T by lower order terms. This procedure is called the
M-reduction of F by G and expfessed as F ——G—> F'. //
| Remark. The M-reduction by G is nothing but the rewriting of terms by the rule

Hht(G) — G - Hht(G), where Hht(G) = Hhc(G)-Hhp(G). For instance, if G is given as

in Example 1, the replacing rule is



42

3u1u§-XfX2 -— (2u% - 3u2)XfX2 — (terms of less order).

Remark. When Hhp(G) | Hhp(F), the Spol(F,G) in Def. 8 is nothing but the M-reduc-
tion of (head term of) F by G,
Definition 10 [normal form in R[X]]. Let I' = {G,,...G;} be a subset of R[X].
When F is M-reduced by G,, ... G, as far as possible to F, we call F the normal
form of F w.r.t. I' and express as F — F.
Definition 11 [Gr8bner basis in R{X]]. Let {Fl""’Fr} and T = {Gl,,._,'Gs} be
subsets of R[X]. The set I' is a Grdbner basis of ideal (Fl"“’Fr) if the
followipg two conditions are satisfied:
(1) (Fy....F) = (G.....Gy),
(2) for any pair <G,G;> in T, Spol(Gi,Gj) — 0. ~/

Given a set {F,,...,F_} in R[X], we can construct a GrSbner basis {G,,....G } of
ideal (Fl,...,Fr) by Buchberger's celeborated procedure [Buchf5].

Buchberger's procedure,

Input : Polynémials F,. ... F, in R[X];
Qutput: Gr8bner basis of (Fl""’Fr) in R[X];
r = {G=F, +-+, G:=F };
P = (<G.Gp> | G,G, ¢ T, G#G,};
while P # ¢ do begin
<Gi-G5> = a pair in P;
P = P - {<G.G>};
Spol(G;.G;) - G
if G# (0 then begin
P =P U {<G.,G>| G, e T};
r =T U {G};
end; end;
return T; //
Theorem. The above procedure terminates and the basis {Gl,....Gs} constructed is a
Grébner basis of (F,.....F ).
Proof. Let us consider that F,, .., F_and G,, ..., G, are elements in K[uX]
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with the monomial order [» defined in Def, § (see Remark to Def, 6, also). Then,
definitions of S-polynomial in Def, 8 and M-reduction in Def. 9 are the same as
conventional ones in K[u,X]. Hence, the proof for the conventional Gr8&bner basis
over the field can be applied to prove the theorem., //

Corollary. ‘Let r = {Gl""’Gs} be a Grdbner basis of (Fl""’Fr)' then

(1) for any F in (Fl,...,F ), F - 0,

r
(2) for any F in R[X], normal form of F w.r.t, I ié unique,
(3) T K[u] is a Grébner basis of ideal (Fl,....Fr)(\K[u], Vo4
Remark. Let E be a Euclidean polynomial ring with variable u. Since E can be
regarded as K[u] with K a field, there is a simple relationship between
S-polynomials in E[X] and R[X]. In E, we can define the order [> by the degree of
variable u and perform the reduction by the division operation, Let f and g be
elements of E such that deg(f) = deg(g), then there exist q and r in E such that
f =qg + r, deg(r) < deg(g).
The q is called the quotient and denoted by quo(f,g). For elements F and G in E[X]
such that deg(Hc(F)) = deg(Hc(G)), we define the S-polynomial of F and G as
LCM' LCcM!

. F —_—
Hp(F) Hp(G)

Spol(F,G) =

» quo(Hc(F),Hc(G)) - G, (4)

where LCM' = Lcm(Hp(F).Hp(G)).
Let 0 = deg(Hc(F)) - deg(Hc(G)). When F,G e E[X] and d = (, we have hp(Hc(F)) =
Lem(hp(He(F)),hp(He(G))) and

LCM LCM' LCM LCM' s
= = cu’,

Hhp(F)  Hp(F) Hhp(G)  Hp(G)

Hence, by eliminating the head term (= leading term) of Hc(F) by Hc(G)

successively, we can derive (4) from (3).

§3. Applications of head term elimination

As we have seen in the Theorem in §2, successive application of the head term
elimination terminates and we can use Buchberger's procedure as a general elimina-
tion procedure, Since the elimination is a very elementary operation, the head
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term elimination will be applied to various algebraic calculations.

We note that, in Buchberger's procedure above, we may choose the term order >
and the pair <Gi,Gj> arbitrarily. - Actually, the efficiency of elimination depends
on the choice strongly, and we select the folldwing choices,

Choice 1. We set [> to the total-degree order as far as possible. This is

because the total-degree order is much more desirable than the lexicographic

order for efficient elimination, as is well-known erhpirically.

Choice 2. The Gi and Gj are chosen to be as low order elements as possible,

Thﬂe importance of this choice will become clear in the next section.

With these choices in mind, we describe four typical applications of the head term
elimination in K[u] tX], below,

3.1. Solving a system of algebraic equations

Consider solving a system of algebraic equations -

{F1=0.“'. F_= 0}, (5)
where F‘i e K[X], i=1,....,r, and we assume that the dimension of solution space is
0. (Usually we set n = r, but this restriction is not always necessary.) Most
algebraic methods for solving (5) are such that an equation in a single variable;

X. for example, is derived by eliminating Xz. Xn. One practical method

1
performs this elimination by calculating a Grdbner basis of (Fl,...,Fr) with the
ordering X, > eee > X1 (i.e., the lexicographic order).

Some authors proposed to solve the system (5) by calculating a Griibner basis
with total-degree order. The method is‘ based on the following algorithm.
Algorithm (see [Buch84], Method 6.12).

Input : GrGbner basis I' = {Gl.,...Gs) with the total-degree order;

Qutput: Minimum degree polynomial Q(Xl) such that Q(Xl) 3 (Gl....,G K

s

Method: Putting Q = akX}; + .'«J.R_IX};_1 + -+ + a,, where a, i=0,..k, are

numeric unknowns and k is an adequate upper bound, construct a system of

linear equations on a, by requesting that Q 0. Then, determine a,,

i=0,....k, by solving the system. //
By this algorithm, we can calculate an equation QI(XI) = (0 which gives the
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values X, of the roots of (5). In order to determine the values of other
variables, Moritsugu proposed the following method [Mori86]: construct polynomials
q(Xl), i=2,...,n, such that the values of Xi are determined by the. values Qf X1 as
X, = Q_I(Xl). The Q. i=2,...,n, can be determined, so long as they exist, by
modifying the above algorithm slightly (i.e., requesting that X-Q - 0.
Moritsugu's method is quite useful, in particular when calculating the roots by
solving O‘l (Xl) = ( numerically because the number of arithmetic operations is quite
small in his method compared with other methods. However, it suffers from a defect
that polynomials QE(XI) do not always exist. In such a case, we must search for
quadratic form Xi2 + Q’xl(Xl)Xi + Q,lo(Xl) = (), or even higher degree forms,

The above method is simple, but our method below is even simpler (and will be
efficient),. -We calculate polynomials Q’I(Xl) and Qi(Xi,Xl), i=2,...,n, directly,
Where Q.1 and Q, satisfy Ql(Xl) = ( and Q-I(Xi'xl) =.0, respectivel'y, for the values

X, and Xi of the roots of (5).

1
Algorithm A (reducing a system of algebraic equations),
Input : Polynomials Fl’ v F_ in K[(X];
Qutput: Polynomials O'I(Xl) and Q"I(Xi,Xl), i=2,...,n, such that Ql,Q.l €
(Fl""'Fi-)’ with as small degx (Q.) as possible;
i 1
Step 1: Treat Fl’ .... F_ as elements in R[XZ....,Xn], R = K[Xl], and calculate

a Grobner basis I', of (Fl""’Fr) with the total-degree order;

1
Step 2: For each 1, 2<i<n, treat Fl’ Fr as elements in
R[X,...X_;.X;,q+---X 1. R = K[X.X;], and calculate a Grdbner basis T; of

i+10 X, and

X

i-1’

(Fl,....Fr) with the total-degree order for X2, r X
the lexicographic order for X.l and Xl; ‘

Return: Return Ql and Cl1 1=2,....n, where Q’l € I‘an[Xl], Qi € PinK[XPXi] and
degxi(Q_x) is the smallest. /.~

3.2. Calculating U-resultant

A classical but theoretically satisfactory method for solving a system of
algebraic equations is the U-resultant method. Let the system to be solved be (5).
Adding another equation F0 = () to (5), where
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F,. =u

0 towXy) +oeee +u X,

0

we can calculate the so—called U-resultant. The U-resultant is a homogeneous

polynomial in u,, u,, ..., u and it is a product of linear factors:

0 1 ,
| U(uo,ul,...,un) = ]g_:_[l(ckouo +ocuy F e+ Crnln)
where Cri e C (the field of complex numbers). With this factored form of the
U—resultant,‘ the set of roots (Xl,._.,Xn) of (5) is given by
(e 1B 70 r G Cig) | G # 0 ISk S v}
Furthermore, the multiplicity of a root is given by the multiplicity of the_ same
linear factor in U. - Hence, this method is mathematically complete.

The classical method of calculating the U-resultant is inefficient, In 1977, -
Lazard presented a prac_tical method [Laza77], and Lazard's method has been made
efficient by Kobayashi et al, by using the Gr8bner basis [K&F&F86]. - (This paper
also presents a practical method for factoring . the U-resultant into linear‘
factors.) However, the calculation is still complicated and time consuming.

Our method using the head term elimination is quite simple, yet it is efficient

for small-sized problems. (For large-sized problems, the method of Kobayashi et al.

will be better.) Our method calculates the U-resultant by eliminating Xl' eer X

from the system of algebraic equatioﬁs {F0=0, F1=0, «-+, F =0}.

Algorithm B (U-resultant).

Input : F., ..., Fr in K[X] and indeterminates u

1 u

17 e a’

0’
Qutput: U-resultant of {F1=0, Fx_=0};

Method: Treat FO, F . Fr as elements in R[X], R = K([ul], and caldulate a

1°

Gr8bner basis TI' of ideal (FO'F1“"'Fr) with the total-degree order for
both Xl, Xn and Ups wees W5

Return: Return the lowest order element G such that G ¢ TNK[ul. /.~

3.3. Calculating algebraic relations

Let Pl' Pr be polynomials in K[X], and let p(ul,,_,,ur) be a polynomial in
K[ul,...,ut]. If p satisfies p(Pl,...,Pr) = (0, then p is called an algebraic rela-
tion of ;Pl" Pr.

Calculation of algebraic relations of given polynomials Pl' .... P_ are simple

-9 -
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in principle: we have only to eliminate variables Xl. X11 from the set of
polynomials {Pl—ul' Pr—ur}. The use of Buchberger's procedure to calculate
algebraic relations is described in [Ar&Se84]. This method calculates a Grdbner
basis in K[ul,,,,,ur, Xl,...,Xn]. In order to eliminate D ST X, first, one

usually  employs the lexicographic order for X, .... X,, u If we
. n

1 r? ses u

1
calculate a GrObner basis in R{X], where R = K[ul,..,,ur]. then we can employ the
total-degree order. . Note that, with a Gr6bnér basis calculation, we can calculate
a complete set of gene_rators of the algebraic relations (cf. Corollary to 4Theorem
in §2).
Algorithm C (algebraic relations).
Input : Polynomials P,, ..., P_ in K[XI;
Output: Grbbner basis of the ideal generated by algebraic relations;
Method: Treat Pl—ul, +++, P_-u_ as elements in R{X]. R = K[u]. and calculate
a Grobner basis I' of the ideal (Pl_ul' cee, Pr—ur) with the total-degree
order for both X,, ..., X and u;, ..., u;
Return: Return © N K[ul. //

3.4. Representing a polynomial by other polynomials

Given polynomials P and PI' Pr in K[X], we want to determine whether there
exists a bpolynomial Q(ul,_,.,ur) in K[ul,.,.,ur] such that P = Q(Pl""'Pr)' and we
want to determine Q when exists, . An algorithm performing this calculation will be
quite wuseful for simplifying large polynomials, It is easy to see that this
calculation is a special case of calculating algebraic relations described in 3.3.
Therefore, we have the following algorithm, |

Algorithm D (polynomial composition).

Input : Polynomials P, P,, .., P_ in K[XI];

Qutput: Polynomial Q(ul,._.,ur), if exists, such that P = Q(P P);

ety

Method: Treat P, Pl. ... P_as elements in R{X], R K{ul, and calculate a

Grébner basis I’ of (Pl—ul, Pr—ur) with the total-degree order for

both Xl' Xn and u,, ..., u. Then, P Q;

1
Return: If Q e K[u] then return Q else return NIL. //

_10_
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§4. Devices for efficient elimination

Although we have formulated the variable elimination as the construction of a
Grdbner basis, we need not always calculate the full set of Grdbner basis but may
stop the computation whén the required elimination is aécomplished. For example,
in the calculation of U-resultant we may stop the computation when all the
variables Xl' Xn are eliminated. (Then, the U-resultant calculated may
contain an extra monomial factor.) This device will save the computation time
drastically, as we will see from the actual timing data. Note that, with Choice 2
given in §3, the required elimination will be performed by avoiding wasteful
computation as far as possible,

The second device is the removal of monomial factors from the S-polynomials
constructed, which is quite easy to execute, For example, monomial factors in
algebraic relations are meaningless and we can remove them, Note that, even if
such a monomial factor is meaningful, we can often remove it so long as the removed
factor is processed suitably. For example, suppose P, = ﬁix; in Algorithm A, then

we can split the system of algebraic equations into two systems as {P1=0,

=0, P.=0, P

i-1 i i1

— p— — a—- —— —
0. ... P,=0} and {P,=0, ... P,_;=0, X;=0, P, =0, ... P =0}.
Hence, only if the latter system is also solved, we can remove the monomial factor

Xa

X from Pi.

In the current implementation of our Grdbner basis package, the user canchoose
one of the following three modes for controlling the truncation of computation,

(T0) No truncation (default mode);

(T1) Truncate the computation when variables Xl.'.... X, are eliminated;
(T2) Truncate the computation when variables Xl. .... X and parameters U, o
u _, are eliminated (the final polynomial is in K[um]).

Furthermore, the user can chooée one of the following three modes for controlling
the removal of the monomial factors,

(R0) No removal (default mode);

(R1) Monomial factors in K[u] are removed;

(R2) Monomial factors in K[u,X] are removed.

_11_



Including the above-mentioned devices, the algorithms given in the previous sec-
tion can be improved as follows,
Algorithm A' (reducing algebraic equations),
Perform the second step of Algorithm A with modes (T1) and (R2), and calculate
QI(XI) by eliminating, for example, X2 from elements in the set I‘Z. (The
removed factors should be saved for the later computation.,) //
Algorithm B' (U-resultant).
Perform Algorithm B with modes (T1) and (R1). //
Algorithm C' (algebraic relations),
" Perform Algorithm C with modes (T1) and (R1). //
Let us show the effectiveness of the above-mentioned devices by several
examples, The test has been done by using a Grdbner basis package on the Japanese
algebra system GAL. The test problenﬁs are as follows,

Problem 1 (reducing a system of algebraic equations).

_ 2 2 2 2, _ _
F,o= 2(X2 + X2 + Xo + X)) - X, =0,
F, = 2(X, Xy + XX, + X,X) = X, = 0,

- 2 _ oy =
Fy, = 2(X,X, + X,X) + X2 - X, = 0,

F =2(X4+X3+X2)+X1—1=0.
This problem is taken from a theory of spin grass by Katsura et al.
Problem 2 (calculating a U-resultant),

_ 2 2 _ g _ v 1 _
F,=X+XX-2=0 F,=XX, ~-1=0.

Adding F0 = u, + u1X1 + uZX2 = ( to the above system, we can calculate the

0

following polynomial as the U-resultant:

_ 4 _ g 22 2 _ 0n2.2

U(uo,ul,uz) = u, 2u0u1 4uoulu2 2u0u2
4 3 2.2 3 4
+ u; + 4u1u2 + 6u1u2 + 4u1u2 + u,.

Problem 3 (calculating an algebraic relation).

_ (5 6 oSy 5, _ 4,2 2.4
P, = X%+ xD + 52203%, - X,X2) - 10005(X;XZ + xix7),
4 4 3 3 242
P, = - (X] + Xj) + 228(X{X, - X;X;) - 494X{X;,

- 2 N
P, = XX, (X} + 11X,X, - X))’

The algebraic relation of these polynomials is Pf + P‘g - 1728P3 = (. This problem

_12_
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is taken from a Klein's book discussing the symmetry of regular polyhedra,

Problem 4 (polynomial composition).

_ 2 2 _
Py = XXy + 2X[ - 3XX, + 5X,,

3
1

_ _ oawlv 2 3
P2 = 2X 4X1X2 3x1x2 + Xz'
_ _ oy9y3 8.4 745 2 _
P = 2X1X2 + 4X1X2 + 3X1X2 + + 4X1 6X1X2 + IOXZ.
Given these polynomfals (P is composed of 489 terms), we derive a polynomial
Q(ul,uz) such that P = Q(PI.PZ). The form of Q in this example is

Q(ul,uz) = - wdu, + uu’

14y 12+2ul—3u2.

| Algorithm | Prob.1 | Prob.2 | Prob.3 | Prob.4 |
| l | l | |
| A -D | 17.080 | 1,138 l 251 | 115 |
| | | | | |
| A'—C' | 690 | 65 l 122 | *kkk l

Table [. Timing data (in milliseconds)

Table I shows the timing data, where the computation is done by GAL on a
FACOM-M380 computer. We see that the truncation mode is often quite effective,
This effectiveness is due partly to Choice 1 given in 83 and partly to skipping the
/termination check in Buchberger's procedure, For Problem 2, for example, the
elimination has been performed after constructing 11 S-polynomials while we must
construct 16 S—polynomials for the Grdbner basis ca]culation.l The removal mode is
effective only for Problem 2 in our test. In mode (R1), we obtain the U-resultant
just when X1 and X2 are eliminated, through successive removal of monomials u,, ui,
and u,. On the other hand, in mode (R(Q), we obtain ufuz-U(uo,ul,uz) qut when X1
and X2 have been eliminated, and we have to construct 19 more S-polynomials to get
U(uo,ul,uz)_ We have also solved Problem 2 by applying Algorithm 2 with modes (T0)
and (R1) (i.e., no truncation but removal of monomial factors), and the computation
time was 707 milliseconds. This shows that the removal mode is also effective
considerably. |

Although the above test is restricted within a small number of examples which

are of small-sized, we have seen that our devices are quite effective in many
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cases. The devices will become more effective for larger-sized problems,
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