-

View metadata, citation and similar papers at core.ac.uk brought to you byj‘: CORE

provided by Kyoto University Research Information Repository

Bl
oo o e/,
&
Kyoto University Research Information Repository > KYOTO UNIVERSITY

Modified One-way Alternating Pushdown Automata and
Title Indexed Languages(Algorithms : Mathematical Foundations
and Applications)

Author(s) | IKEKAWA, MASAO

Citation O00O0O0DbO0ODog (1986), 591: 221-227

Issue Date | 1986-05

URL http://hdl.handle.net/2433/99461

Right

Type Departmental Bulletin Paper

Textversion | publisher

Kyoto University

https://core.ac.uk/display/39230759?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ooooboooao
5910 1986 O 221-227

oo
o
b

{L7a] Symposium
in KYOTO 1986 winter

Modified One-way Alternating Pushdown Automata
and Indexed Langquages

IS %

Masao IKEKAWA

Department of computer science
The University of Electro-Communications

~

Abstract. A partitioning automaton which is the modified version
of the alternating automaton is defined. The machine can
partition the input string into some blocks and check them
universally. . The classes of languages accepted by partitioning
finite automata and partitioning pushdown automata are shown te
be equivalent to the classes of CFL and Aho’s indexed languages,
respectivery.

1. Introduction

The concept of alternation was introduced by Chandra, Kozen and.
Stockmeyer [2] as generalization of nondeterminism. Several interesting
applications of alternating Turing machines are known [3, 7, 8, 9]. There
are some investigation about the effect of adding alternation to other
automata [4, 5]. In this paper, we introduce the concept of partitioning
automata which are modified alternating automta, and investigate the effect
of adding partition to (one-way) finite automata and (one-way) pushdown
automata. ' ‘

In the case of alternating machines, it can make ex1stent1al branches"
and "universal branches.” Instead of unlversal branches partltlonlng
machines can make "partitive branches.” In partitive branches the machine
guesses partition of remained input string into k blocksl(b1,b2,1--.bk), and
then reaches to each member of finite list of configuration [ﬁ1.B2,---,Bk]
universally, where block bi is assigned to configuration Bi as remained
input string.

In Section 3 we show that
(1) the class of languages recogn17ed by paftitioning finite automata (pfa)

is equivalent to the class of CFL, and ‘
(2) the class of languages recognized by parbzuzontng pushdoun automata'

(ppda) is equivalent to the class of Aho’s indexed languages.

The deterministic-complexity hierarchy
LOGSPACE ¢ PTIME ¢ PSPACE ¢ EXPTIME <---

shifted by exactly one level when alternation was introduced. Then the formal
language hierarchy : : .

REGULAR SET ¢ CFL & INDEXED LANGUAGE - - -

also shifts exactly one level when partitioning automata are introduced.

In Section 4 we consider about the power of partitioning automata as
complexity measures. And we show that
(3) for any polynomial-time bounded one-way alternating pushdown automaton M,

there is an indexed language L and L(M) <poly L.

2.Partitioning Finite Automata and Partitioning Pushdown Automata

A partitioning machine is similar to an alternating machine except
that a subset of the states are designated as partitive states instead of
universal states and the range of a transition function is defined by the
set of finite lists instead of the power set. ’

Definition 2.1. A partitioning finite automaton (pfa) is a 6-tuple
M=(Q U % 6 g5 F),

where

Q is a finite set of states,

USq is a finite set of partitive states (Q-U is a set of existential
states), i '

T is a finite input alphabet,

qer is the initial state,

FeQ is the set of accepting states and

6 is the transition function where

5:@x3 + Q1.

[A]* denotes the set of the finite lists, whose elemsents are elements
Of,Aﬂ [a1,a2,'--,qk](k>0). In general definitions of nondeterministic or
alternating machines, the range of a transition function is represented
by the power set. In this paper, because the order of values of transition
function is important, the range is représentediby the set of lists. In
following arguments, "beB" means also that b is an element of the list B.

223

Definition 2.2. A configuration of pfa M is a pair (q,w) with qeq
and wez™. An initial configuration of M on input x is (go,m). An accepting
configuration of M is (g, €) where geF and ¢ is the empty string.

Definition 2.3. A pfa M accepts input x if and only if an accepting
computation tree of M om imput x exists. An accepting computation tree of
pfa M on input x is a finite rooted tree whose nodes are labeled with
configurations of M and with the properties:

(I> A root of the tree is labeled with an initial configuration of M

on input zx.

(II> All the leaves of the tree are labeled with accepting configura-
tions of M. '

(ITI) For each nonleaf x labeled with (g.aw) where gqeQ, ae€ZU{e} and

meZ*,

(a) 1if gqeQ-U and [q1,q2,---,qk]=5(q,a) then n has exactly one
child p with label (gi,m) 1€ €k,

(b) if gel and [q1,q2,---,qk]=6(q,a) then 7 has exactly k
children PysPos Py Qith labels (q1,w1),(q2,w2),-'f,(qk,wk)
and m1w2---wk=w.

Definition 2.4. A partitioning pushdown automaton (ppda) is a 8-tuple

M= (QUZT,206,4,F)

where

I" is the pushdown store alphabet,
zel is the bottom symbol on the pushdown store and
6 is the transition function where

5:Qx(ZU{e})xT" ~» [@xI"*1*.

Defintition 2.5. A configuration of ppda M is a triple (q,w,9) with
geq, wes™ and 6er'™. An initial configuration of M on input x is (9g: %, 2).

An accepting configuration of M is (q.,e,0) with ge€F and ger™.

Definition 2.6. A ppda M accepts itnput & if and 6nly if an accepting
computation tree of M on input x exists. An accepting computation tree of
ppda M on input x is a finite rooted tree whose nodes are labeled with
configurations of M and with properties:

(IX{(II> similarly with Definition 2. 3.

224

(ITII) For each nonleaf n labeled with (q,auw, f6) where geQ, aeZU{e},
weZ™®, feI' and @er™,

(a) 1if geQ-U and [(q1,€1),(q2,a2),---,(qk,ﬁk)]=6(q,a,f) then =
has exactly one child p with label (qi,w,ﬁi) 1<i<k.

(b) 1if gelU and [(q1,€1),(q2,€2),---,(qk,ék)]=6(q,a,f) then n has
exactly k children PyrPor 1Py with labels (qi,w1,£19),
(qa,mz,aze),---,(qk,wk,ake) and W W, Wy =W

3. Relationships Between Partitioning Automata and Formal Languages

In this section we establish fundamental relationships between
partitioning automata and formal languages. First we study about partitioning
finite automata and context-free languages.

Levma 3.1. Every context-free Language L can be generated by a grammar
for which every production is of the form A-aba or Ai-+c where 34 is a variabfle,
a and b are teminafs, ¢ 1s a terminal or &, and a 18 al{possibly empty)siring
of variabfles.

PROOF. Let G = (N,7T,P,S) be a Greibach normal form grammar generating
the CFL L. Now consider a production in P, of the form A*aB1Bz---Bk(k>1). We
. can make new productions by replacing B1 by all productions of the form

B1->bc1 2--vC£ (£20>. O

Tueorem 3.2. . A lLanguage L 18 accepted by a pfa iff L 18 a context-free
Language. .

PRooOF. Let L be a CFL. There is a CFG G = (N,T,P,S) which generates L.

We assume that G satisfies Lemma 3.1. A pfa M = (Q,U,T,G,S,F) is defined as
follows:
Q@ = N U {Ka>laeT} U {Sy UU U F. ,
U = {<a,X>| asT, XeN', |XI<f vwhere £ is the largest length of strings
which appear in righthand of all productions in P }.
9r € F.
For each productions in P of the form
(1 Aﬁab8132---8k(k>1> set
--Bk> € 5(Aﬂa) and)
| [By.Bg. - Byl = 8(<b,B By B> b).
(2) A=ab set
" ¢b> € 6(4,a) and
q- € 6(,b).
(3) A-a set :
”- ’ 9 € Q(J,a).
(4) A4-e set
4 e F.
Obviously L = L(M) holds. Now for the converse,vlet pfa M = (Q,U,Z,é,qO,F).

Let G =‘(Q,E,P,q0) be a context-free grammar where P is defined as follows:
(1) For each geQ-U and aqe€Z, if g7 €d(q,a) then set
qg -+ aq’ € P.
(2) For each geU and aqe€Z, if [q1,q2,---qk]=6(q,a) (k21) then set
9 = aq9, " "9 € P.
(3) For each gef, set
qg - & € P.
It is easy to show that L(M¥) = L(G). O

Now we study about partitioning pushdown automata and indexed languagef
For the definition of indexed grammars and indexed languages see Ahol11.

TuEoREM 3. 3. A fanguage L 18 accepted by a ppda iff L is an indexed
Language. ‘ .
Proor. Let L be an indexed language. There is an indexed grammar G=(N, 7T,

I,P,S) in reduced form, which generates L. Each index production in each
index feI is of the form A-B, where A4,BeN. Each production in P is of the
forms
(1) A-BC,
(2) 4»Bf or
(3) 4d~a.
with 4,B,CeN, feI and aelU{e}. A ppda N=(Q,U,7,T',2,5,5,F) is defined as
follows: '
Q =NU {S} UU UF.
U = {KX,Y>|X,YeN}.
F = {qp}-
' =1IU {z}. ‘ ‘
For each index production 428 in each index fel set
(B,e) € 6(4,&,f).
For each production in P of the form '
(1) 4A»BC set for all fel',
(<B.C>,f) € 6(A. &, f) and
LB (C)] = 6(KB,CO, e, f).
(2). A»Bf set for all geTl,
(B,fg) € 6(4,€,9).
(3) A»a set for all fel,
(p.) € 6(4,a,f). |
Obviously L = L(M) holds. now for the converse, let M=(Q.U,Z,F,z,5,qD,F) be
a ppda. Let G = (N,Z,T,P,5) be an indexed grammar which is defined as
follows: ‘/ o
N=@QU {S}y U {<X,£>|XeQ, aeF*, lE1<L where £ is the lérgest length of
- . strings which M can push in one move}. '
(1) For each geQ-U, aeiU{e} and feI', if (g7,&)e5(q.a.f) then set
q » alq’,&> € f and ‘
{g”.,&> » qg’E € P.

220

- (2) For each geU, ae€3U{e} and fel, if [(q1,€1),(qz,£2),-:-,(qk,ak)]
=6(q,a,f) then set

g = akq. 804G, 850 - {qy. &> € f and
for all 1<isk,

\ g;.8;> > q;&;, € P.

(3) Set § - 992 € P.

(4) For each gqeF, set
qg > €& € P.

It is easy to show that L(M) = L(G). O

4. The Power of Partitioning Automata

In this section we investigate the power of partitioning automata as
complexity measures.

The class of languages accepted by pfa’s (ppda’s) is denoted by PFA
(PPDA). The class of languages accepted by one-way alternating finite
(pushdown) automata is denoted by ALT-FA (ALT-PDA). Aho [1]>has shown that
the class of indexed languages 1is a proper subset of the class of context-
sensitive languages. Chandra, Kozen, and Stockmeyer [2] has shown that
ALT-FA is equivalent to the class of regular sets, and ASPACE(n) & ALT-PDA.
Thus by Theorem 3.2 and Theorem 3. 3:

CoroLLARY 4. 1. ALT-FA & PFA.
CoroLLarRY 4. 2. PPDA ¢ ALT-PDA.
We will consider time bounded one-way alternating pushdown automata.

We denote the class of languages accepted by real(polynomial)-time bounded.
one-way alternating pushdown automata by . real-ALT-PDA (poly-ALT-PDA).

TueEoreM 4. 3. For each L € real-ALT-PDA, there is L’ € PPDA and
Ve
L <poly L.
Proor. Let M be a real-time bounded one-way pushdown automata which

accepts L. Let k be the méximum number of branches which M can make in one
move in univaersal states. The transducer f is defined as follows:

F: e (zu L ank, ‘

f(e) = € and .

flaw) = alf(@)ILf(w)l---[f(w)] (k times).
It is easy to show that there is a ppda M/ and x is accepted by M iff f(x)
is accepted by ¥7. O o

CoroLLARY 4.4. . For each L € poly-ALT-PDA, there i3 L7 € PPDA and

L < L.
poly) .
ProOF. Every L € poly-ALT-PDA is polynomial-time reducible to L’e€ real-
ALT-PDA. O

Acknowledgments

Thanks tc Associate Professer Takumi Kasai for his most helpful
suggestions and discussions.

REFERENCES

1. A”o, A. V. Indexed grammars-an extension of context-free grammars. J. ACY
15, 4 (1968), 647-671.

2. Cuanpra, A. K., Kozen, D. C., anp StocveEYER, L. J. ~Alternation. J. AcM
28, 1 (1981), 114-133.

3. Kannan, R. Alternation and the power of nondeterminism. Proc. 15th ACM
Symp. on Theory of Computing, (1983), 344-346.

4. Lapner, R. E., LrpTton, R. J. anNnD STockMEYER, L. J. 'Alternating pushdown
and stack automata. SIAM J. Comput. 13, 1 (1984), 135-155,

5. LabNer, R. J., STocxMEYER, L. J. anp Lripron, R. J. Alternation bounded
auxiliary pushdown automata. Inform. Contr. 62 (1984), 93-108.

6. Parcmman, R., Duske, J., anNDp SpecHT, J. On deterministic indexed
languages. Inform. Contr. 45 (1980), 48-67.
7. PauL, W. J., Prauss, E. J., anp Reischuk, R. On alternation.

Acta Informat. 14 (1980), 243-255.

8. PaurL, W., anp Rexscuuk, R. On alternation IT. Acta Informat. 14 (1980),
391-403. ' -

9. Ruzzo, W. L. Tree-size bounded alternation. J. Comput. Syst. Sci. 21
(1980)>, 218-235. ' '

