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ON CYCLIC SEMI-REGULAR GROUP DIVISIBLE DESIGNS

Rahul Mukerjee, Masazkazu Jimbo and Sanpei Kageyama
R = =%
Abstract

This paper develops ceratin immediately applicable conditions for the
existence of cyclic SRGD designs. The case when the block size equals 3 has
been completely explored. Special attention hés been given Fo the situation
A, = A +1 which is important froh statistical considerations. Some results
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have also been derived for the situation when. short orbits are allowed.

1. Introduction

The group divisible (GD} designs constitute the largest,-simpleét and

perhaps most important type of 2-associate partially balanced incomplete

- block (PBIB) designs. A GD design is an arrangement of v(= mn) treatments in
b blocks such that each block contains k (< v} distinct treétments; each
treatment is replicated r times; and the set of treatments can be partitioned %
into m (> 2) equivalence ciasses of n (> 2) treatments each , any two distinct
treatments occurring together in Al blocks if fhef belong to the same equi-
valence class, and in 12 blocks if they belong to different equivalerice -
classes. It may be remarked that in the literature the commonly uséd termino-
logy for thesevequivalence classes of treatments is 'groups’, bgt here we
deliberately prefer to use the phrase 'equivalence classes' in order to avoid
a notational-confusion with groups in a group-theoretic sense which we shall
be considering shortly in this paper. GD designs may aéain be of three types:
(a) singul#r, ifr= Al; (b) semi—regﬁlar(SR) if r>A1 and rk = sz; (c)
regular (R) if'r>xl and 'rk>x2v.

If the automorphism group of a GD design'contains a cyclic group of order




v, then the GD design is said to be cyclic. For a cyclic GD design, without
loss of generality, we may represent the set of v treatments by Vv = {0,1,...,
v-1l} and in this case the automorphism of order v is x‘+ x+1 (mod v). In the
sequel, we shall use this notation to represent the treatments in a cyclic GD
design. The following definitions will also be helpful. For a block B = {bo,
b +i}, addition being

} and any iev, define B+i = {bo+i,b +i,...,b

l""'bk-l 1 k-1
reduced mod v. The collection of blocks {B+i]isv} is called the full orbit

containing B. Let i be the smallest positive integer such that B+i_ = B. If

0 0

i,<v, then the collection of blocks {B+i10§}§}0-1} is called a short orbit

containing B.

A large humber of methods of constructing GD designs are available in the
literature (cf. Clatworthy (1973), Reghavarao (1971)). However, most of the
designs produced by them are not cyclic. Cyclic GD designs can be conveniently
obtained by the method of differences of Bose (1939). Their flexibility, ease
of representation and conduct of experimentation make them worthy of attention
in their own right, as David and Wolock (1965) pointed eut. In cyclic designs,
no plan of experimental layoﬁt is needed since the initial block or blocks
suffice (i.e., concise representation). This is readily implemented on a -
computer. Cyclic desighs also permit an automatic two-way elimination of hete-
rogepeity and a fairly straightforward and general method ef analysis and
come intovserious consideration as a means of augmenting the experimenter's

choice of designs.

The basic aevelopment of the constructions of GD designs was done by Bose,
Shrikhande and Bhattacﬁerya (1953). Freeman (1976) and Dey and Nigam (1985)
gave some methods of constructing cyclic ﬁGD designs. Huang, Lin and Clatworthy
(19821 searched cyclic, symmetric PBIB designs systematically. But they do not

discuss cyclic SRGD designs. Recently, Jimbo and Vanstone (1984) considered



cyclic GD designs with Al = 0 and Az = 1 to construct other block designs.
From a point of view of various usefulness of cyclic designs, we here discuss
the existence problem (with construction procedures and non-existence) of

cyclic SRGD designs. A case Az = A,+1, which has strong statistical signifi-

1

cance in terms of optimality, is also treated. Within the scope of practical

range of parameters in Clatworthy (1973), who tabulates practical plans with

solutions not cyclic except three, we also produce cyclic solutions for SRGD

designs which may be more convenient to be stored in a computer and be non-

isomorphic to the previously published solutions. As a by-product, it is shown
that a cyclic BIB(vkz,k,l) design does not contain any cyclic BIB(vk,k,1l)
subdesign for k > 3. The case where short orbits are allowed has also been

discussed.

For definitions of other designs treated in this paper refer to

Raghavarao (1971).

‘2. Some existence theorems

Considering a cyclic GD design, we have the following three lemmas; the

proofs of the first two lemmas are simple and hence omitted.

Lemma 2.1. If aj,a, € V are first associates of each other (i.e., belong

2

to the same equivalence class), then for any ieV, a +i(mod v) and a,+i(mod v)

1 2

are also first asscciates of each other.

Lemma 2.2. If S is an equivalence class of a cyclic GD design, then

for any ieVv, S+i = {s+i (mod v)]ses} is also an equivalence class.

Lemma 2.3. If So is an equivalence class of a cyclic GD design and if SO

contains the identity element 0, then S_ is a subgroup of ;helcyclic group

Q
vV = Zv’ ise., S0 = {0,m,2m,..., (n-1)m}, and all other equivalence classes are

cosets of So.

Proof. If aeso, then 0 and a are first associates since 0eS_.. Hence -a

0
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and 0 are first associates by Lemma 2.1, which means that the inverse element

-a is contained in S.. If a

0 l,a2 € SO' then a, and a, are first associates,

1 2

hence -al and a2 are first associates and, again by Lemma 2.1, 0 and al+a2

are first associates. Thus al+a2 € SO. Hence SO is a subgroup of ZV and, by

Lemma 2.2, all other equivalence classes are cosets of So.

In view of Lemma 2.3, the equivalence classes of treatments in a cyclic
GD design are of the form Si = {i,m+i,..., (n=1)m+i} (0<i<m-1) and for any i,J
(0<1,3<m-1),

(2.1) | {al-az(mod v)lalesi, a esj} =85. .,

2 i-j

the suffix i-j in the right-hand side of (2;1) being reduced mod m.

Consider now cyclic SRGD designs in particular. 1£ is well-known (cf.
Raghavafao (1971)) that in an SRGD design k is an integral multiple of m and
each block contains exactly k/m (= c, say) treatments ffom each equi?alence
class. The following theorem gives a characterization of cyclic SRGD designs
without short orbits.

Theorem 2.1. For the existence of a cyclic SRGD design, without short
orbits, it is neceésaﬁy and sufficient that

(2) b is an integral multiple of v and

(b) if b/v = a, then there exist integers flilj (0<i<m-1, 1<j<c, l<u<a)
such that defining L = {0,1,...,n-1}, fij € L for all i,j,u, and

(i) in the set {fij—fi'tlo_{iim—l, 1<j,t<c (j#t), l<u<al}, where the
differenees are reducea mod n, each non-zero member of L is repeated Al times,
(i1) in each of the sets ‘
(-5, 2., f';‘le-fist, ij-fE:it-lllij,tic, l<us<a},

u

(£23.60%, £33 gl RlIgmode ) 00 gm2t 1T gmmlt g
u u u u u u u u u u

1<j,t<c, lzu<al,
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{fm—lj_fOt 03
u u

1t
lfu -

-fu l,..., m_zj-fﬁ-lt-l[ljj,tip, l:pfg},‘

u

where the differences are reduced mod n, each member of L is repeated AZ times. |

Proof. The necessity.of (a) follows immediately counting the number of

full orbits in a cyclic SRGD design. To prove the necessity of (b), let for

such a design, b/v = o, the number of full orbits. Then by our preceding

discussion (and also the fact that in an SRGD design each block contains
exactly k/m = ¢, say, treatments from each equivalence class), it follows that
in a cyclic SRGD design, without short orbits, the a initial blocks must be of

the form

01 0

a reae,mf 11 L

-11 -1
uc,mfu +l,...,mfuc+l,...,mf§ +(m—1),...,mf§ +(m-1)},

J

{mf

lfpfg, where Oﬁﬁz <n-1 (Ofiip—l, l:j:p, lfpjg).

By (2.1), among the ordered differences (mod v) arising out of the dis-

tinct elements in the a initial blocks, each non-zero element of S_ is repeatedi

0

ll times and each element of V-S  is repeated AZ times. Therefore, considering

0

in particular the occurrence of the elements of S, among these ordered differ-

1

ences, it follows that among
1j_.ot 2j_ 1t -1j__m-2t 0j_m-1t_
{mgfu £+, m(£)-£ )+1,...,m(f§ £+, m(g, £ -1)+1]
1<j,t<c, 1l<u<a},

all reduced mod v, each element of S, is repeated Az times. Hence the neces-

1

sity of our assertion regarding the first set in ((b),(ii)) is immediate. The

necessity of our assertions regarding the other sets in ((b),(ii)) and the set i

in ((b), (1)) follow in a similar manner. This proves the necessity part of the

theorem. The sufficiency part follows by retracing the above steps.

Although apparently Theorem 2.1 looks somewhat involved, computational
experience shows that (see Section 3) in proving existence or non-existence
of cyclic SRGD designs, without short orbits, using computers, application of

Theorem 2.1 can tremendously reduce the computational time. Moreover, one can

¢



PA

obtain simpler necessary conditions starting from Theorem 2.1 as stated below.

Theorem 2.2. For the existence of a cyclic SRGD design, without short
orbits, it is necessary that b is an integral multiple of v and at least one
of the following holds:

(i) n odd and 12 is an integral multiple of m,

(ii) n even, Al even, 12 even and Az is an integral multiple of m,

(iii) n eveﬁ, Al even, 12 odd and m=2.

Proof. Summing (mod n) the elements in the set in Theorem 2.1((b), (i))
in two ways, one obtains the necessary condition
(2.2) : n(n—l)Al/z £ 0 (mod n).

Similarly, considering the setsvin Theo;em 2.1((b),(ii)) one can derive the
necessary conditions
(2.3) n(n-l)lz/z = —icza (mod n) (lf}:p—l).

Considering separately the cases of odd and even n and making use of the iden-

tity cza/n'= Az/m, it is possible to complete the proof from (2.2) and (2.3).

The above theorem is a very powerful tool in identifying the SRGD designs
for which a cyclic construction may be possible and also in proving non-
existence results concerning cyclic designs (i.e., a cyclic SRGD design cannot
be constructed unless its parameters are as stipulated by Theorem 2.2).
Theorem 2.3 and Example 2.1 below illustrate the ideas. In particular, Theorem
2.3 completely exhausts the situation k = 3.

Theorem 2.3. An SRGD design with k = 3 can be‘éyclic (without short orbits)
"if and only. if its parameters are of the form

(a) v=3n, m=3, n, b=3n’t, r=3nt, k=3, A;=0, A,=3t (n odd; t21),

or (b) v=3n, m=3, n, b=6n2t, r=6nt, k=3, Al=0, A2=6t (n even; t>1).
Proof. For an SRGD design with k = 3, clearly m = 3 and Al =>0. Now, if

such a design is cyclic, considering separately the cases of odd and even n



and applying the conditions (i) and (ii) in Theorem 2.2, one obtains‘respeé-
tively the forms (a) and (b) stated above. This proves the 'only if' part Qf
the theorem. Note that the condition (iii) in Theorem 2.2 cannot .arise in this

situation.

To prove the 'if' part, observe that for odd n, a design wiﬁh parameters
as..in (a) may be constructed cyclicaily from the initial blocks‘{O, 3j+1,
63+2} (0<j<n-1), each repeated t times. Similarly, for even n, a cyclic cons- f
truction of a design with parameters given by (b) is possible using the
initial blocks {0, 3j+1, 6j+2}, {0, 3j+1, 63j+5} (0<j<n-1), each repeated t
times. The elements in these initial blocks are, of course,»reduced mod v.‘It
may be remarkedithat the choice of initial blocks as above is motivated essen-é

tially by the idea of row difference schemes considered by Jimbo and Kuriki

(1983).

Example 2.i. We examine the situations under which an SRGD design with

parameters of the form |

(2.4) v=mn, m, n, b=n2, r=n, k=n, Al=0, 12=l

(m,n > 2) can be cyclic (without short orbits). If the design is cyclic, then .
-b/v and hence n/m (= o, say) is an integer. Evidently, for such a design the
conditions (i) or (ii) of Theorem 2.2 cannot hold. The condition (iii) holds
provided m=2. Then the parameters of the design become v=4a, m=2, n=2a, b=4a2,‘
r=2a, k=2, Al=0, A2=l, and a cyclic construction is always possible starting
from the initial blocks {0,1}, {0,3},..., {0,20-1}. Thus an application of

Theorem 2.2 shows that an SRGD design with parameters as in (2:4) can be

cyclic if and only if m=2 and n even.

In the situations considered in Theorem 2.3 and'Example 2.1, the neces-
sary conditions stated in Theorem 2.2 turn out to be sufficient as well. In

general, however, this is not true and some exémples‘in this regard will be
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presented in the next section. Anyway, by a complete enumeration of all
possibilifies, we get the saﬁisfying obsefvation that at least over the prac-
ticable range r,k < 10, cénsidered in Clatworthy (1973), the conditions stated
in Thgorem 2.2 are not only necessary but also sufficient. Table 2.1 presents
.a complete list of cyclié SRGD designs, together with their initial blocks,
over the range r,k < 10. Some of these cyclic solutions may beknon-isomorphic
to previously published solutions. Also, note that the complement of a cyclic

SRGD design is again a cyclic SRGD design.

Table 2.1. Cyclic SRGD designs for r,k < 10

Design parameters Serial no. in .
No. v b r k m n Al Az Clatworthy's tables Initial blocks
1| 4 4 2 2 2 2 o0 1 SR 1 - ~|{o,1} ‘
2 4 8 4 2 2 2 .0 2 | SR 2 Take two copies
: - of No. 1
3 4 12 6 2 2 2 0 3 SR 3 Take three copies
of No. 1 :
4 4 16 8 2 2 2 0 4 SR 4 Take four copies
: : of No. 1
5 4 20 10 2 2 2 0 5 - S8R 5 . Take five copies
‘ of No. 1
6| 6 18 6 2 2 3 o0 2 SR 7 - |{o,1},{0,3},{0,5}
7 g8 16 4 2 2 4 0 1 SR 9 {{o,1},{0,3}
8 8 16 8 4 4 2 0 4 SR 39 {o0,1,2,3},{0,1,6,3}
9 8 32 8 2 2 4 0 2 SR 10 Take two copies
: of No. 7
10| 9 272 9 3 3 3 o0 3 " SR 25 {{o,1,2},{0,4,8},
| _ {0,5,7}
11 |10 50 10 2 2 5 0O 2 SR 12 . |{o,1},{0,3},{0,5},
' {0'7},{019}
12 {12 36 6 2 2 6 O 1 SR 13 -~ {{o,1},{0,3},{0,5}
13 /16 64 8 2 2 8 0 1 SR 15 1{o0,1},{0,3},{0,5},
. {0,7}
14 {20100 10 2 2 10 0 1 SR 17 - |{o,1},{0,3},{0,5},
{0,7},{0,9}

The following result shows an interesting application of Theorem 2.2 in

a slightly different context relating to inner structure of Steiner systems.

¥
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Corollary 2.2.1. A cyclic BIB(v'kz,k,l) design does not contain a cyclic

BIB(v'k,k,1) subdesign for k>3.

Proof. If a cyclic BIB(v'kZ,k,l) design contains a cyclic BIB(v'k,k,1)
subdesign, then by deleting all orbits which cogtain blocks of this subdesign
we obtain a cyclic SRGD design with parameters

(2.5) v=v'k2, m=k, n=v'k, b=v'2k2,‘r=v'k, k, A =O,_12=l.

1

=0,

If this cyclic SRGD design involves short orbits, then from the facts Al

A2=l it can be deduced that such short orbits must be composed of blocks of
the form {i,n+i,2n+i,..., (m-1)n+i} (0<i<n-1) and, consequently, m and n must
be relatively prime (cf. proof of Lemma 4.1) which is clearly not the case.
Therefore, a cyclic SRGD design with parameters as in (2.5).¢annot invdlve

short orbits. Hence the non-existence of such a cyclic design for k>3 follows

in view of our findings in Example 2.1, completing the proof of the result.

3. The case 12 = Al+l

GD designs with'Az=Ali; have many interesting statistical optimality pro-
perties (see e.g., Takeuchi (1961l), Cheng (1978)). For SRGD designs it is well-

known that A2>A . Considering, therefore, the special case of cyclic SRGD

1
designs with 12=Al+l, we have the following result.

Theorem 3.1. For an SRGD design with A2=Al+l to be cyclic (without short

orbits), it is necessary that the parameters should be of one of the following
forms:

. 2
(1)?v=mu2, m, n=u2, b=mau2, r=mpau, k = mpu, A, = mpza-l, A, =mp o,

1 2

where p,u are positive integers, u(> 3) is odd and a = (uz—l)/[mp(u—p)] is a
positive integer;

(ii) v=40, m=2, n=2a, b=4a2, r=2a0, k=2, Al=0, A2=l,
where a is a positive integer;

(iii) v=4p%a, m=2, n=2pZa, b=4p-a>, r=2pou, k=2pu, Al=u2—1, Az=u2,
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where p,u are positive integers, u(> 3) is odd and o = (uz-l)/[ZP(u-p)] is a
positive integer.

Proof. The following lemma which has been proved in Mukerjee, Kageyama
and Bhagwandas (1986) will be helpful:

.Lemma 3.1. Lét u',s(> 2) be fixed positive integers. Then the equation
u’u2 - spuu' + sp2 = 1 does not have positive integral-valued solutions (u,p).

For an SRGD design one has

(3.1) r(k-1) Al(n-l) + Az(m—l)n,

(3.2) rk

sz = Azmn.

Consider now a cyclic SRGD design, without short orbits, having

(3.3) Az = Al + 1.

For such a design, b is an integral multiple of v and the parameters must
satisfy one of the necessary conditions (i), (ii), (iii) in Theorem 2.l. First
suppose that the parameters satisfy the condition (i) in Theorem 2.1. Then n
is odd and

(3.4) 12 = mw,

w being a positive integer. By (3.1)-(3.4),

(3.5) r=A,+n-1=mw+n-1,

and by (3.2) ’ (3.4) I3 (3.5) ’

(3.6) k/m

Azn/r = mnw/(mw+n-l),

which is a positive integer. Hence,

(3.7 b/v=1r/k = (men-1)2/(@nw),

which is again'a positive integer. In particular; therefore, (mw+n-l)2/m2 is
a positive intéger, and consequently,

(3.8) 'n=m¢ + 1,

for some positive integer §. ApplYing (3.8) in (3.6),(3.7), it follows that

both (mE+1l)w/ (w+&) énd (w+5)2/[(ms+l)w] are positive integers. The integrality

of (W+€)2/[(m£+l)w] implies that of Ez/w. Hence £ and w are of the form

79 !
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’ 2
(3.9) £ =pga, Ww=p a,
where p,q,0 are positive integers and p and q are relatively prime. Now,

(mE+1)w/ (W+E)

(mpqa+l)p/ (p+q) ,

(w+8) 2/ [ (mEFLIW] = a (p+a) 2/ (mpqo+l) ,
which are positive integers. Since p,q are relatively prime and so are
a,mpga+l, it follows that both (mpgo+l)/(p+q) and (p+q)2/(mpqa+l) are positive
integers. This means that there exist positive integers u,u' such that
(3.10) mpga+l = u'uz, p+q = u'u.
Writing ma = s and eliminating g, it follows from (3.10) that
u'u2 - spuu' + sp2 =1..
Since s = ma(> 2), it is clear by Lemma 3.1 that u' = 1. Henée by (3.10),
(3;11) mpqd+l = ﬁz, p+q = u.
By (3.3)-(3.9) and (3.11), it may>now be seen that the parameters of the designj

are of the form (i) in Theorem 3.1 where by (3.11), o = (uz-l)/[mﬁ(u-p)].

.In a similar manner, the parametric forms (ii) and (iii) in Theorem 3.1
follow from the situation (iii) in Theorem 2.2. Observe that the situation (ii) |

in Theorem 2.2 cannot arise if A2=Al+l.

From Theorem 3.1, the following is evident:

Corollary 3.1.l. For a cyclic SRGD design (without short orbits) with 12

= Al+1=
(a) If n is odd, then n must be a perfect square and n £ 1 (mod m);

(b) If n is even, then m=2 and Az must be an odd perfect square.

From Example 2.1, it is clear that the designs of the form (ii) in Theorem
3.1 can always be constructed cyclically. The same, however, cannot be estab-
lished for the designs of the forms (i) or (iii). Considering the range r,k
, <'20; we find that over this range there are only two designs of the form

- (1) in Theorem 3.1, namely,

/7




Dl: v=18, m=2, n=9, b=36, r=12, k=6, Al=3, A2=4,
D2: v=36, m=4, n=9, b=36, r=12, k=12, Al=3, 12=4,

and only one design of the form (iii) in Theorem 3.1, namely,

D3: v=8, m=2, n=4, b=16, r=12, k=6, Al=8, A2=9.

The design D_ is ﬁhe complement of the design

3

Dé: v=8, m=2, n=4, b=l6, r=4, k=2, Al=0, A

and from Example 2.1, it follows that D

=L

é, and hence D3, can be constructed
cyclically. A computer search, however, ;eveals that a cyclic construction of
the design Dl or D2 is impossible. This investigation completely explores the
cyclic SRGD designs with A2=Al+l over the range r,k < 20 and, incidentally,

demonstrates that the necessary conditions in Theorem 2.2 are not sufficient

in general although they are sufficient over the Clatworthy (1973) range.

It may be further remarked that the computer search for proving the non-
existencé of cyclic constructions for Dl and D2 was done ovér a microcomputer
PC 9801/VM 2 (NEC). For Dl’ applicgtion of first principles (based on a
general program searching cyclic GD designs) established the non-existence in
about 15.25 hours, while application of Theorem 2.1 did tﬂé séme in only 43
seconds. As for D2, from first principles the search could not be completed
even in 70 hours, while applying Theorem 2.1 non-existence followed in about

19 hours. This shows that despite its cumbersome appearance, Theorem 2.1 is

of considerable help in so far as computer enumerations are concerned.

4. Cyclic SRGD designs with short orbits

'In generai, various possibilities arise if short orbits are allowed in
cyclic SRGD designs. In order to give some idea about the possible exténsions
of the results in Section 2 without going into too much of comp;exities, we
_trgat here only the case when the block size k is prime. Clearly, then m=k’

and A1=0.

/JL
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Lemma 4.1. If a cyclic SRGD design with prime k has short orbits, then
m(= k) and n are relatively prime.

Proof, It is well-known (cf. Rao (1945)) that if a cyclic SRGD design

with prime k has short orbits then such short orbits are necessarily genera-
ted by the initial block {0,n,2n,...,(m-l)n}. Since Al=0, it follows that the

treatments O,n,2n,..., (m=1)n must belong to different equivalence classes.

Now if m and n arxe not relatively prime, let h(> 1) be their highest
common factor and define z = m/h. Clearly then 1<z<m-1 and zn = 0 (mod m)
showing that 0 and zn belong to the same equivalence class and thus contradic-

ting the last sentence in the preceding paragraph.

In a cyclic SRGD design with prime k and having short orbits, lét ﬁ(z_l)
be the number of short orbits. Then the number of full orbits is given by
(4.1) a = [lzn(k-l) - p(k-11/{x-1)k} = (Azn—u)/k.

Theorem 4.1. When k is prime, for the existence of a cyclic SﬁGD désigﬁ
having u(> 1) short orbits, it is nécessary and sufficient that

(a) u = lzn (mod k),

_(b) if (Azn-u)/k = @, then there exist integers ft‘(Ojﬁfp—l, 1<u<a) such

that defining L = {0,1,...,n-1}, fi e L for all i,u and in each of the sets

B T T i | Dy
u u’ Tu u u u uu u u —_—
1<i<m-1,

where the differences are reduced mod n, every element of L-{Bi} occurs AZ

times and the element Bi(mod n) occurs Az-u times (1<i<m~1), with B being the

minimum positive integer satisfying kf+l1 = 0 (mod n).

Proof. The prbof follows along the line of proof of Theorem 2.1. The
necessity of (a) is evident from (4.1). To prove the necessity of (b) note
that here k/m = 1 and hence, as in Theorem 2.1, the a initial blocks in the

full orbits must be of the form

/3
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(4.2) {mfo, mfl+l,..., mfm-l+(m-l)}, 1l<u<e,
‘ u u u -
where 0 < £ < n-1 (0<i<m-1, l<u<a). Let
(4.3) kB8+1 = zn,
where clearly z < k-1(= m-1). Then zn is contained in the equivalence class
Sl. In short orbits, therefore, 0 and zn occur together in p blocks and,
consequently, in full orbits they occur together in Az-u blocks. From (4.2)
and (4.3), proceeding exactly along the line of proof of Theorem 2.1, it
follows that among

(160, 2oet, L, 2 0l l1cu<al,

u u uu u u u u ——

where the differences are reduced mod n, each element of L other than B is
repeated Az times while the element B is repeated Az-u times. The further

details regarding the necessity of (b) follow in a similar manner. The suffi-

ciency part of the theorem may be proved by retracing the akove steps.
Our next result follows along the line of Theorem 2.2.

Theorem 4.2. When k is prime, for the existence of a cyclic SRGD design
having p(> 1) short orbits, it is necessary that u = AZnV(mod k) and either
(i) n is odd or (ii) n is even and Az is odd.

Proof. Summing the elements of the sets in Theorem 4.1 (b) in two ways,
we have, analogously to (2.3), the necessary condition |

Sa(-1)A, - i8u = -ia (mod n), lsi<m-l,
whence separate consideration of the cases of odd and even n yields the

required result.
The following example illustrates a cyclic SRGD design with short orbits.

' 'Example 4.1. If k=3 and nZl(mod 6) then cyclic SRGD designs with short
orbits and having parameters
v=3n, m=3, n, b=xzn2, r=A,n, k=3, A;=0, A 1,2 (mod 3)

may be constructed as follows. By Colbourn and Colbourn (1981), there exists

4



a cyclic BIB(n,3,1) desian for nZl(mod 6). Hence there exists a cvclic BIB

,b.} of this design

(n,3,l2) design for ‘any Az. For each initial block {bo,b 5!

1

take the following two initial blocks:
{(n-l)bo,(n—l)bl-n,(n-l)b2-2n}, {(n—;)bo,(nfl)bl—zn,(n-l)bz-n},

with the entries reduced mod 3n. Then these initial blocks, together with 12

copies of an initial block {0,n,2n}, ‘which has a short orbit, generate a

cyclic SRGD design with the desired parameters.
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