-

View metadata, citation and similar papers at core.ac.uk brought to you byj(: CORE

provided by Kyoto University Research Information Repository

Bl
oo o e/,
&
Kyoto University Research Information Repository > KYOTO UNIVERSITY

Complexity of Combinator Reduction Machine(Mathematical

Title Foundations of Computer Science and Their Applications)

Author(s) | Hirokawa, Sachio

Citation O00O0O0DO0OOO (1985), 556: 122-146

Issue Date | 1985-04

URL http://hdl.handle.net/2433/98965

Right

Type Departmental Bulletin Paper

Textversion | publisher

Kyoto University

https://core.ac.uk/display/39230263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ooooboooao
556 O 19850 122-146

122
Complexity of Combinator Reduction Machine

BEAEIHREERIEN EN ETB sachio Hirokaua)

Contents @. Abstract
1. Introduction
2. Recursive Program scheme
3. Combinator code and its reduction
4. Tracing P-redution by C-reduction

S. Strucure of C-reduction

8. Abstract

The complexity of the computation of recursive programs by
the combinator reduction machine is studied. The number of the
reduction steps is compared between the two models of
computation. The main theorem says that the time required by the
reduction machine is 1linear to that of program scheme. The
constant of the linearity was shoun to have n order, uwhere n is
the maximal arity of functions being used. For analysis of the
combinator codes, the notion of extended combinatofs is

introduced.

1. Introduction

D.A. Turner [/0,/]/1 showed a new implementation technique for

functional programs in terms of combinators. By that method, the

123

program 1ig compiled to a combinator code and the'computation is
carried out by graph reuritting called combinator reduction.

The complexity of the compiled codes and the compiling
argorithm has been studied [4, 5, 9, l. They consider rather
abstract terms instead of actural programs. Some statistics are

obtained in [fo] for actual programs concerning to time and space

compared with the wusual implementation method. But their
analysis is only for some examples. This paper is an attempt to
give a theoretical foundation for +the estimation of the

lower/upper bound of the efficiencx' of combinator reduction
machine.

The important merit to use combinators is on the simplicity
to realize the call-by—-need (lazy evaluation) mechanism. It is
known that this evaluation method is optimal [/ , 3 , & , /21. We
measure the complexity of the reduction machine, by comparing the
number of 1its reductions and that of the program échemes with
optimal reduction. The result does not depent on the structure
which the program treats nor on the structure of the program.

The main theorem states that the time required to compute a
program by the combinator reduction machine is linear to that of
call-by—-need computation of program scheme. And the constant of
the linearity is shoun to be of order n 'where n is the maximal
arity of functiﬁns being used in the program.

We describe the out line of the analysis by the follouwing
example: fact(n) = ifl(zerop(n),l,timesdn,fact(subl(ndll).

The function body 1s represented in tree form in the figure

below. On the right side of it is the compiled "combinator code”

124

of the function. Here, the symbols ”"S","B” and "C" are called
combinators. Each combinator is a kind of direction post which
shows the path of parameter passing. ?S"” is for both way. "C” is
for the left. And ”"B” is for the right. Each combinator is assign
to some occurrence of a function symbol (the precise definition
is given in def 5.1). HNote that the number of combinators

assigned to a function is at most 3.

X———%k———X———%X———n

* * * »
* * * * *
: H : subl :
* * * +
* [4 2 *
H H fact 4
H H :
! %x——-n *——=—0
' ' :
! times
*
*
*——=1 -1
+
.
X———%-——n —%=~==0
H H '
H Zerop Zzerop
H
if

Each function and combinator has its "reduction” rule, i.e.,

graph reuwuriting rule. The reduction sequences to compute fact(l)
= 1, in program scheme reduction and the combinator reduction are
shown below. Every function symbol on the left can be found on
the right. Here again, HNote that the correspondence between

combinators and the function is preserved 1in the combinator

125

reduction. Thus the total number reductions of S,C and B can
estimated, roughly, by three times of the function reduction.
Therefore we can conclude that the cobinator code reduction

at most four time of the program scheme reduction.

Program scheme Combinator code
(fact 1) (fact 1)
fact fact
\1.-_...._-______....._\/

zerop I
¥ . TNl
if -“~-~_~_~ ~ 8y
\‘;__'- = -
fact eI Y
Y ..l
subl | R ___‘_‘::
A & S
zerop | “~._ “~_
Y. Tes ‘s\
if Te~ ‘~_*
- .
¥----_ -‘*~\§,zerop
times IR, AT
1 1

Those who are familiar with the combinatory logicl 2 1
the program scheme [3, 4 ,] can skip to the section S,
taking a view of the def 3.3 (extended combinator code), def

3.6 (abstraction algorithm), and the lemmas in section 4.

2. Recursive Program Scheme

def 2.1 (Term)

Let F={(f;, f5,...,fpu} be a set of function symbols,

be

is

and
after

3.5,

each

126

symbol f; is given its arity(fp>@8. Let U={x,, ..., x*} be a set
of wvariable symbols and A={a,, ooy an} be a set of constan
symbols. The set P(A,F,VU) of terms is defined inductively by:

(1) Every constant is a term,

(2) Every variable is a term,

(3> If t; is a term for i=1,...,k and f is a function symbol

with arity k, then f(X,,..., %) is a term.

def 2.2 (Recursive Program Scheme)

Let A be a set of constants. Let G={gl,..., gﬂg and F={f,
seeesfpn 3 be distinct sets of function symbols, whose element is
called a primitive function and a user—-defined function,
respectively. A recursive program scheme 3, is a system of
equations

§:: { i (X) 5000, xi? = ?i’

i=1,..,n

where t; is a term in P(A,F G,{x,,... ’xﬁa})'

In the sequal of the paper, we assume that the set C of
constants contains special symbol ”t” (trued) and "f” (false) and
that the set G of primitive function symbols conatains alternary

function symbol "if".

Example 2.3

A={t,f,8,1,2,3,....2
G={if,zerop,times,sub1}

F={fact}

fact(x) = if(zerop(x),l,times(x,fact(subl(x)))>)

def 2.4 (Interpretation)

By an interpretation I, each primitive function symbol f is
associated with a mapping ff : sz...x D;——> D:, where D},.°°, Dz
and Dg are sets. Each constant symbol ajis associated with an
element aj and a set D} which contains a;.

We assume that the constants ”"t” and "f” are interpreted as
"true” and "false” respectively, which is in the set Bool={(true,
false}. The tarnary function symbol "if” is interpreted as

follous: ifi{x,y,z) =iy if x is "true”,

z if x is "false”.

def 2.5 (recursive program)

A recursive program is a tuple (2. ,I) of a recursive program
scheme: v : FLlXysene, Xg) = 4
i=1’ooo,n

and an Interpretation I of FuvA

T L A
fi D/¥...x Dg~-=> D,
1 I
aJ € DJ.
Since wuwe consider a fixed program (Z,I), we will omit

explicit mention of 2. and I.

Suppose that we are given an input expression which we want
to compute its value with respect to an program. Firstly, the

expression is represented by a graph stracture. And the graph is

123

succesively reuritten according to some rules specified by the
program. There are two types of rules, called "expansions” and
"gimplifications”. A simplification is a computation of the form
plus(2,3> --> 5. It is a simplification of primitive function
call with constants as its arguments. On the othe hand, an
expansion 1is a rewriting of function call of a user-defined
function by its body. For example, in the above example, fact(2)
is expanded by if(zerop(2),1,times(2,factlsubl(23>)).

Since we adopt the graph structure to represent the term,
the argument 1is shared and it appears at most once after the
expansion. As anothe example, consider a program scheme

fi(x) = g(x,x).
A term f(k(ad)) is reduce to g(k(x),k(x)) by expansion of f. In
the graph representation it has the form:
;KE\; —-—=> g k a.
Since the argument k(a) of the function f is shared, it has only

one occurrence in the resulting graph.

def 2.6 (binary graph)d

The data structure on which the computation is performed is
the diredted acyclic graph such that
(15 The out degree of each node is 2.
(2) On every leftmost leaf is a function symbol.
(3) Every leave other than (2) has a constant symbol or a
variable symbol.

Ue call such a graph as a binary graph.

1235

def 2.7 (graph represented term)

We represent a term f(t,,..., t,) by a binary graph

foe¥ ... ¥
where tf is the term t; represented by the same way.
Sometimes, it is written (..((f t,) tz).ia, or f ¢, t,..t, if

the pharenthesis are abbreviated. In such cases, we assume that

the pharenthesis are associated from the left.

def 2.8 (substitution)

Let t, t;,,...,t,, be terms and %X,,...,x, be wvariables. Ue
denote by tix,/t, ... xa/tnl] the term obtained by replacing all
L

the pointers to xi by the pointer to the term t{ for each x:

simaltaneously.
"If the term t is the variable x itself, then tIix,/t,..xn/ tn]
= t{, . And when t has no occurence of the variables, we have

tlx /) oo xn/tpnd = L.

def 2.8 Credex, reductum)

Let (2 ,1) be a recursive program:
2::{ f;(x‘,...,xis = t,,
i=1,...,n.
A term is called redex when it is one of the following form.
1> fés,,...,sﬁg, where f ils a user—-defined function,
(2) g€c,,.+.,Cm);, wWwhere g is a primitive function and

C »...sC are constants,

(3> if(v,s;, s45), where v is ”"t" or "f".

The reductum of each redex is defined according to its type above:
1> tlx,/t; ... x;/t;g
2> gr¢et, ...,

(3) If v="t” then sy. If v="f" then s,.

def 2.10 (P-reduction)

A term t is immediately reduce to t’, written t —f> t?, iff t’ is
obtained from t by replacing the leftmost outermost redex in t by
its reductum. (At the same time, all the pointers to the redex is
replaced by the pointer to the reductum.) To spcecify the
fﬁnction symbol of the redex, if it is of the form f(t,,...,t),
we uwrite t -—> t’. A one step reduction ¢t —-—-> t’ is called an
expansion of f if f is an unknown function symbol. And it is
called a simplification if it is a primitive function symbol.

A reduction is a finite or infinite sequence d:t,--> t,=—> ...

3. Combinator code and its reduction

In the computation process of a ‘recursive progrém, a
function call of a user-—-defined function was replaced by its
function body in which the acrual parameters are subétituted to
each wvariable occurrence. And we assumed that phis expansion

process is performed by one step.

After compiling a program to its *"combinator code”, the
actual arguments of a wuser-defined function is passed
successively to its function body. This process consists of many

steps of "combinator reductions”.

A combinator is attached on each node of the function body
which is represented by a binary graph. Each combinator shows the
way to which possition the parameter has to be delivered.
Consider a program

fix,y) = plus(x,times(y,plus(x,5>))>

and its binary graph representation:

plus x times y plus x S.
When we want to compute the value of f{(2,3), the parameter 2"
goes over each node as follos:
C}: to both subtrees,
<>: to the right leaf,
C) : to the right subtree,
C): to the left subtree,
(): to the right leaf.
The parameter "3" which corresponds to the variable y is passed
as follous:
@ : to the right subtree,
® : to the left subtree,
<>: to the right léaf.
The combinator code of the function f is
BéSx

1
¢, By
Cx

plus o times o plus‘o S

10

134

where S,B,C,B’ and C’ are ther "combinators” which show the way
of parameter passing. The combinator S shows that the path
branches 1into two way and that the parameter goes over to the
both subtrees. The combinators B and B’ tell the way to the right
subtree. The combinators C and C’ indicate the left branching. By
these combinators’ direction posts, we can plece the actual
parameters to the desired positions and we can reconstruct the

term

plus 2 times 3 plus 2 5 .

def 3.1 (combinator code)

A combinator code is a binary graph whose leave has either a
constant symbol, a function symbol, a variable or a special
symbol, called combinator, I,XK,S,B,C,S*,B’ or C’.

We denote by C(A,F,VU) ,or simply C , the set of all combinator
codes. Noth that P<C .
To represent a binary graph

.
.
.

t" tz t’3l.. tn
in 1linear form, we write (..0{L;t20t3)..40) Oor bt t, t3...tn
abbreviating the parenthesis under the assumption that the

parenthesis are associated from left.

def 3.2 (reduction rules)

11

133

Each combinator has the following reduction rules:

Kxy -—> X

Ix --> x

Sxy=z —-—> xzy=z
Bxyz -=> x(y=z)
Cxyz --> xzy
S’kxyz -=> k(xz)(y=z)
B’kxyz -=> kx(yz>
C’kxy=z -—> k(x=2)y

where X,y and =z are arbitrary conbinator codes and k is an
arbitrary combinator code without variables. The combinator code
in the left hand side of each rule is called a redex. The right
hand side one is called its reductum.

Each rule shouws an graph rewritting rule. The ocurrences of
the subtree =z are shared on the right hand side of the S and S*

rules. Thus the rule for S5’, for examplé, is illustrated by

To simplify the analysis of the combinator codes and their
reduction process, we introduce a notation to represent the

complicated conbinator codes in abbreviated form.

def 3.3 (extended combinator code)

An extended bombinator code is a binary graph such that

12

w

»

154

(1) Each leaf has either a constant, a function symbol, K, I or a
special symbol "o”.

(2) The symbol "oY never appears on any left leaf.

(3) Each node is labelled with a finite (possibly empty) sequence

of combinators other than K and I.

WUe wurite the set of all extended combinator codes as C¥ . If
we label an empty sequence on each node, any combinator code is

regarded as an extended combinator code. In this sense we have

ccCx.
From each combinator code, we can obtain the original combinator
code by the following algorithm #. By this transformation we

identify the set Cx of extended codes and the set C of combinator

codes, i.e., Cx = C.

def 3.4 (Cx 23> ©)

Let X be an extended conbinator code. UWe definde the
combinator code X# recursively as follous:
(1> If X 1is is either a constant, a function symbol or a
combinator, then X# = X.

N\

(2) If X

=11 o0, then X# = M#.
(3> If X = PP, ..P, and n>@, then X# = M#
S PR
(4> 1f X = P|Po..P,,, n>@ and N%¥o ,then X#

N

13

def 3.5 (abstraction algorithm)

Ginven

abstraction of x from t, denoted by [x1It,

below, where

[x1t.

a variable x and an extended combinator code t,
is defined by the table

And it is extended for a sequence

variables X,;,;%Xz... Xn and an extented code t by [x;%X3... x, Xn 1t
= [X Xgees XpJlIxnylt).

t tx condition Comment

x I

n ﬁ/\n x: not in

H{/\b HiAB x in

P, > Pa BP;* P, x: in

n//\é H;A\B n > 08 Extensionality

Pyess Pp P, +s Pn x: not in

ﬁ/ﬁ\% ﬁ//\B no>=ae

S x: in
M//\h ﬁin\h* x: in

>

>m

x: not in

by N I Nx* x: in
/;k\ x: in

y N Mx N X: not in

Py~ Pn S’Re P x: in

N\ N\

I N Ix Nx x: in

t Ppy B’a.nph ®x: not in

//\\ PN

M N M N* x: in

>
0
p

=X
z

(9]
>.:u
g

=
»*
=

3

X: not in

N == o,x

14

(7B
)

Example 3.6

Consider a term g(xl1,x2,x2,x1) and the abstraction of x1,
x2, X3 and x4 from it. The combinator code and its extended code

are as follous:

[x1 %2 %3 x4) (g x1 x2 x2 x1)

= (B” BK (B” BK (S’ C (C’ S g I) I))

k——=x1 B’B B’B S’C I
: : H H
*¥—-——x2 : : C’S—-—-1
: : : H
X———x2 H : X—~——0
H H s :
X———x1 : : X——=0
e H : H
g H ' g

* 4

+ *

H K

*

*

K

It is possible to use the extended combinator codes as a
data structure on which the reduction are performed. Then we

should have the corresponding reduction rules as follous:

def 3.7 (reduction rules for Cx)

(1) I/\x — X (6) x Pl "'PIL
T SP P A
-

M NX
P MX NX
(2) KMI__’M Cmz 1)
(3) N oM (m 5" A P+ Py
M B2 N e
) 5p /P\’C PPy (1)
0% "’M Y (® A N P Pn
(m20) <= /(\ CIP/'< nx——> /(\
(5 A | M N i M N Mx N
R,"R‘L - Q}i% (mz1)
Y M T
(P,+8B)

15

The rules (3) and (&) treats the special symbol "o and have no
corresponding combinator reduction rule. Another fact we can see
in the definition of the rules for Cx is that the rules for S and
S’ do the same rewritting. And it is also true for B and B’, and
€C and C’. Therefore the combinators S, B and C are not necessary,
if we use the reduction rules for Cx. However, uwe don’t go into

any more in the present paper.

def 3.8'(C-reduction)

As C-reduction we have the combinator reductions, the
simplifications and the expansions. The expansion is different
from that of P-reduction. UWhen we expand a user-defined function
symbol f followed by its arguments t,,..., tp, we simply replace
the occurrence of the function symbol f by its combinator code
{x;... %xplt, where t is the body of the function definition. The
reduction 1s carried out to the leftmost outermost redex of the

combinator code.

Turnerl 1O 1 uses the cyclic graph for the expansion of a
user—defined funciton. For example, the factorial function in

example 2.3 has the the cyclic code:

S CB if zerop 1 S times B

We choose the expansion instead of cyclic graph code for the

16

gsimplicity of the analysis. And the similar result holds for the

cyclic code representation.

4. Tracing P-reduction from C-reduction

In /01, Turner mentioned the difficulty of tracing C-

reduction steps because the code have many combinators. However,
if we can eliminate all the combinators from the code, the
meaning will become clear. In this section we prove that it is

possible and that if we oberve’only the of function reductions
(i.e., expansions and simplifications) out of the entire C-
reduction it is identical to the P-reduction. Thus the P-
reduction can be traced from the C-reduction.

The idea of elimination of combinators is as follous.
Consider an expansion of a user—defined funciton; In the P-
reduction, the parameters are deliverd to the leaves by one step.
On the other hand, the function symbol is replaced by a binary
graph 1in C-reduction. On each node of the graph there is a
sequence of combinators indicating the path to deliver the
arguments. Thus the parameters are passed to the subtrees, not to
the leaves. To arrive at every required leaf, all the combinator
reductions has to be done. Some of them are not leftmost and 1is
not carried out at this step, because only the left most
reductios are permitred in C-reduction. So reducing all the
combinator redexes, we leave the C-reduction and reach some stage

of the P-reduction.

17

def 4.1 (t@)

Let t be a combinator code. If there is a combintor code
which is reducible from t by combinator reductions and has no

combinator redex in itself, then we denote it by t@.

It is not always true that such a code exists. Consider a term

B = SII(SII1), whose combinator reduciton never termninates. When
there is such a code, it is unique and it does not depend on the
order of reductions, by the Church—-Rosser property of Cbmbinatory

Logic.
Lemma 4.2 (Correctness of abstraction) Let M,H,,...,Hnbe terms in
P and %, ,...,%X,be variables. Then we have

CCLX,eve XN, ... Ngd@ = NIx/NE@ ... x/N@I.

Proof By induction n and the structure of 1.

Lemma 4.3 Let t1,t2 be combinator codes and t1 ——> t2 in C. If ti1@

is defined and t1@ is a term of [P, then

(1) ti@ is defined and is a term of P.

(2) If t1 --> t2 by a combinator reduction in €, then t1@ = t2G.

(3> If t1 ;£> t2 by a functiton reduction in C,then t1@ ;f5 t2@
in P. Furthermore, if t1 ——> +2 is leftmost outermost, then

_f.

t1@ ~=> t2@ is also leftmost outermost.

Proof- - By induction on the structure of t€ C.

Case 1 t=fN,N,...N,,where f is function symbol and n=arity(f).

18

Sub—-case 1.1 t1 -—-> t2 is derived from N;-——> N{. The lemma |is

true by induction hypothesis.

Sub-case 1.2 f is a user defined function and tl1 --=> t2 is an
expansion of f by its combinator code. Let f(x, ,...,x,)=Il be the
definition of the function. Then t2 = ([Xx,...Xa1ION,...Nn . By

Lemma 4.3, we have t2@ =MNlx/N@ ... x/N@]. Therefore t1@ =

Sub-case 1.3 f is a primitive function. Then N is a constant.

Therefore we have ti1=t1@ ,t2=t2C and_that tl1 —> t2 is a IP-
reduction. So the lemma is true for this case.

Sub-case 1.4 f is "if” and t1=ifN N N,, where N,is either "true”

or "false”.
Sub—case 1.4.1 Ng”true". Then t2=N . Therefore t1@=if "true” %@%@
- NF = t2@E.

Sub—-case 1.4.2 H;”false”. Then we have t1@ = if "false” &@ %F -

NG = t2@, since t2 = N,.
2
Case 2 t = PN|N,...Np,where P is a combinator.

Sub—case 2.1 t1 —=> t2 is derived from NL"_> N; Then the lemma is

tufle by induction hypothesis.

Sub—case 2.2 t1 ——=> t2 is the combinator reduction of P. Then we

have t1@ = t2@ by the definition of @.

def 4.4 (function reduction part of C-reduction)

Lf Y.

Let d : to—L> t’—3> +ses be a €C- or P-reduction. We denote
be 1d! the sequence rn.... of function symbols or combinators.
WUhen d is a €-reduciton, the subsequence rY... consiting of all

1 2

the funciton symbols in {d! is called the function reduction part

18

141

of d.

Theorem 4.5 For any term in P, the function reduction part of

its C-reduction is identical to itsg P-reduction.

Proof Since Lemma 4.5 holds, we can prove the theorem by

induction on the length of the C-reduction.

S. Structure of C-reduction

The theorem in the previous section states that the length
of the P-reduction is equal to the number of function reductions
in the C-reduction. So we can estimate the ratio C/P of the
length of C-reduction to that of P-reduction by C/P = 1 +
Ccom/Cfun, where Ccom is the numbér of combinator reductions and
Cfun is the number of function reductions in the C-reduction.
Thus the problem is boiled down to an analysis of the relation
between the function reductions and the combinator reductions in
a C-reduction.

To this end, we associate each combinator reduction with a
function reduction. And estimate the number of combinator

reductions associated to a function reduction.

Through a combinator reduction, an argument soaks into a
combinator code uwhich is the compiled code of a user-defined
function. After some leftmost combinator reductions, there

appears a function symbol at the leftmost position of the code.

20

142

If the computation terminates by a constant value, the function
symbol disappeara at some stage by its simplification or
expansion. We associate the combinator reduction with this
function reduction. Since the combinator and the functibn symbol
occurs in the same function body, we only have to analyze +the
structure of the compiled code. And we prove that the number of
occurrences of combinators associated to an occurrence of a
function symbol ,in a compiled code, is bounded by some constant

which is determined from the arity of the functions being used.

def S.1 Let f be a function symbol and MN=f(N, ,Ny,..,Nm) be a term
in P. Let t be the abstruction of Xy,..., Xx,from II. Then t has

the following form:

B’...B’B

Let P be an occurrence of a combinator and g be an occurrence of
a function symbol. UWUe write "P < g in t” iff one of the following
conditions holds:

(1) g = f and

21

143

(i) P is on the left of f, i.e., one of the K, B, B’ and R}
in the above figure,
or (ii) P = ty;= 1 for some i.
2> P,ge;tgénd P < gin t;for some 1i.

We say that P precedes g when P < g in t.

Lemma 5.2 Let I be term in P and g be an occurrence of a function
symbol in t = ({x,... x,I1. Then we have
card{Pl P < g in t32 < —Ln2+ n + mn + m

4

where m is the arity of g.

Progof UWe count, in the figure of def 5.1, the number of
combinator K, B’...B’B, P?"‘%E ana I separetely.

The combinator K appears after a abstraction of a variable which
does not occure in If. Let n, be the number of such variables and
n, =n - n,. Then the number of K’s is equal to n, . At each node,
by an abstraction of a variable, the sequence of combinators
increases at most by one. Therefore the length of B’...B’B is nje
Thus the total number of B’ and B is n,n;. The length of Pf ...Pi
is estimated by n,, and the number of all Pi’s amounts to mn,. And
another possiblity is in the case that t;= I. These occurrences
of the combinator I is at most m times. Thus we can estimate

total number k of combinators such that P < g in t by

k

NA

n,+ n,n, + mny+ m. Since n,+ n, = n and n;< n, we have

1 I 2

k< n + T%n + mn + m.

Lemma 5.3 Let x and X;,..., Xp,be variables and t = [xl... XIKEg .

22

144

| 2

Then card{ P | P is a combinator in t3 < Zn +tn o+ 1.
>vyoof Similar to the proof of Lemma 5.2. Count the number of K,
3’..B’B and I in [x;... Xx]Jx;.

.emma 5.4 Let g be an occurrence of a function symbol in a

combinator code of a user—-defined function f. Let P be an

>ccurrence of a combinator which precedes g. Let d : t ,--—> t,——)-uatn

here exists the reduction of P in d, then d has the reduction of
I. . .

- Be a C-reduction oﬂ a fovm Lo in P to a constant tn.a IF
’vroof Since the initial term has no combinators, P comes out
ifter an expansion of f. The function symbol g appears at the
same stage in the combinator code of the function. The result of
-he reduction d is a constant, so the function symbol g has to
lisappear at some stage. Since g is preceded by P, after the
-eduction of combinators (execp for the I’s) which precedes g, g
ippears at left most position of the code. Therefore there is the

‘eduction of g in d.

‘heorem 5.5 Let t be a term in P. Let com(t) and fun(t) be the
iumber of reduction steps of combinators and functions in the C-
‘eduction of the term. Then we have
5 2
com(td)/funlt) ¢ :rn + 2n

there n is the maximal arity of the functions being used in the

'wrogram.

23

145

Proof Take an arbitrary combinator reduction from the c-

reduction of the term. Since t has no combinators at the
beginnig, the combinator is introduced by some expansion of a
user—defined function f. Ue associate the combinator- reduction

with a funciton reduction according to the form of the function
body of f.

Case 1. The function body has no function symbol. Then the
combinator 1s associated with the expansion of f. The number of
such combinators is not greater than 7£n2+ n + 1 by Lemma 5.4.
Case 2. The funci§on body has a function symbol. Then let g be
the function symbol proceded by the combinator. (See figure
below, where we suppose case that g is the leftmost outermost
function symbol and it is a primitive function.) By Lemma 5.3,
the C-reduction of t contains the reduction of g. The number of
combinators which precedes g is at most 1§n2+ 2n by Lemma 4.2.
From analysis of both cases, the total number of combinator

2

reductions is less than (iin + 2n) times of the number of

function reductions.
References

[1] Alello, L. & Prini, G., An efficient interpreter for the
lambda calculus, JCSS 23 (1881) 383-424
{21 Barendregt, H.P., The Lambda calculus, its Syntax and
Semantics, North—-Holland Pub. Co., 1881
{3] Berry, G. & Levy, J.-J. lNinimal and Optimal Computations of

Recursive Programs, JACHN 26 (1978>, 148-175

46

[4] Burton, F.W., A linear apace translation of funcitongl
programs to Turner combinators, Inform. Process. Lett., 14
(1962), 201-204

S]] Hikita, T., On average size of Turner’s translation to
bombinator programs, J. Inform. Process., 7 (1884),

6] Hughes, R.J.!M., Super—-combinators, Conf. Rec. of the 19882 ACHN
Symp. on LISP and Functional Programming, 1882, 1-10

[7] Ida, T., & Konagaya, A., Comparison of closure reduction and
combinétory reduction schemes, 1884, preprint

{81 Levy, J.-J. Optimal Reducitons in the lambda calculus, in
Seldin & Hindley (eds.), To H.B. Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalism, Academic Press, 1980, 158-
191

[3] Noshita, K. & Hikita T., The BC-chain method for representing
combinators in linear space

[10]) Turner, D.A., A new implementation technique for applicative
languages, Softw. Pract. Exper., 8 (1879), 31-49

{11] Turner, D.A., Another algorithm for bracjet abstraction, Jd.
Symbolic Logic, 44 (1878), 267-270

[12] Vuillemin, J., Correct and Optimal Implementations of
Recursion in a Simple Programming Language, JCSS 9 (1974)>, 332-

354

25

