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ABSTRACT

This paper exlends the algorithms for implementing the work-
ing set concept for data-flow machines proposed in [7] in order to
cope with dynarnic data-flow programs which include branches,
loops, and procedure calls. The algorithms for computing the D-,
E-, and I-levels are revised and the performance for static data-
flow programs is reevaluated. Algorithms to manage branches,
loops, and function calls are developed. The effectiveness of these
algorithms is shown through computer simulation.

1. INTRODUCTION

In recent years, various data-flow architectures have been proposed as solu-
tions to the need for parallel computation [8]. Data-flow architectures are
advantageous to conventional and other parallel computing architectures in
their capabilities for automatic detection and utilization of maxirmurn parallel-
ism in a prograin at the execution Lime.

Given a finite number of resources (e.g., execution units and instruction
memory), however, a data-flow program cannot always utilize the resources
efficiently. This is because a non-deterministic selection among many ready
instructions may choose other than the most eritical ones, and this would result
in some execution units being idle for a period of time. Thus, schemes to maxi-
maly utilize the parallelism that is provided by hardware are required.

As an answer to this requirement, the authors introduced the working set
concept for data-flow machines, proposing a data-flow architecture with
hierarchical memeories. The algorithms to compute the D-, Ii-, and L-levels were
proposed. Segmentation, fetch, and removal/replacement policies were dev-
ised. These algorithms/policies were shown to be effective for static data-flow
programs through computer simulaticn [7].

However, since almost ali the practical programs contain branches, loops,
and procedure calls, i is necessary to devise algorithims for these program con-
struets. In this paper, we revise these algorithms, and develop new algorithrns
for dynarnic data-flow programs with branches, loops, and procedure calls.

In section 2, we review the working set rnodel. In section 3, we revise the D-,
E-, and Il-level algorithms. In section 4, a thorough evaluation of the
algorithms/policies for static data-flow programs is made through computer
simulation. In section b, we propose algorithms to manage branches, loops, and
procedure calls for dynamic data-flow programs. In section 8, we use computer
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simulation to evaluate the evaluate the proposed algorithms. algorithms also by
computer simulation. In section 7, we discuss sorne related issues.

2. THE WORKING SET MODFEL

A data-flow machine has multiple execution units. A data-flow program is
represented as & directed graph, where a node indicates an operalion and a
directed arc indicates the data dependency between the two nodes connected
by it. Since each instruction which has all of its input data available can be exe-
cuted in parallel, the execution of a program proceeds like a wave front on a
graph.

In static data-flow programs, the principle of locality does not fully apply as
it does in conventional machines because in such machines each instruction is
executed only once. Instead, we should establish the working set concept base
on the simultaneity of execution of a program.

Three cuantities will be associated with each node of a static data-flow
graph: the dependency-level (D-level), the earliest execution level (E-level), and
the latest execution level (L-level). The D-level of a prograra is the rminimum
number of spans from the entry ncde. The E-level of & program is the maximum
number of spans from the entry nade. The L-level of & program is the maximum
number of spans from the exit node. The rule of determining these quardities
for each niode Nj of an acyclic graph G(N,A) are shown below, where We(Nj)
represents the execution time of node Nj.

D{Nj): IHevel for each node Nj of a graph G(N,A)
¢ sum = 0;
for all Nj of N { sum :== sum + We{Nj) {;
for all Nj of N { D{Nj} := sum }:
V= erpty;
for all Nj of N where Nj has no input arcs
§DIN) :=0; V:i=V+Nj§;
while V <> empty
{ W:= empty;
for all Nj of V¥
for all Nk which has an arc Ajk
if D(Nk) > D(Nj) + We(Nj) then
§ D(Nk) := D(Nj) + We(Nj); W := W + Nk };
Viz= W, ‘
§;
§

F(Nj): Edevel for each node Nj of a graph G(N,A)
{ for all Njof N § E(Nj) := 0 {;
V= ernpty;
for all Nj of N where Nj has no input arcs
§Vi=V+Nj§; '
while V <> empty
{ W:= empty;
for all Nj of ¥
for all Nk which has an arc Ajk
if E{(Nk) < E(Nj) + We(Nj) then
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E(NK) := BE(Nj) + We(Nj); W:=W + Nk §;
Ww;

\i‘:'—*ii
§
!

L{Nj): Ldevel for each node Nj of a graph G(N,A)
§ sum = ()
for all Nj of N §{ sum :== sum + We{Nj) {;
for all Nj of N § L(Nj} := sum {:
V= empty;
for all Nj of N where Nj has nio cutput arcs
(V:i=V+Njl:
min_Jevel=sum;
while V <> empty
{ W:=empty;
for all Nj of V
for all Nk which has an arc Akj
if L(Nk) > L{Nj}-We(Nk) then
¢ L{NK) = L{Nj)-We(Nk);
if L{(Nk) < min_level then
{ min_level == L(Nk) };
W:.:= W+ Nk
£
V=W,
for all Nj of N § L{N}) := L{Nj)} -~ min_level §;
!

In Fig. 1 the D-level, E-level and L-level are shown for each node.

Assuming that a machine incorporates an infinite number of execution
units, the D-level of a node can be referred to as the level {or timing) at which at
least one of its inpul becorne available. The E-level of a node can be referred to
as the level {or timing) at which all of its inputs become to available. The L-level
referres to the latest possible execution tirning without increasing the execution
time. Thus, an instruction can be executed without increasing the execution
time of a program at any timing in between its F-level and L-level. The instruc-
tion whose E-level is equal to its Lrlevel is called the critical node.

However we could not usually have a sufficient number of execution units to
execute a program at its maximum parallelisitn. Thus we must consider execut-
ing a program with a limited nurnber of execution units. In order to execute a
program with a limited number of execution units, we need to distinguish a set
of instructions which would increase the total execution time untess they would
be executed at the next timing. The key to efTicient execution with a limited
number of execution units is how to select these critical nodes before all of the
execution units become busy by uncritical instructions. Thas, the working set of
a data-flow machine is defined as the set of instructicns which will fire at the
next timing.



3. WORKING SET POLICIES FOR STATIC DATAF1.OW PROGRAMS

3.1. A Model of the Data-Flow Machine

Fig. 2 shows the model for data-flow machines. FEach component of the
machine is briefly described as follows:

Execution Units(EWU): Bach execution unit can execute an instruction. All the
execution units can execute in parallel. The execution units have an
instruction queue.

Primary Instruction Memory(PiM): This memory contains active instructions.
Each word of this memory can store a data-flow machine instruction.
An instruction can take in input data only when it is placed in this
mermory. This memory is content-addressable in order to speed up the
update of operand data {or ready tags).

Secondary Instruction Memory(SIM): This memory contains dormant instruc-
tions. This memory is much larger than the PIM and has the capability
of reading a block of memory cells at a reasonably high speed.

Result Memory(RM): The result memory temporarily stores result data until
they are taken in by all the instructions that use them. This memory is
premiurn because of its high-speed access irt concert with the assccia-
tive function of the PIM. ’

3.2. Basic Policies

We have proposed three kind of basic policies for our data-flow machine
model: instruction segmentation, fetch, and removal/replacement policies|7].
Segmentation policies define the size of a segment for transferring between the
FIM and the SIM. There are two basic policies for segmenting a data-flow pro-
gram: to partition a program to i) fixed size segments and ii} variable size seg-
ments. In fixed size segmentation, the size would correspond to the physical
bleck size. In variable size segmentation, each segment can correspond to a log-
ical set of instructions. A segment might be subdivided into a fixed size block
before it is transferred between the PIM and the SIM. There are several auxiliary
poticies, as showrt in the following:

ISP-1: segmentation by each instruction,

ISP-2: segmentation by different D-, E-, or L-levels,

ISP-3: segmentation by conditional instructions, and

ISP-4: segmentation by loop bodies, subroutines, or procedures.

The granularity of segrents varies from finer to coarser with respect to
ISP-1 to ISP-4. The finer the granularity, the lower the possibility of primary
memery fragrmentation, but the control overhead would be higher. In contrast,
the coarser the granularity, the higher the possibility of primary memory frag-
mentation, but the control overhead would be lower. For ISP-2 to ISP-4, if the
size of a segment. is very large, further segmentation within a segment might be
required. Segment size relates to the transfer time. If the transfer time is long,
multiprogramming should be eraployed. ‘ ‘
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The instruction fetch policies refer to deciding when and which segments to
transfer from the SIM to fill up the free memory cell in the PIM. Such policies
can be based either i) on demand or ii) according to anticipation. Four basic
fetch policies are shown below:

IFP-1: Fetch by result availability.
As soon as a result arrives, one or more segments of instructions which
use that result as their input are retrieved and transferred frorn the
secondary memory. This policy can be classified as demand-based.

I'P-2: Fetch by increasing D-level.
It is assumed that segments are stored in the secondary memory by their
D-levels. As soon as any primary memory cell is free to store a new seg-
ment, a segiment is transferred to the memory cell according to increas-
ing D-levels. This policy is anticipatory in nature.

IFP-3: Fetch by increasing E-level.
This policy is the same as IFP-2 except that E-levels are used instead of
D-levels. This policy is also anticipatory.

IFP-4: Fetch by increasing L-level.
This policy is also the same as IFP-2 except that L-levels are used instead
of D-levels. This policy is anticipatory.

IFP-1 is the same as that proposed by |8]. In this policy, the possibility of
an instruction residing a long time in the PIM mernory is higher. Thus, the size
of the PIM is large. IFP-Z is similar to IFP-1 except it is anticipatory. Thus, the
size of the PIM is also large. Since this policy does nct fetch instructions in
order of execution, a dead-lock may cccur with a small PIM. IFP-3 and IFP-4
would require less PIM than IFP-2, but both of them require an RM in which the
result data waits until they are used (taken in} by instructions.

The most important but difficult issue is that for the instruction
removal /replacement policies. Removal/replacement policies refer to deciding
which (if any) instructions to remove from the PIM so that new instructions can
be transferred frorm the SIM.

Let us call a remeoval policy a policy that determines which instruction can
simply be discarded. There are two reasons for an instruction simply being
rermmoved:

IRP-1: Kemove for execution.
An instruction: is removed from the prirnary memory to be sent to an exe-
cution unit,

IRP-2: Remove never-executed. instructions.
An instruction which is determined to never has been executed is
removed. Some special mechanism would be required to detect never-
executed instructions (describe later).

Let us call a replacement policy a policy that determines which segment
will be replaced by another active segment. The segment to be replaced will
simply be discarded if there has been no chamnge in the state of any of its
instructions; otherwise the copy of the segment in the swap area of the 3IM will
be updated according to the change. There are policies such as the following:

IRP-3: First-In First-Out (FIFO).
IRP-4: Last-In First-Out {LIFC).
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IRP-5: Least Recently Updated {LRU).

Actually, we want to develop a fetch policy which does not require IRP-2 to
IRP-5. However, this is niot possible since there remain instructions which will
never be executed in the primary instructionn memory. When a program has a
brarich, IRP-2 will be needed. IRP-3 and IKP-& could be effective in detecting
such instructions. IRP-4 implies a considerable overhead.

4. EVALUATION FOR STATIC DATA-FLOW PRCGRAMS

Computer simulations have been done to evaluate the performance of the
proposed policies for static data-flow programs.

IRP-1, when it is used solely with IFP-1 cr IFP-2, rnay cause a deadlock. It
can be used with IFP-3 or 1IFP-4, since instructions that are fetched tend to be
executed sooner than others. The removal pelicy IRP-1 should be used with one
of the replacement policies IKP-3 to IRP-5. IEP-3 to IRP-5 can be used with any
fetch policy. IRP-2 is not needed for static data-flow programs since they do not
include branches. Thus, sirmulations have been done for these possible policy
combinations.

The unravelled 5th order Gaussian elimination program was used in our
smulation. The programs consisted of 145 instructions, containing an average
parallelism of 9.66. Thus, we decided to use Len execution units.

4.1. Scheduling Effect {case 1)

Since the purpose of simulation is to investigate the fundamental behavior
of data-flow programs under a limited rescurce environment, we have made the
. foliowing assumptions in the simulations:

(1) a segment consists of one instruction,
(2) the execution time of each instruction constant and is one unit of time, and

(3) all the other consumed time. such as the transfer time: between the PIM and
the SIM, are almost zero. “

First, the execution times, utilization factors of execution units, and the
required sizes of the result rnemory for the possible cornbinations of the pcolicies
are shown in Fig. 3 (a), (b), and (c).” All the different. removal replacement poli-
des (unless specified are represented by one curve because there was little
difference between them). This is because the efficiency of IRP-1 is higher than
IRP-3, 4, and 5.

IFP-2 shows the worst performance in execution tirne. 1FP-1 and IFP-3 show
better performances in the execution time. IFP-4. presents the best perfor-
mance in execulion time. [t is very interesting to observe that when the size of
the primary memory increases, the execution time increases asymptoficly to
that of IFP-3. This is explained as follows: when the primary memory size
exceeds the number of L-level instructions executed at the next tire unit, there
is the possikility that non-critical instructions will be selected first. (This situa-
tion could happen in IFP-3, although it is not observed in the simulations.)

The graph of the utilization factor of the execution units is the inverted
shape of the graph of the execution time. This is because the utilization of the
execution units is reflected in the execution time.
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IFP-1 requires the smallest result memory. An increasingly larger result
memory is required from IFP-2 to IFP-3. And the required size of the result
memory is largest with IFP-4. This is because a resull has to wait untii it is
taken in at the latest E-level or L-level among the instructions that use it.

4.2. Instruction Execution With Weight (case 2}

With exception of the execution time of each instruction, the assumptions
are same as case 1. The execution time of each instruction was defined as fol-
lows:

ADDLSUB : 1 (0.57)
MUL : 2 {1.14)
DIV : 3 (1.71)

The execution tirne and the required size of the result memory for the possible
combinations of the policies are shown in Fig. 4 (&) and (b). Each result shows
the same characteristics as case 1. This shows the efficiency of the working set
algorithms in this situation.

4.3. Random Execution Time (case 3)

With exception of the execution time of each instruction, all the assump-
tions are also same as case 1. In this case, the execution time of each instruc-
tion varies according to the values of the data. In the simulation, execulion time
followed the random function of the negative exponential with a mean value of 1.
Note that D-, E-, and Irlevels cannot be properly computed by the compiler.
Thus, the compiler computes these levels assuming the execution time of each
instruction is constant ard is one time unit.

The execution time and the required size of the result memory for the pos-
sible combinations of the policies are shown in Fig. 5 (a) and (b).

When the number of cells in the PIM is 1 or 2, the execution time is the
shortest with IFFP-1. However, when the PIM size iz larger, the execution times
with [FP-3 and 1FP-4 are shorter. This is explained as follows: when the PIM size
is srnall, the possibility that non-critical instructions will be fetched is high. On
the other hand, the execution time becomes shorter with a larger PIM size since
resiult data hits the pre-fetched instructions.

The required sizes of the result memory show the same tendency as
described in case 1.

4.4. Swapping Overhead (case 4)

In the discussicn so far, except for the execution time of each instruction
we assumed that all the consumed time is almost zero. Here, let us assume the
following: ’

(1) a segment consists of some instructions,
(2) the number of cells in the primary instruction memory is thirty-two,
(3) the execution time of each instructions is constant and is one unit of time,

(4) the time to transfer one segment between the PIM and the SIM is one unit of
time, and.
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(5) All the other consumed time, such as the access time for each memory, is
almost zero.

The execution tirne with respect to the number of instructions in one seg-
ment the possible combinations of the policies except IFP-2 are shown in Fig. 6.
A dead-lock occur with IFP-2 because this policy dees not fetch instructions in
the order of execution.

When the size of the segment is one, the execution time is determined by
the number of swaps between the PIM and the SIM. At the mean time, most exe-
cuftion units are idle. However, when the size of the segment is larger {the size
of the PIM is larger), the execution times are shorter. This is explained as that
the execution units become busy because the active instructions are increased
in the PIM. But when the size of the segment become too large, the execution
time becorne longer or similer. This is the result of the fragrnentation.

In IFP-3 or IFP-4, the segment are divided by different E- or L-levels. This is
SP-2. Since there are not always enought node in same level to fill the segment,
the too large segment makes a lot of empty cells in the segment. Hecause of the
point of the resource utilization, the size of segrernt would be srnall.

.5. Synthetic Evaluation for Static Data-flow Programas

In order to evaluate each algorithim we should define elapsed tirnes, such as
for the matching in the PIM, sending fired instructions to the execution units,
and getting a result token from the execution units in the RM. However, it is
very difficult, since our model is too abstract, to define such elapsed times
exactly.

Thus, we propose a measure for evaluation called the figure of merit. The
figures of merit were given by:

{Time )} ® x ( PIMsize)

where 7ime is the execution tirne of the program, and PIMsize is the number of
cells in the PIM. The first term is concerned with the execution time and the
second term: is concerrnied with the cost of the memories. The PIM is the most
premium because of its content addressable capability and its high-speed of
access. Thus, other cost can be negligible.

All the assumptions are same as case 4 except for the (1) and {(2). We made
the size of the PIM and the fetch segment equal. This assumption seems
strange. However, since we expand our concept to multiprogramming environ-
ment, each program. is given the minimum number of cells in the PIM which the
program requires. Thus we think that these case can be seen in the multipro-
gramming environment. The graph of execution speed and these figures of
merit for each policy with assumptions of case 1 is shown in Fig. 7 (&) and (b).
According to these results, we conclude that IFP-3 and IFP-4 give the highest
performances. And, best point is that the sizes of the segment and the PIM are
equal 8. This value means the average pareallelism of this program.
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5. WORKING SET POLICIES FOR DYNAMIC DATA-FLOW PROGRANS
5.1. Dynamic Data-flow Programs

We call a program whose data-flow graph change at the execution time a
dynamic data-flow program. For example, assume that a program includes a
funiction call. Before execution, the function call is represented by one node in
the data-flow program. When the function is called in the course of execution,
that node will be replaced by the data-flow graph for the body of the function.
The data-flow program for the body is then executed the same as other nodes.
Loops are executed in the same manner. Wherr the number of times a loop will
be executed can not be determined before execution, we call the dynaraic char-
acter of the program high.

There are two basic schemes for the replacement of a function call node by
its body: i) to copy the body and link to the executing graph and ii) to provide a
token identifier called eolor to each instruction in the body [4]. In the former
scheme, the copy overhead would be high, but there would be no control over-
head. There is nc copy overhead in the latter, but the control overhead for
token identifiers would be higher.

In our data-flow model, a data-flow graph which includes branches is
changed at the execution time, since the instructions that have not been and
will not be executed are removed from the dalka-flow program. Thus, data-flow
prograrns which include branches, loops, and function calis are called dynamic
data-flow programs in our models. In this section, we describe management
algorithms for dynarnic data-fiow programs.

5.2. Branch Management Algorithms

In order to execute a branch instructicn, the following four instructions
have been added: test, T-gate, F-gate, and merge instructions. A test instruction
checks conditions and sends its result (called a control token) to the next
instructions. T-gate and F-gate are gate instructions. If a control token at input
0 of a T-grate is true, it passes the data at input 1 to the next instructions. If a
control token is false, the data at input 1 is discarded. An F-gate works
inversely. A merge instruction will pass the data that first reaches one of its
input links to the next instructions and the other input data will be discarded.

As is the nature of branch instructions, one of the two sets of instructions
divided by & branch instruction will not be executed. Thus, such instructions
need to be removed from the PIM. There are three algorithms for the manage-
ment of never-executed instruciions, as shown in the following:

BMA-1: No strategy.
Never-executed instructions wait to be replaced by IRP-3, 4, and &.

BMA-2: Propagation of NULL tckens.
When a T-gate or an F-gate discards data, it sends a special tokern called
the NULL token. A NULL token is the same as other tokens, except that
the instruction which receives the NULL token is not executed sends a
NULL token to next instructions. A merge instruction does not send the
NULL token when it receives one.

BMA-3: Remove an instruction wher: it receives a NULL token.
This algorithm is sirniler to BMA-2 except that an instruction which
receives a NULL token will immediately be removed from the PIM and it
then sends a NULL token to the next instructions.

BMA-1 is not compatible with IFP-2, 3, and 4, because these anticipatory
fetch policies do not go to the next level until all the instructions at the current
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level have been executed. In the case of thie combination with 1FP-1, cells in the
PIM are not wasted by never-executed instructions. This is because IFP-1 does
not fetch never-executed instructions.

BMA-2 is compatible with all of the instruction fetch policies. I case of the
combination with IFP-2, 3, and 4, never-executed instructions are transferred to
the PIM just in order to receive the NULL tokens to be removed. Thus, cells in
the PIM are wasted by never-executed instructions. With IFP-1, the cells in the
FIM are niot wasted by never-executed instructions, provided there is a mechan-
ism which prevents instructicn transfers from the SIM to the PIM that are ini-
tiated by NULL tokens. However, NULL tckens will be accumulated in the RM;
thus we need to introduce another mechanism to solve this problem.

BMA-3 works: like BMA-2. The utilization of the PIM would be higher than
EMA-2. For further improvement of the utilization of the PIM, we must devise an
algorithm that does not fetch the never-executed instruction, such as is shown
in the following: :

EMA-4: Fetch one of the alternative segrnents.
The progrems are segmented by the conditional instructions as shewn in
Fig. 8. Each segrnent is treated equally until the tesl gate tests the condi-
tion. After the condition is tested, the disuse segment will not be fetched
from the SIM. The instructions which have already been fetched from the
PIM will reside in the PIM until being removed by BMA-2 or 3.

BMA-4 would improve the utilization of the PIM, but segrent control over-
head will be high.

5.3. Loops and Function Calls
As stated above, loops and function calls in data-flow programs are per-

formed by replacing a calling node by its body. The conventional data-flow
architecture uses; the coloring rmethod for preventing copy overhead.

We cann use the coloring method in our model with 1SP-4 and by holding all
the loop body or function bedy instruetions in the PIM. However, this is not
always possible since there rnight be a body larger than the size of the PIM.
Also. the coloring method seerms not to be compatible with prefetching schemes
using D-, E-, and L-levels. Thus, we decided not to take the coloring method. for
sharing body instructions, although we use color to identify tokens.

Since instructicns are always copied from the SIM and the PIM, we can use
this mecheanism Lo replace a call ncde by its body instructions. We treat loop"
as a tail recursion, so that loops can be managed as functions.

There is a question of how to give a level for each instruction in a program
which includes locops and function calls. In the case of "for’” loops and function
calls;, a level can be given to each instruction by unravelling. However, we can-
not give a level to an instruction in a "while" loop or recursive function. Thus,
the level of an instruction for such program constructs has to be given dynami-
cally at the execution time.

Hierarchical leveling is one method which gives levels dynamically. In the
SIM, each data-flow graph is stored as like shown in Fig. 9 (a). When a function
call node is fetched, the instructions for this function body are fetched. In this
case, each instruction has a hierarchical level as is shown in Fig. 9 {(b). By using
the same algorithm, we can give levels for instructions for recursive programs.

This hierarchical leveling can be applied IFP-2, 3, and 4 described in section
3.
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6. EVALUATION OF DYNAMIC DATA-FLOW PROGRAMS

6.1. Fvaluation of the Branch Management Algorithms

First, the branch management algerithras are evaluated. We have made the
following assurmnplions in the simulations:

(1) a segment consists of four instructions when the size of the PIM is not
smaller thari four. When it is smaller than four, the size of the segment is
equal to the size of the PIM,

(2) the execution time of each instruction is constant and is one unit of time,

(3) the time to transfer one segment between the PIM and the SIM is one unit of
time, and

(4) All the other consumed time, such as the access time for each memory, is
almost zero.

The size of segment was deterrnined by considering the parallelism. of the
prograrn. BMA-1, when it is used with IFP-2, 3, or 4, rnay cause a deadlock. 1t can
be used with [FP-1. BMA-Z2, 3, and 4 can be used with any feteh policy. Thus,
simulations have been done for these possible cornbinations of the policies.

We used a test program which consisted of 43 instructions containing the
average parallelism of 2.24. Thus, three execution units were provided. The exe-
cution times in then case and else case are shown in Fig. 10 (a) and (b}.

Since the length of the then case in the test program is longer than the
else case, the execution time of the them case are longer than the else case.
Except for BMA-4 there is no difference in the execution time between algo-
rithms. BMA-4 shows best performance, since this algorithm avoid wasting the
FIM by never-executed instructions. BMA-2 and 3 show little difference in execu-
tion times. This is explained as that difference of timings of first and second
input data become available is small.

The graph of the figure of merit that was defined in section 4 is shown in Fig.
11. From this result, we conclude that BMA-4 shows the highest performance
with IFP-3 or 4.

6.2. FEfficiency of the Hierarchical Leveling

The assurnptions in this simulation are the same as those described above.
We used two test programs consisting factorial algorithms: one uses a loop
({fact) and the other uses the divide-and-eonquer method (dcfact). These pro-
grams contain the average parallelism of 1.74 and 4.13, respectively, when the
factorial of 5 is computed. The execution times and the figures of merit were
shown for each program in Fig. 12 (a), (b) and Fig. 13 (a} (b).

IFP-3 and 1FP-4 with BMA-4 show the highest performances in the {fact. In
the defact it is very interesting to observe that the graph of the execution times
shows a shape similar to that of the execution times of the static data program
in case 3. This is explained as follows: when a level for each node is calculated,
the weight 1.0 is assumed for a function call node. However, a function body
usually has a longer execution time. This means the prediction fails. The figure
of merit for this is shown niot to be good. Thus, we should consider the manage-
ment algorithms for functions. We perspect thal function should be treated as
individual processes. v



184

7. RELATED ISSUES

7.1. Data Memory Management.

In the discussion so far, it has been assurnecd that only scalar data are used
for computation. The execution of an instruction returns the result value with
its id or a list of destinaftions. However, when structured data is required, it is
nok passible to return values as we can do with scalars; values are too large to be
sent. Thus, methods are proposed in which thie execution of an instruction
returns only the result id; the result value is stored in a data memory for struc-
tures called structure memory [1,2,3]. When the structure memory becomes
large, it would be economical to provide a two-level structure mernory. Thus,
the working set for data should be considered.

We have proposed the active token count for the structure rnemory [5].
Each cell in the structure memory is given a reference count for tokens called
the active token count. The fet.ch policy moves data cells from the Secondary
Data Mernory (SDM) to Frimary Data Memory (PDM) according to the value of
their active token counts. So far, not enough simulations have been done to
present the perforimances for the structure memory in general

g

7.2. Process Priority in Multiprogramming

In the above discussion, we assumed that only a single program is executed
at a time. However, multiprograrmmming is efficient from the rescurce utility
viewpoint. Data-flow rnachines can easily execute multiple prograrms because of
their functionality. However, there is a problem concerning how to give a prior-
ity to a process and how to manage prioritized processes.

There is one method wherein a priority is given to each token. Multiple
queues classified by priorities are placed in between the PIM and the EU. In our
data-flow model, only instructions which are fetched to thee PIM can be executed.
Thus, we can fetch a segiment of a higher priority process before that of a lower
priority process. This simple poliey could manage multiprogramring with prior-
itized processes very well.

~ In this context, the working set size of a program can be considered to be
the lower bound of the required number of cells in the PIM without extending
execution speed. Thus, the working set size is defined as follows:

The working set size is the parallelism of a program at each execution moment.

The number of processes which are concurrently executed in a data-flow
meachine shouid be limited according to the working set sizes of the processes.

8. CONCLUSION

This paper has proposed several working set algorithras for data-flow
machines giving one criterion for the construction cof cost-eflfective general-
purpose data-flow machines. This concept is based on the simultaneity of exe-
cution of a data-flow prograrn.

Segrnentation, fetch, and removal policies have been proposed based on the
working set concept for regulating the flow of instructions in a data-flow
meachine in order to give efficient utilization of limited resources. Among these
policies, the fetch policies based on increasing L- and E-levels for static data-
flow programs showed the best performance. This would be because of the anti-
cipatory nature of L- and E-level scheduling. Further improvements could be



achieved by a policy combining L~ and E-level scheduling.

When the size of a segment for instruction transfer is equal to the average
parallelisms of the program, the figure of merit is shown tc be the best with a
small size of the PIM.

Branch management algorithms have also bieen proposed. The removal of
an alternative segment worked well. Fetch policies based on the hierarchical
leveling for dynamdic data-flow graphs were evaluated for loops and recursion.
Fefich policies based on increasing L- and E-level scheduling work well without
the replacennent policies.

The number of processes in multiprogramrming. The evaluation of the
structure memory management algerithrn is left for future worlk.
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Fig. 1 D—,-E-, and L-levels
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EU(Execution Units): execute instructions.
PIM(Primary Instruction Memory): this memory -
contains active instructions.

SIM(Secondary Instruction Memory): this memory
contains dormant instructions.

RM(Result Memory): temporarily stores result data.

Fig. 2 The model of data-flow machine
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Fig. 6 Simulation result for swapping overhead (case 4)
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