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Microlocal Analysis for Nonlinear Equations

Describing Incompressible Fluids

?\ 7\, : ‘ff‘i \,L\ J{C‘j\% % ( Masao Yamazaki )

§0. Introduction.

The purpose of this paper is to study the microlocal properties
of the equations of incompressible fluids, that is, the microlocal

hypoellipticity of the Navier-Stokes equations

n
du _ Au + Z-—g—(u *u) + Vp = £ in (0,T) %X Q,
t k_13xk k %
(NS) B
Veu = 0 ’ in (0,T) x Q

and the propagation of local and microlocal regularity of the Euler

equations
au o% i
— Z ____..__(u 'u) + vp = f in (O,T) X QI
t k_13xk k
(E) -
Veu = 0 in (0,T) x Q.

Here 0 < T < », Q is an open set in R ( n > 2 ), the
extefnal force f = (f1,-°-,fn) is a given real-valued function of
t€I=1[0,T]1 and x € Q, and the velocity u = (u1,"',un) and
the pressure p are unknown real-valued functions of t and X.

Microlocal analysis for nonlinear equations has been recently

studied by many authors. See Lascar [13], Beals [2], [3], [4],

Rauch [15], Bony [6], Meyer [14], Beals-Reed [5], Rauch-Reed [16],
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(171, (181, (191, [26]. They supposed the existence of a solution
with some regularity, and analyzed the sQlution microlocally. We
work on a similar assumption; that is, we suppose the existence of a
golution (u,p) which is "strong" in some sense. Indeed, it seems
too difficult to discuss on such properties of the "weak" solutions
at irregular points.

First we introduce a notation. For a function space E ¢ pO'(£)
with a stronger topology than that of &'(R), let B(I,E) denote

the set of distributions v(t,*) with a parameter t & I such that
vit,*) € E for all ’t € I,

and that
{ v(t,*): t € T} 1is bounded in E.

Next we define some notions which will be used to describe our

results.

Definition.

For a subset C C IXQ and a distribution v(t,x) € B(I, & (2)),
we say that v(t,x) 1is locally in E >gg C 1if, for every compact
subset K of C, there exists a function ¢(t,x) €‘C§(IXQ) such
that ¢(t,x) = 1 holds on some neighborhood of K and that
¢(t,x)v(t,x) € B(I,E) holds.

For a subset T < IX(T*Q\O) = IxQx(R'\0}) and v(t,x) as

above, we say that v(t,x) is microlocally in E on T if; for

every compact subset K of [, there exist functions
o(t,x) € co(®) and U(t,x,8)€ c7(1,s”) such that the following

three conditions hold:
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( d(t,x) = 1 on some neighborhood of w(K).

1 on some conic neighborhood of K.

v(t,x,8)

v(t,x,D)(du) (t,x) &€ B(I,E).

Here SO denotes the class of the symbols of the zeroth order
pseudodifferential operators on Ig , T denotes the natural
projection of IX(T*Q\O) onto IXQ, and we say that U 1is a conic
neighborhood of K if there exists an open subset V of IX(T*Q\O)
such that K ¢ v U and that (t,x,A&) ¢ V holds for (t,x,&)e V
and A > 1. |

Now we can state the main theorem for (NS). We supposé that
(u,p) 1is a solution of (NS), and that all wu., and p belong to

J
the space B(I,B'(Q)).

Theorem 1. (Microlocal hypoellipticity of (NS))
-3 ©
Suppose 0 < t < T, % e Q, €40 and s » max { 0, n/r-1 }.

. ¢ o
If each Uy is locally in Wi on the set {(t,x)} and each fj

W2$—1—n/r c ¢
r

C
is microlocally in on {(t,x,&)}, then each wu. 1is

microlocally in wis+1—n/r—6 on {(t,x,8)} for every positive

number §.

Statements for p and Q% will be given in Theorems 4 and 5

later.
To describe our results for (E), we must put further
assumptions. Let ¢ be a number greater than 1. A function

CO,o

v(t,x) on IXQ 1is said to belong to the class (IxQ) 1if the

following two conditions (1) and (2) are satisfied:
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3iU(t’X) exists and is bounded, continuous on IXQ for any

(1)
o« € N such that |a| < o.
(2) IBzu(t,x)—Biu(t,y)l/|x—y|0_k is bounded on IxXQ for any
a4 & EP, where k 1is the greatest integer less than 0.
In the next definition and Theorems 2 and 3, we suppose that
(u,p) 1is a solution of (E) such that p €& B(I,& (Q)) and that

v € CO’O(IXQ) for every j = 1,¢°*+,n.

Remark 1.

For n = 2, Kato [10] proved the existence of the time-global
solution of (E) satisfying the above assumptions. His results can
pbe summarized as follows:

Suppose that @ 1is a bounded domain with smooth boundary 90
and that o© 1is a positive number such that o & IN and o > 1.

put f Z 0, and let uo(x) be a function in CO(Q) satisfying

uO(x)'nx = 0, where n, is the normal vector of 02 at x. Then
there exists uniquely a pair (u,p) which satisfies
u(0,x) = uo(x) on £,

(0.1) u(t,x)'nX =0 on Ix3Q

and is a solution of (E) satisfying the above conditions.

For n > 3, the existence of the solutions satisfying the above
conditions have been obtained by Ebin-Marsden [8], Swann [22], Kato
[11], Bourguignon-Brezis [7], Temam [23] and Kato-Lai [12]. But, in
this case, the number T depends on uo(x).

These results suggest that our assumption is not unnatural.
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Next, to state our results, we introduce some notions.

Definition. We call a connected integral curve of the vector field

n
k=1 k 9x

in IXQ‘
k

a trajectory curve, and a connected integral curve of

p) n 3 n du, 4 %
3E Y Lucg— - I 5-'§§l'3g' in  IX(T 9MO)
k=1 ko 9,k=1 3 %k 9%
a bicharacteristic. That is, a curve {(t,X(t))} = C is a
trajectory curve and {(t,X(t),5(t))} = I is a bicharacteristic if

and only if X(t) and E(t) satisfy the system

0X
{’<0-2) 3o = Uy (6,X(8),
9% . n du
S k
(0.3) 3T = §

Ek(t)ggg(t,X(t)).

k=1

Remark 2.

To solve the above system, we first solve the equations (0.2).
Owing to the Lipschitz condition of uj(t,x) with respect to x,
the system (0.2) can be solved uniquely, at least locally in time.
Then the linear system (0.3) can be solved as long as X(t), the
solution of (0.2), exists, and the solution Z(t) is homogeneous of
degree 1 with respect to the initial value. Especially, if the
initial value is not equal to zero, then Z(t) never vanishes.

If u(t,x) satisfies the boundary condition (0.1), then the

system (0.2) can always be solved for whole t & I.
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Roughly speaking, our results for the equation (E) are as
follows: let C be a trajectory curve and I Dbe a
bicharacteristic. Then the local regularity of the solution
u(£r‘)' where t € I 1is regarded as a parameter, propagates along
¢, provided the external force £ is sufficiently smooth along C.
gimilarly, if £ is sufficiently smooth along T, then the
microlocal regularity of wu(t,+) propagates along T; that is, for
two different times s and t, the wave front set (modulo an
appropriate function space) of wu(s,+) 1is mapped onto that of
v(t,*) by the transformation of T*Q induced by the diffeomorphism
of § determined by the trajectory curves.

More strictly, we have the following theorems.

Theorem 2. (Propagation of local regularity in (E))

Suppose that fj is locally in Wi on a trajectory curve C

.for every 3j, where s > 1. Then, if there exists a point

0 O (o4 o
(t,x) € C such that every uj(t,-) is locally in wi at x, the

solution uj(x) is locally in Wi on C for every j.

Theorem 3. (Propagation of microlocal regqularity in (E))

Suppose that o > 2, that every fj(x) is microlocally in Wi

on a bicharacteristic I, and ever uj(x) is locally in Wi+2_0

on the trajectory curve n(l).

¢ ¢ o
Then, if there exists a point (t,x,&) € T "such that every

%] e @
uy(t,+) is microlocally in W> at (x,&), the solution uy ()

is microlocally in Wi on TI.
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lemark 3.

The trajectory curve énd the bicharacteristic play the same
oles as those of the bicharacteristic curve and the
yicharacteristic strip respectively, in the theory of linear
:quations. Usually, for higher order differential equations or
irst order systems, local regularity does not propagate along
>icharacteristic curves. But in this case, the eqﬁation is
:ssentially first order, hence all bicharacteristics passing through
:he fiber of a base point are mapped onto the same trajectory curve
>y the projection 7. Owing to this fact, our local propagation

cheorem is valid.

Finally we shall consider the regularity of %%(t,*) and

o(t,*). PFor this purpose, we put

any number greater than max { 0, n/r-n/2 }
(0.4) if s < max { -n/r, n/r-n }-1,

(s+n/r+1)/2 if s » max { -n/r, n/r-n }-1
and
(0.5) p =max { s, 1}
for a real number s.

‘'Then we have the following two theorems.

Theorem 4.

Let (u,p) Dbe a solution of (NS) or (E) such that all uy

and p belong to the space B(I,2'(Q)), and suppose that C is a

subset of IXQ. If all fj are locally in W_ on C and if all
uj are locally in Wg on C, where p 1is determined by (0.5),
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ou.

. . s+1 . .
then p is locally in W on C and all _El is locally in
w5'1 on C if (u,p) is the solution of (E), and is in Wi"z on

r
c if (u,p) is the solution of (NS).

Theorem 5.
Theorem 2.

Let (u,p) Dbe as in the previous theorem, and suppose that T

*
is a subset of IX(T Q\0). If the conditions
is a subSet Ob

Every fj is microlocally in wi on T.

0]

Every u. 1is microlocally in W on [I.

J r -

. . T . .

Every uj is locally in w_ on m(l'), where T 1is determined
by (0.4).
s+1 ou,
are satisfied, then p 1is microlocally in Wr on ['. Every 5—1
is microlocally in W§-1 on I if (u,p) is a solution of (E),
and is microlocally in Wi—z on ' if (u,p) 1is a solution of

(NS).

Remark 4.
Using the results of [25] and [26], we can replace the Sobolev
space Wi by the Besov space B;q and the Triebel-Lizorkin space

F> , which are generalizations of the Holder space and the Sobolev

Pq

space respectively. For the definitions and the basic properties of
these spaces, see Triebel [24]. The local propagation theorem for
the equation (E) in the Holder space was, as far as the author

knows, first obtained by Giga [9], and the propagation of local

analyticity was proved by Alinhac-Métivier [1].
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Proofs of Theorems 2 and 3 are given in Yamazaki [28], so we
shall only prove Theorems 1, 4 and 5. The proof is a combination
of the method of vorticity (see Serrin [21]) and the symbol calculus

of paradifferential operators.
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81. Some results on paradifferential operators.

In this section we give a brief sketch of the theory of
paradifferential operators used later. In the sequel let r be a
pumber satisfying 1 < r < «, and let Lt = Lr(ﬂp) and L~ = Lw(}?)
with respect to the Lebesgue measure. And we assume that the domain
of integration is the whole space R’ unless otherwise specified.

First we fix a function V¥(t) € C (R such that 0 < ¥(t) < 1,

y(t) =1 for t <1, ¥(t) 0 for t > 4/3. Next we introduce

functions ¥, (£), &,(£) € Co(®) for 3 € N by ¥,(£) = v(27|g]),

v

@0(5) = ¥,(8) and ®j(€) = Wj(i) - Y. 4(8) for j 1.

J
Then, for a symbol P(x,£&) and a tempered distribution u(x),

we define ﬂ1(P(X,D),u)(x) as follows:

m, (P(X,D),u) (x) =

™8

-1 i AL\ =
F [ij_z(i—n)®j(n)P(&—n,n)u(n)dn](x).

j=2

~

Here dan = (2m) %dAn and P(&,n) denotes the Fourier transform of

P(x,n) with respect to x; that is, P(£,n) = Je—ix.gP(x,n)dx. We
call the operator u(x) - HQ(P(X,D),u)(x) the paradifferential
operator associated with the symbol P(x,£&).

Then we have the following lemma, which provides a

linearization adapted for the microlocal analysis.

, ©
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Lemma 1.
Let mg I, 1 <r < o, 1 <r',r" ¢ », and s',s" &€ R Suppose

1/r = 1/r'+1/r" and s = s'+s" > 0.

(] ”"
If u e Wi, and v E:Wi" , then w = uv—ﬂ1(u,v)—ﬂ1(v,u)

belongs to W° and it satisfies the estimate |w|| . < [jl| i IVl n-
r WS = WS ys

r r r
] "
Here, if r' or r" = o, the space Wi. or Wi" is replaced by
1 "
c® or C respectively.

Next we introduce some classes of symbols. For a positive

number ¢, we define a function space CO by

c’ = {f(x) e 1%; lE(x) || 5 < =}, where
c
£(x)-£(y) ]|
lIEl]l - = max Ibaf||m+ max sup |
’ c’ laj<lo] L” |a|=[0] x,ye® |X-Y|O_[O]

if OQJN, and

‘El‘G = max ”aafH + max sup | f(x+y)-2f(x)+f(x-v) |
c? " falco 1 alZom1 x,verd :
if 0 €N
For a nonpositive number 0, we define

c® =t e s flEll g = M=) Ly,g < = )
C C

where N 1is the least positive integer greater than -0/2.

Next, let E denote Loo or CO, and we put

/!
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S(E)m = {P(x,&); For every o ™' there exists Cu > 0

such that HagP(x,i)IE < ca<£>m'|“|}

for a real number m. Here <&> = (1+|g|2)1/2

and agP(X,E) is
regarded as a function of x with & as a parameter.
Then we have the following results on the boundedness of

paradifferential operators.

Lemma 2.

If a symbol P(x,£) belongs to the class s(L)y™ [resp.

s(c®)™, 0 < 0 1, then the operator ﬂ1(P(x,D),') is bounded of Wi
onto Wi_m [resp. onto Wi+o_m] for every 1 < r < @ and real

numbers m, s.

Lemma 3.

If a symbol P(x,&) belongs to the class S(Co)m and

s+0-m > 0, then the operator A defined by

Au(x) = P(x,D)u(x)-m, (P(x,D),u)(x) is bounded of WS onto w; ,

where K = o+min{ 0,s-m }.

These three lemmas are special cases of Theorem 5 in Yamazaki

[25], and the proof is given in Yamazaki [27].

/2
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Finally we remark that paradifferential operators have the same
symbol calculus as that of pseudodifferential operators. Namely, we

have the following

Lemma 4.

Suppose 0 > 0 and that P(x,£&) and Q(x,&) are symbols
a,™ o,M2
) and S(C") respectively. In case 0 =

belonging to S(C

0,
m,

£
we also assume that either P(x,£) or Q(x,&) belongs to S(C7)

for some € > 0. If we put

1 o o
R(x,&) = z 9,P(x,£)*9._0(x%x,¢&),
o] <o i‘u|a1 £ %

then the operator A defined by

Au = ’IT,) (R(X,D),u)“ﬂ.] [P(XID)ITT'] (Q(XID) Iu))

s s+0—m1—m2
is bounded of Wr into Wr .

This lemma is proved in [27].

/3



§2. Proof of Theorem 1.

In the proof we identify all vector-valued functions
v(t,x) = (V1(t,X),"',Vn(t,X)) with 1-forms
v = v1(t,x)dx1+°°°+vn(t,x)dxn , and let d denote the exterior

. ,
gifferentiation with respect to the x-variables, and let d be the

dual of d. Then the system (NS) can be written as

(

nm~ms

3 *
3T u + d du +

3
= (u,u) + dp = f.
K 1Bxk k

(2.1)
*
du-= 0.

First, it follows from the hypotheses that there exist an open
¢ ©
neighborhood V of (t,x) in IXQ and a conic open neighborhood
't of & such that we can take smooth functions ¢;(t,x)<5 C:(IXQ)

and symbols wg(t,x,i) & Cw(I,SO) for j = 1,°***,n satisfying

1 ¢g(t,x) =1 on V,

1 on (VXI'')~,

11

(2.2) wg(t,x,i)

is—1—n/r) for every

w;(trX:D)(¢;fj)(t,X) € B(I,W
j o= 1,°°*,n.

Then it is sufficient to prove the following

Proposition 1.

Suppose that s < K < 2s+1-n/r and that there exist an open

o ©
neighborhood V' of (t,x) in IXQ and a conic open neighborhood

(2]

' of & such that we can take ¢'(t,x) € C?(IXQ) and

0'(t,x,8) € c”(1,8”) satisfying



6'(t,x) =1 on (V") ,

11

(2.3) V' (t,x,£8) 1 on (V'xI'")7,

V' (t,%,D) (0'uy) (t,%) € B(I,WE) for every j = 1,++°,n.

~

Then there exist ¢(t,x) &€ C§(IXQ) and Y(t,x,g) € Cw(I,SO)

such that

~ o
¢(t,x) = 1 on some neighborhood of (%,x),

-~ o o
U(t,x,£) = 1 on some conic neighborhood of (t,§,g),

w(t,x,D)(¢uj)(t,x) e B(I,WE) holds for every j = 1,*+*,n

and every u < min { 2s-n/r+1, k+1 }.

First we derive Theorem 1 from this proposition. The
hypotheses of the proposition are satisfied for «k = s if we take
¢'(t,x) suitably and put ¢'(t,x,&) = 1.

If s < n/r, then s+1 > 2s-n/r+1 and the conclusion of

Theorem 1 immediately follows from the proposition.

Otherwise, we take u = s+1/2, and apply the proposition again

with «, ¢', V' replaced byi u, ¢, bV respectively. Then we

[e) [&]
conclude that each uj is microlocally in Wz at (t,§,£) for
every Vv < min { 2s-n/r+1, s+3/2 }, and if s < n/r+1/2 we are

finished. Since s < n/r+k/2 holds for some k € IN we obtain the

conclusion by repeated use of Proposition 1.

/5



proof of the proposition. Take ¢(t,x) & C:(V(\ V')

satisfying o(t,x) =1 on U', where U' 1is an open neighborhood
of (£,%) in VQOV', and put v(t,x) = o(t,x)u(t,x) and
glt,x) = ¢o(t,x)p(t,x). |

Next we take ¥(t,x,&) ¢ (I1,8°) such that Y¥(t,x,&) = 0 out

1 on UXI', where U is an

of U'X(T'N T"), and that Y¥(t,x,£)
o
open neighborhood of (%,x) in U' and T 1is a conic neighborhood
)
of & in T'(N T",

Then we have

w<t,x,D)d*d<¢fj)<t,x>

W(t,x,D)d*d(¢’¢jfj)(t,X)

W(t,x,D)d*d{¢(t,x)'(1—wj(t,X,D))(¢jfj)(t,x)}+

+W(t,X:D)d*d{¢(t,X)'wj(t,X’D)(¢jfj)(t,X)}

for all j = 1,¢**,n.
Since supp Y N supp(1—wj) = ¢, the first term belongs to
B(I,WS) for all o0 € B. On the other hand, it follows from (2.2)

23—3-n/r)
r

that the second term belongs to B(I,W . Thus

25—3—n/r)
r

(2.4) W(t,x,D)d*d(¢fj)(t,xJ € B(I,W for all j = 1,<°*,n.

*
In the same manner, from (2.3) and the equation d u = 0, we

obtain



(2.5) Vj(t,x) e B(I,Wi) for all j = 1,***,n,
* —
(2.6) ¥(t,x,D)d av,(t,x) € B(I,Wi 2) for all 3§ = 1,+*+,n,
i _
(2.7)  ¥(t,x,D)dd v, (t,x) & B(I,Wg) for all j = 1,**+,n and

3 *
(2.8) =—v + 4d dv +

& R
On the other hand, from (2.1) we obtain

—Q—(Vkv) + dg = g,

19%y

n~Ms

ot K

where g(t,x) = ¢(t,x)f(t,x)+f'(t,x) and f'(t,x) = 0 on U.

Then it follows immediately from (2.4) that
* _3_
¥(t,x,D)d dg,(t,x) € B(1,w>%"3 n/Ty for all § = 1,++,n.

%
Applying d d to both sides of (2.8), we have

no *
(2.9) 2a%av - ad¥av + = 4 d§§—(vkv) - a*aq,

* % * %k
since A = -dd -d d4d and d d

of

ot k=1 Xy

0.

We shall apply Lemma 1 to the third term of the left-hand side

' satisfying r' > r, r > 2 and

(2.9). Take a real number r

s-n/r+n/r' > 0. This is possible since s > 0 and

s-n/r+n/2 > n/2-1 > 0 if r < 2. Then we have

v. & B(I,W
i (1,

[}
i—n/r+n/r ) for every j by the Sobolev imbedding

theorem. Hence, Lemma 1 implies

2s-2n/r+2n/r'
vhvk—ﬂ1(vk,vh)—ﬂ1(vh,vk) € B(I’Wr'/z )

7
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where ﬂ1(vk,') denotes the paradifferential operator with symbol
Vk(t,-) on B with te I as a parameter. But, applying the

sobolev imbedding theorem again, we obtain

on-2n/r+2n/r' 2s-n/r
W_r/2 c W, . It follows that

(2.10) d*d—g—(v v) = d*d—é—
. Sxk k Bxk
2s-n/r-3

r

(ﬂ1(vk,v)+ﬂ1(v,vk)]+h1 ,

where (h.])j & B(I,W ) for every Jj = 1,°¢°+*,n.

Next, the Leibniz rule yields
d*d 9
3;2;"1‘"1«")

3 2 2 3
= ﬂ1(vk,7 v)+ﬂ1(Vvk,V V)+ﬂ1(v Vk,VV)+W1(V vk,v),

where the first term denotes a summation of the form

n 83V
Z a . Tr (v ’ Nw Ne N )I
h,3,0=1 hjl " 1' 'k Bxhaxjaxk

and other terms denote analogous summations.
For 3 = 0,°°*+,3, the Sobolev imbedding theorem implies

Vjvk & B(I, Cs—n/r—j). Hence, if s < n/r+j, we obtain
j 3-j 2s-n/r-3
ﬂ1(V Vit v r

fact and an analogous argument for ﬂ1(v,vk), together with (2.10),

v2)<5 B(I,W ) by virtue of Lemma 1.2. This

lead to

2 (m) (B (t,%,0),v)+my (5% (£,%,0), v )} + by,

x5 J
(2.11) a4 d—*—(VkV) = X
k j=

0

/8
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where J = min {3, [s—n/r]},‘the symbols Pj(t,xri) and

Qék)(t,x,g) (k= 1,ee+,n ) belong to B(T,s(cS™r3y3-3y .ng
(h,), belongs to B(I,Wis_n/r*3) for every £ = 1,¢*°,n.
Substituting (2.11) into (2.9), we obtain
' J n J
k k3

(2.12)  2aq¥av-aa’ave © 7w (p.(t,x,D),v)+ £ I m (0¥ (t,x,D),v,)
» at . 173 . 1473 k

=0 k=1 §=0

= hy ,

2s-n/r-3
r

where every coefficient of h3 belongs to B(I,W ).

Next, we shall represént v by d*dv and dd*v. Put
L={xeQ; (t,x) €« V for some t €I }, and let X(x) be a
function such that x(x) = 1 on L. Then Av(t,x) = 0 for
X € §\LL. Hence v 1is represented as G*(Av) on {, where G 1is
the Green function of the domain Q' & © with smooth boundary
containing supp ¥(x). Then, since ¥ = 1 on supp Vv, we have

v = Xv = XG*(Av) = XG*(x°*Av). On the other hand, the operator G*

is a pseudodifferential operator of order -2 on ', hence the

operator f » xG*(xf) is a pseudodifferential operator of order

on TR'. Let K(x,&) denote its symbol. Then we have

(2.13) v = K(x,D)Av = -K(x,D)(d dv+dd v).

IH

Now take a symbol U(t,x,&) € Cw(I,SO) such that‘ v(t,x,8)
if t is sufficiently small, V¥(t,x,&) = 1 on some conic
neighborhood of (%,§,§) and supp ¥ 1is a compactly supported
conic subset of UXI'. Then, applying U(t,x,D) to (2.12) and

making use of (2.13), we obtain
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(2.14) h3 = %Ew(t,x,D)d*dv - all)(t X, D)d dv - A(W(t Xx,D)d dv) +
7o
+ §~—(t X D)8 4a dv + (M) (t,x, D)d dv +
k=1 k k
J * *
+ Z ﬂ1(w(t,x,D),ﬂ1(Pj(t,x,D),—K(x,D)(d dv+dd v))) +
j=0
n J
vz m, (U(t,x,D),T, (Q(k)(t %,D),
k=1 j= O
* * )
-K(x,D) (4 dvk+dd vk)) .
v 3¢
Here we remark that V¥(t,x,&), §E(t,x,€), (t x,&) and
AV(t,x,&) all belong to B(I,SO), and that K(x,&) € 8_2. For

every O > 0, these classes are contained in B(I,S(C ) ) and
S(CO)_2 respectively. Hence, by virtue of Lemma 3, we can replace
these pseudodifferential operators by paradifferential operators if

we are working modulo B(I,W:). From this we obtain
) * oy *
(2.15) h, = zp¥(t,x,D)d dv - ﬂ1( (t,x,D),d dav) - A(¥(t,x,D),d dv) +

gy—(t X D),aa =—d dv] + ﬂ1((A¢)(t,x,D),d*dv) -

+
II ™M 3
=
f——ﬁ

J
- 7 ﬂ1(w(t,x,D),W1(Pj(t,x,D),ﬂ1(K(X,D),d*dv+dd*V)J) -

-z m (v, %,0),m (@7 (t,x%,D),
k=1 j= o J

x X
W1(K(X,D),d dv+dd v))),
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2s-n/r-3
r

).

where every coefficient of h4 belongs to B(I,W
We consider the term
' *
ﬂ1(w(t,x,D),ﬂ1(Pj(t,x,D),ﬂ1(K(x,D),d dv))). Put T = s-n/r-j 2> O.

* *
Then, as before, we can replace d dv by ﬂ1(1,d dv) modulo

B(I,W:). This implies

*
my (e, x,D),my (Py(£,%,D), T (K(x,D),d dv)))

. ﬂ1(w(t,x,D),w1(Pj(t,x,D),w1(K(x,D),w1(1—W(t,x,D),d*dv))J) +

+ ﬂ1(w<t,x,D),ﬂ1(Pj(t,x,n),w1(K(x,n),w1<W<t,x,D),d*dv)>))

mod B(I,Wz).

By virtue of Lemma 4, the first term of the right-hand side is

s-2+2-(3-j )+t

where
r Vs

%
equal to % ﬂ1(RA(t,x,D),d dv) (t,x) mod B(I,W
A

each Rk(t,x,é) is a product of derivatives of Y(t,x,%&),
Pj(t,X,E), K(x,£) and 1-¥(t,x,&). But, by the choice of 1V, we

see immediately that R, = 0 for every A.
On the other hand, the condition (2.6) and Lemma 2 imply that
every coefficient of

my (0(t,%,0),7m (B (t,%,D), 7 (K(x,D),7, (¥(t,x,D),d av))))

3

belongs to B(I,W§—2+2—(3_j)) C

K=
B(I,Wr ).

In the same way we can calculate all terms, and we conclude

that
9 *
3¢ T AlY(t,x,D)d dv = h,

where W = min{2s-n/r-3,k-3} and each coefficient of h belongs to

B(I,Wg).

Z/
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Hence we have, by the well-known property of the heat equation,
* U .

'w(t,XrD)(d dv)j € B(I',Wr) for every Jj = 1,¢++,n and any number

’U less than min{2s-n/r-1,k-1}, where 1I' 1is any subinterval of I

away from 0.

since UY(t,e¢,*) = 0 for small t, we obtain
* u :
v(t,x,D)(d dv)j € B(I,Wr) for all j.

*
On the other hand, we have U(t,x,D)(dd v), € B(I,WS) for all

' *
j = 1,***,n and 0 E IR since d v = 0 on U. Hence LD(t,x,D)Avj

GB(I,wl‘j) holds for all 3.

Now we introduce other cut-off functions &¢(t,x), ¥(t,x,&)

such that ¢ = 1 near (t,x), V¥ 1 near (t,x,&), ¢ = 1 near

Hi

supp ¢ and ¢ = 1 near supp VY. Then there exists a symbol

o(t,x,E) € B(I,S %) such that
Q(t,x,D)eb(t,x,D)eA = Y(t,x,D)ed(t,x)

holds modulo a smoothing term. This implies

w(t,x,D)(¢vj) € B(I,WE+2) for all Jj. But we have
¢vj = ¢'¢uj = ¢uj. This completes the proof.
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83, Proof of Theorems 4 and 5.

First we remark that Theorem 4 is a special case of Theorem 5,
since p = max { 1T, s }. Hence we shall show the latter.

Next, applying the following proposition for every compact
subset K of I, we can derive the assertion on p 1in Theorem 5 in

the same way as we derived Theorem 1 from Proposition 1.

Proposition 2.

Let  (u,p) be a solution of the equation (NS) or (E), and

*
K be a compact subset of IX(T O\0). Suppose that s is a real

number and that there exist a function ¢'(t,x) € C?(IXQ) and a

symbol U'(t,x,£) € ¢ (1,s°) such that

( '(t,x) = 1 on some neighborhood of w(K),

1 on some conic neighborhood of K,

V' (t,x,8)

vj(t,x) = ¢'(t,x)uj(t,x) belongs to B(I,W;) for every

j =1,***,n, where 7T is defined in (0.4),

w'(t,x,D)vj(t,x) € B(I,Wi) for every 3,

| w'(t,x,D)(¢'fj)(t,x) < B(I,wi) for every 7J.

Then there exist a function ¢(t,x) € Cg(IXQ) and a symbol

vit,x,£) € c”(1,sY) such that

{ 6(t,x) = 1 on some neighborhood of m(K),

1 on some conic neighborhood of K,

tl

v(t,x,8&)

1

U(t,x,D)(0p) (t,x)  B(I,W."").

Moreover, if ¥'(t,x,&) is independent of &, we can choose as

Y(t,x,&) a function independent of £.

23
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proof. First we rewrite the equation (E) in the form

9
(3.1) 3

<

|

oy
+ L =(v,.v) + dgq = g,
k=1an k

-+

V(t,x,0)d" g(t,x) € B(T,WS)

in the same way as we obtained (2.8) from the equation (NS).
gere V(t,x,&) € Cm(I,SO) satisfies U(t,x,€) = 1 near K and
' (t,x,&€) =1 on supp V.

* .
Applying d to (2.8) or (3.1) and observing the equality

d*d* = 0, we obtain
o d* g d* 0 A d*
(3.2) zgd v + o sxk(ka) - Ag = d g.

Then, as in section 2, we have

4" : ch { } - aq=d'g+n, ,
(3:3) 3gd v - 2 g ax T (VyeVid T (Vv )t - b= dig e g
J,k=1""3""k
2T-n/r-2 1

where h, € B(I,W ) C:B(I,Wi— ).

r

Next, the Leibniz rule implies

n a2
(3.4) YT e T (Vv.,V,)
j,k=18xk3xj 1" 737k
( 82v. (SV avk ) (Bv 8vk )
= I |7 yvy) r (=t , =) e (L, ) o+
5, % 1 Bxkaxj k 1 8xj axk 1 axk axj
( 82Vk
+ m (v, , ).
1473 Bxkaxj
oV, T-1-n/r ov.
Since Z——lGB(I,C ) and I =L = 0 near
3 2% 3 2%

m(supp ¥(t,x,&)), we have

24
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ov., ka

3.5) m ((t,x,D),m (I s Lo V)
J ] k "7k
e B(I’W;-1+T—1+n/r) c B(I,Wi—1)

)y Lemma 4.
In the same way, we have

2

97V,
s-1
3.6) I m (W(t,x,D),m,( I 55—, v, )) € B(I,W. ).

k 3 j Tk
On the other hand, there exists a function ¥(t,x) &€ C:(IXQ)

*
such that x(t,x) 2 1 near supp d v and supp X/ 7(supp V) = @.

[t follows that

(3.7) m (b(t,x,D), I LSO —k )
J k 3 7k

82vk

8xj3xk

= (V(e,x,D), T (v, (X, z )))

j

nod B(I,W:), and this formula belongs to B(I,Wi_1) by Lemma 4.

Since V' = 1 near supp ¥V, we have
n a2
(3.8) ﬂ1(¢(t,x,D),j'i=1§§;§§; ™y (v, 7))
= j%kﬂ1(¢(t,x,D),ﬂ1(1akaj r Vi)
= j%kﬂ1[W(t,x,D),ﬂ1(ianDj , (V' (t,x,D),v,)))

1) by virtue of (3.4), (3.5), (3.6) and (3.7).

u,
t

mod B(I,WS”
r

F

Next, since € B(I,P(R)), we have

(o34

2§
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EZi c B(I,E'(IP)) C:B(I,Wg) for some o0& IR It follows that
ot
*8V)

*9
NT(w(tlxlD)ld EE V))

ﬂ1(W(t,XID), § ﬂ1(de gE

I

mod B(I,W;) by Lemma 2. But Lemma 4 implies that the right-hand

side belongs to B(I,W;). Hence we have
3 X o0
(3.9) ﬂ1[w(t,x,D),§Ed v) € B(I,W_).
Applying ﬂ1(w(t,x,D),-) to both sides of (3.3) and making
use of (3.8) and (3.9), we obtain

n oV,
j=1ﬂ1(¢(t,x,n),ﬂ1(i5;inj ;T (0 (E,%,D),v ) +

2

+ m (W(t,x,D),Aq)

s-1
<3 B(I,Wr ).

But, since U'(t,x,D)v, € B(I,Wi), the first term of the

left-hand side belongs to B(i,wi). This implies
T, (b(t,x,D),Aq) e-B(I,w§‘1).
Now, making use of the Green function of ' as in Section 2,

~

1) for suitable ¢ and V.

we obtain U(t,x,D)(¢p)(t,x) € B(I,wf_+
This completes the proof of Proposition 2.

au,
Finally we consider ggl . As before, we can deduce that

1

n . ,
z —é—(u u.) 1is microlocally in B(I,W>"') on K for every
_18x k r

k k J
j o= 1,°'°,n. Now the conclusion is an immediate consequence of this

fact and the assertion on pP.

24
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