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- FREE BOUNDARY PROBLEM FOR UNSTEADY SLAG FLOW IN THE HEARTH

Hideo KAWARADA (Tokyo University)

Takao HANADA (Univ. Electro Communication)

Q. __Introduction.

The hearth drainage is one of the most important factors for
successful blast furnace operation. The slag is considered to be
more difficult to drain than the metal because of its higher
viscosity. When the slag surface reaches the level of tap hale,
the furnace gas starts to blow out. Then tapping should be
stopped. The amount of undrained molten material at the end of
tapping is estimated by the shape of the slag surface. In order
to determine the influence of tapping conditions due to the shape
of the slag surface, the three dimensional probiem of the sliag
flow during tapping was solved by using the finite element method
by Ichihara and Fukutake [2]. They concluded that their computa-
tional instability was resolved by Kawarada and Natori [11],

using the penalty method developed by themselves [5-7, 10].

The objective of this report is to give mathematical justifica-
tion of penalty formulation, i.e., to prove the convergence ofr
the penalized free boundary to the one of an original problem
when we let the penalizing parameter € tend to 0. In section 1,

we review the faormutation for two dimensional problems of the
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slag flaw, and then we give the penalized formulation by using
the method of integrail penalty. Section 2 is devoted to the main

theorems.  In section 3-5, we give the proof of the main theorems.

1. Formulation.

We consider 2-dimensional flow of the slag in a hearth, which is
bounded by an impermeable boundary I, and a free boundary. Ty
is consisting of lines ¥y = 0, X = 0 or a, and on the boundary x =
0 a tapping hole is bored near the bottom y = 0. On the other
hand the free boundary is represented by vy = &(t,x), and it is
denoted by T (¢é).
In a slag region, which is written by the function ¢ as

Q(p,t) = { (X,y) | 0 <(x <a and 0 <y < & (t,x) },
velocity vector v of slag satisfies the condition

v = - dWwvu
with a potential

u=(P-P) / (pg) + vy
by Darcy’s law. Here d is permeability of slag, p is density of
slag, £ is the gravitational acceleration, P is a pressure of

slag and P is a pressure at a standard point.

From the equation of continuity, ¥ «+ v =0, it follows that

Au =20 in Q¢ ,t).



Boundary conditions for the potential u are given such that u = vy
on the free boundary T (¢), and u, = 0 on the fixed boundary
except the tapping hole, on which it is assumed to be equal to
a given function.
On the expression ¢ (t,x) of the surface of free boundary, a
point (X, ¢ (£t,x)) on the boundary moves to a paint (x =~ du’xdt,
P (L, x) - du,ydt) after time dt past, it is followed by

¢ (t,x) - du,ydt== ¢ (t+dt, x - du’xdt)

= (1,0 + & L (t,0dt - dé (t,50u dt + 0dt)Z.

Therefore we have

cb,t(t,x) = dm,xd’,x - u,y).
While the unit vector n (t,x) of outward normal direction is

1+ ¢ (09 V28 (t0, .
Thus we obtain

$ (b0 =-d+ & DHV2u )Ly,

® (0,x) = & 00.

The above equations are rewritten as equations of p = u - y and

¢ as follows:

Ap =0 in Q(¢é,t),
Pnlry= ™ Plrce) =0
¢ ¢ =-dll + A+ ¢,x2)1/2p,n I T (e)?>
$(0) = B.
Here w = -1 on the bottom of boundary (v = 0), and x® = 0 on

the side boundary (x = 0, a) except the tapping hole.
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1.1. An_approximation by _penalization.

I x 10,bl, I = 10,al, and

1]

Let the whoie heartih be denoted by B
H be the Heaviside function. Then we penalize the free boundary
problem as follows.
We assume a penalized equation in the region B\ Q(¢,1t) with a
penalty parameter e > 0O, then the state equations satisfied by
functions p(e) and ¢ (e) of t, x and y are

= Ap(e)(to,y) + e H=-0 (e)(t0)ple) (t,x,¥) = 0,

p(e) = x,

JW' Ty
p(e) ‘ r, = 0.
Wher e rl is the top of the boundary 3B, and I‘Q is extended tfo
the whole rest boundary. For ¢ (e), we have in the distribution
sense of ° (B)
e MH(y = @ (e)(t,x))pe)(t,x,y)
- (- ¢,x(t,x)p’x(t,x,yJ + p,y(t,x,y))H' (v = d(t,x)),
and
e L {BH(n - # et pCe)rt,x, n)dn
am 4 b 0D Y20 ik, @ (E0) (L= HOY = $(£50))
as e -+ 0, which are simitarly shown as in [3j. Therefore as
the governing equations of ¢ ( &) we introduce
dle) ((too =-dir - LR oL el ttixyray),
b)) = 00, |

by the idea of the integrated penalty.
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2. Main resulis.

2.1, _Theorem 1.

There exigsts a unique solution po and ¢O such that

ApOzo in Q(¢D,t)s

0 - 0 -
Pnlry,= " Pl rce% =0

60 L =-dil+ A+ Y HEL L Lo,
¢O(O) = 3,

if @ is smooth enough and T > 0 is small enough.

2.2. Theorem 2.

There exists a unique solution p€ and ¢ € such that

- AP E (to,y) + e tH(y=0 ¢ (£,50)p € (t,x,y) = 0, (x,y) € B,
e — € —
p = =x, p =0,
¢ o0 =-dll - et B e e txyav,
¢ CO,x) = $00,

if @ is smooth enough, T > 0 is small enough (uniformly in e).

2.3. _Theorem 3.

If ¢ is smooth enough and T > 0 is small enough, then
¢ ¢ - o0 as e = 0,

in maximum norm.

2.4.

In order to show the theorem 1 and 2 we wili use the Nash-Moser'’s

implicit function theorem, which is described as fol lows:
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let E;, F; be real Banach space (J =0, 1, +, 11) such that
Eg @ E; D s D Eqq, Fq D e D Fyq.
And let 8 >0, V=1{x € E; | x|, < 81}, and
F:V » F, such that F(VnE,) ¢ F, for any i.
If
(1) [the existence of smoothing operatorsl
39 2 1and 3@, € €y > Eqps Yii,0 S0 S J 511
Cox € B > | Gx]; S CoT .
.erJ=> |x—@0><|i SCOi-‘jIX'Jv
(2) [F-differentiability of F]
F* € (v - L(E; = Fyp)): F-derivative of F,
- I F" x, M|, S Clhl, for any h € Ey,
. I FO#h) - FOO - F’ (,h) | & Clhl %,

(3) [the existence of right inverse of F]

31 e v - (Fy = Eps
. I(X)Fi C Ei Vi, x € VnE;,
- F7' (x, I(x,¥)) =y Y € VnE,, v € Fp,
- T OGYy) g & Clyly VYEFI,
C L TOGGFO) | 8 G+ Ix|p Yis 0, x
€ VnE,;,
4> | F@© | < e(C, 8)
then
3

X € V; F(x) =0.
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3. _Proof of theorem_1.

In order to apply Nash-Moser’s implicit function theorem, the
praoblem will be reformuiated as an equation of ¢. Let
a function p defined in [0,T] X I be a‘differenr:.e of the free
boundary from the initial state, and F be the functional in p
def ined by
F(p)=p o +dll+ (46 DY2P(0) | r(e))
¢ = & + p,

where P(p) is the solution of

- AP(p) =0 in Q(¢,t),

PCp) T, = =,

PCe) | r(¢) =0

Then the probilem is reduced to find a zero point po of F.

3.1,
For any 8 > 0, let I 4 = [8,a-8], then
F e @€ (0,T1xD - c™lro,11x1 4.
3.2. _(The first Frechet derivative of F_.)
F' (p,a)= a+dl+e V28 o P(o) | 1oy
+re AVYVZIP(e) L) r(e)l, o]

and

EP(P)’ns r(¢)]’P(0') =P’ (Pva)’n‘ T (¢)
PP nylT() tPER) i ()P, ,

where P° (p, o) is the solution of an equation

"'AP’ (P:O')'-'O, PI (P,O'),n‘l-c):O;
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P (pso) | p(g)y =~ PP nny | T (o) -
3.3, (The_second Frechet derivative of F,)
2)—3/20.

F'(p)(o)? =dl(t e, SCPCRY ] T (8)

+ 2(1+¢’X2)~1/2¢,XG’XEP(9),n\ F(e)l, pCa)

X

+ 1+ 6 ADV2P(e) L 1)l pp (7 ]

where P"(p,a'z) appeared in [P(p),n\ 1‘(¢>)J,_pp is the
solution of an equation of the same kind. Therefore F”"(p) €
L@ > L@ - ¢™3)) is bounded.
3.4,
For p € C™3, et J(p) € @l=® L ™, & >0, be an
operator defined by I (p)(*) = o such that

oyt dlte AHTV2¢ P L) rie)T.x

+te ATVILPGe) i r(eyl, o0t = T.

y P
Thus we can apply the Nash-Moser’s implicit function theorem with

J S :

Here since | F (0) | S CT* | F() | pgqs we can make

m-4- a
| F () | small enough by taking T be small.
.. _(Uniaueness.)
Let Po and P be zero points of F, and let p = pi - Py
Then p satisfies |
Pt
HA( ey DIV DIV, 4 86,,0P (e ] T (e P,
+d+ o A V%B(pg, e =0, |
e (0) =0,

X

- 1 -
Wher‘eB(PO'P]_)—jo‘:P(P 0),n§r(¢9)3,p’ .Pa—Po'*'
6(py - Py and & 4 = d + p o- It follows that p = 0.



4. Proof of theorem 2.

In order to prove the existence and uniqueness of solutions of

the penalized problem, let us define F € by

Fe(p)=p 4 +dll - e 1 [BHO-6t,0)P (p)av],
$ = &+ p,
where P € (p) is the solution of an equation
- AP %(p) + e H( - 6 (t, 0P % (p) =0,

€ — —
P (P),n‘ro—‘n’, PE(P)‘TI—O.'

Then the penalized problem is reduced to find a zero point f) €
of F €.
4.1,

F e (p,o)(t,x) = o 4(t,%)
—deTln [ B GP € (p, @) (tix,y)dy
- P(p)(t,%, ¢ (t,x)) o (t,x) ]
here 8p € =P ¢ (p,qa) is the solution of an equation
- A8p° + e lH-d(t, ) 8p ¢ =0,
Gp‘,n*ro=0, Spe.rl=0,

e _ - -1
8p “o,nlT(e) = 8P 1 nlr(e) = € PECRIN |1 (g0
Thus we have F ¢’ (p, o) € c™m1,

4.2.
F ¢ (p, a2) (t,x) = -~ de 1 f g(t,x)Pe”(p, 02)(t,x,y)dy
- 2P (p, ad)(t,x, ¢ (t,x))

- P(P),y(t,Xa¢(t,X)) O’(t,X) ]

here 82p =P € (p, 0'2) satisfies the equation



- A8% + e Hy - #(t,x)) 8% =0,
2 - 2 _
8 p,nq ro""O’ 6 D! I"l O!

2 2 - -1 € 2
3Polr(e) - 8Pilr(e)= ¢ P lIny | r(gp)o™
2 2 - —lrpe ; 2
8°Po,n | T(o) ~ 8PinfT(e) = ¢ P CpInd o % 4 oo

So we have F ®"(p, a2 € c™1
4.3.
For p € C™2, e can define the operator I (p) € (cMtl-o&

C™ by I(p)(z) = o such that
F ¢ (p)eo = =.

Thus we can apply the Nash-Moser’s implicit function theorem with

EJ - Cm+2J"2’ FJ = CI'TH'ZJ-A—G, a > 0.

5. __Convergency of penalized solutions (outline).

2.1,
It is shown in [9] that
P(e,p) — P(p)(l - H(y - & (L,x))) as e — 0.
2.2,
For small enough ¢ > 0O,
P €(p) ﬁ T (¢) lm |
S CeV2UPCe) 1) Vw1
& 1/2
PP SCp) + e "Plp) D lr(e)lm
1/2
L r(ersP e = eV (o) | p gy 1y

\0



S CeldP®(p) b rce) Vst
5.!_:3J-
’ _1/2
PP (p,0o) - e P Cpin, o) | p (o) Inm

1/2
S Ce Pinyo) | reg) V1,00 BPCRP) w1 (o) Vet

b rce) =P (puadan - V2P (o, 0) | p (g Iy

SCeln | r(g) tmi1, e IPCP) 0|1 (o) Tmta-
S.4.

For P€(p), we have
B i PECRY(tooyndy + et DY2P(o) L 1 (e I
s ced2IP (o) Mg,
S C(l¢'5/2) GS/ZI‘N—":B/Z.
Therefore

lp’t + dll1 - e—lfg(t,x)Pe(P)Jl s cel/2

Let e € denote the errar p € - pO in penalization, then
€ -1 € ey _ €
e p-de [ ge 4 P (e ®) - [ 40 0P (]
= 0¢( 61/2).

Now ltet an operator F be defined by
— b €
F(p) = f é (t,0P  (r) (tox,¥)dy,
s0 that
e 4 +dlF(e ) - F(pD1 =0cel/?).
Since »IF' (p, a) 'm
we can show that » (t) = Je ® (1) lC(I) satisfies the inequality
y(t) s cflr(rrar +cel/?2t, ana » @ =o.

Therefore we have » (t) & C el/2 in some finite interval [o,77.

{1
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