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Design of Optimal Controller with Integral and Prev1ew Actions

for Discrete-Time System
TOHRU KATAYAMAt  ( H d_, 7 Z)Z )

Abstract. This paper is concerned with a method of designing a type one
servomechanism for a discrete-time system subject ‘to a time-varying
demand and anyunmeasurable\constant disturbance. It is assumed that the
time-varying demand is previewable in the sense that some finite future
as well as present and past values of the demands are available at each
time. An optimal controller with state feedback plus integral and preview
actions is derived by applying a linear quadratic integral techniqué
(Tomizuka and Rosenthal 1979). It is shown under the stabilizability and
detectability conditions that the closed loop system achieves a complete
regulation in the presence of small perturbations in system parameters,
eliminating the effect of disturbance. An observer based controller is

also considered.

+ Department of Applied Mathematics and Physics, Faculty of
Engineering, Kyoto University, Kyoto 606.
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1. Introduction

In many practical comtrol systems design, it is required that the
outputs, or the controlled variables, track without éteady state error the
demand signals in the presence of unmeasurable disturbances.‘ For more than
a decade, there has been much interest in tracking or servomechanism problems
for linear time-invariant multivariable systems {Davison 1972, Smith and
Davison 1972, Young and Willems 1972, Bradshaw and Porter 1976, Furuta and
Kamiya 1982). Furthermore, design préblems of robust servomechanism have
extensively been studied by the state-space and frequency domain approaches
(Davison and Goldenberg 1975, Davison 1976, Francis and Wonham 1976, Ferreira
1976). An overview 6f the state of knowledge on the robust servomechanism
problem is presented by Desoer and Wang (1980).

In most papers mentioned above, however, it is assumed that the desired
signals as well as disturbances are constants, or ramp functions, or more
generally, the outputs of some free time-invariant linear systems. More
recently, assuming that the disturbances are previewable, Tomizuka and Rosenthal
(1979) have developed a digital controller with state feedback plus integral
and preview actions for a discrete-time system with a constant demand input;
they have shown that the preview of future disturbances is very effective for
improving the transient responses of the ;losed loop system. A related finite
preview control problem for a continuous-time system is'also considered by
Tomizuka (1975).

This paper deals with a tracking problem for a discrete-time system in
the presence of unmeasurable disturbances. It is assumed that the desired

signal is rather arbitrary but eventually converges to a constant vector,



and that finite future values of the demand sigﬁél are avallable at each
instant of time. These assumptions may not be unrealistic in many practical
control problems. For example, in power plant control, we must keep the
outputs at constant levels over a period of time, where the constant levels,

or the set points, may change from time to time according to the load demand,
for which a local future information is available. We wish to present a method
of designing an optimal type one servomechnism for a discrete-time system by
extending the linear’quadratic integral (LQI) technique due to Tomizuka and
Rosenthal (1979).

This paper is organized as follows. In section 2, we formulate the
tracking problem as an LQI problem by defining an appropriate performance
index and an augmented state-sbace model that includes the available future
demands as a part of the state vector. The optimal controller with state
feedback plus integral and preview actions is derived in section 3. Section
4 presents some preliminary lemmas. In section 5, we show that the closed
loop system is asymptotically stable and hence a complete regulation occuré
under the cohditions of stabilizability (or reachability) and detectability
(or observability). We also show that a complete regulation occurs in the
presence of small perturbations in system parameters. Section 6 is devoted
to the stability analysis of the overall system when an observer is incor-
porated into the state feedback loop.

A numerical example from a power plant control is presented elsewhere

(Katayama, Ohki, Inoue and Nakayama 1984).
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2. Problem statement

We consider a time-invariant linear discrete system described by

x(k+1)

Ax (k) + Bu(k) + Ew(k) (1)

y(k) = Cx(k) ' ' (2)
where x(k) ié the n x 1 state vector, u(k) 1is the r x 1 control vector,
y(k) 1is the p x 1 output vector to be controlled, and w(k) is the q x 1
inaccessible constant disturbance. The A, B, C, E are constant matrices

of dimensions n xn, n x r, p X n, n x q, respectively. It is assumed that
rank B = r, rank C = p, and rank E = q.

Let yd(k) be the p x 1 desired output, or the demand vector, for which

we assume that there exists a constant vector ;ﬁ such that 1lim yd(k) = ;a.
k =

This implies that the demand vector 1is an arbitrary time-varying fﬁnction,
except that it reaches a steady state. We further assume that the demand is
previewable in the sense that at each time Kk, NL future values ydfk+1),...,
yd(k+NL) as well as the present and past values of the demand are available.
The future values of the desired output beyond time k+NL are approximated by
yd(k+NL), namely
yd(k+i) = yd(k+NL), is= NL+1,... 7 (3)
The basic design problem considered in this paper is to find a controller
such that:
1. In the steady state, the output y(k) tracks the desired output yd(k)
in the presence of disturbance w(k).
2. The closed loop system is asymptotically stable and exibits acceptable

transient responses.

In order to meet with the above requirements, it is desired to introduce
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integrators to eliminate the tracking error e(k) = y(k) ; yd(k). In other
words, we must design a type one servomechanism for the system of (1) and (2)
such that the asymptotic regulation occurs: e(k) -« as k- o , while
keeping the transient responses satisfactory in some sense. To this end, we
employ the LQI technique (Athans 1971, Smith and Davison 1972, Tomizuka and
Rosenthal 1979).

Let the incremental state vector be Ax(k) = x(k) - x(k-1), and let the
incremental control vector be  Au(k) =-ﬁ(k) - u(k-1). It is well known
(Athans 1971) that the integral action of the controllér is introduced by
including the incremental control in the performance index. Therefore we

wish to obtain the optimal controller wu(k) such that the performance index

Je L [ee + X sxE) + tul (IRME)] 4)
i=k

is minimized at each time k, where Qé and R are pxp and T X T
symmetric positive definite matrices, réspectively, and Qx is an - n xn
symmetric nonnegative definite matrix, and where 1 denotes the dummy time
index, and the superscript (-)T ~denotes the transpose.

It should be noted that the term eT(i)Qee(i) represents the loss due to
tracking error, and that AxT(i)QXAx(i) and AuT(i)RAu(i) represent the losses
due to the increﬁental state and control vectors, respectively. Thus the
physical interpretation of J 1is to achieve the asymptotic regulation without
excessive rate of change in the state and control vectors. The quadratic term
for the rate of change in state vector, which is not used in Tomizuka and
Rosenthal (1979), will make the design technique more flexible, allowing us

to directly regulate the transient responses of the state variables.
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3. Design of optimal controller

We derive an augmented state-space description that includes the
future information on the demand signql as well as the error e(i), the
incremental state vector Ax(i), and the incremental control vector Au(i).
From (1), the incremental state is described by

Ax(i+1) = AAx(i) + BAu(i), i = k,k+1,... (5)
where we note that the incremental disturbance Aw(k) does not appear,
because the disturbance is a step function. Also, we see from (2) and
(5) that the tracking error satisfies

e(i+l) = e(i) + CAAx(i) + CBAu(i) - Ayd(i+1), i=k,k+1,... (6)
where the incremental demand is defined by

byg(1) =y () - yyG-1) o (7)
Combining (5) and (6) ylelds

e(i+1)] =|i1p CK e(i)] + [CB] Mu(i) + [- Ip]Ayd(iﬂ), ; M (8)
[Ax(i+1) 0 A_J[Ax'(i) LB o]

where i = k, k+1,..., and IP denotes‘the P X p unit matrix.

Since NL future demands yd(i), i= k,k+1,...,k+NL, are
available at time k, the relevant informantion on the incremental
demand can be summarized as the pNL x 1 vector:

xg(K) = [by, (k). 0,0y,  (keN )T (9)

It follows from the assumption of (3) that xd(i) satisfies

xd(i+1) = Adxd(i), i=k, k+1,... (10)
where
Ad = J0 Ip (0] (pNL X pNL) (11)
0 . ’
Ip



Now define the (p+n+pNL) x 1 augmented state vector
— . T,. T.. T ..¢T
x(1) = [e" (1) MT(1) x; (1)] (12)

Putting together (8) and (10) yields

I CAI-I_0...0 CB
P ! P }
x(i+1) = |o Ao o0 0|x@) + | B |au@), i = k,k+1,...(14)
0 i Ay 0

On the other hand, in terms of the augmented state vector x (i), the

performance index J of (4) is expressed as

e 0 0
J= 3 {:i(i) 0 QX 0] x(1) + AuT(i)RAu(i)} (15)
i=k
0 0 0

Therefore, the optimal controller can be derived by solving the optimal
control problem that minimizes the performance index J of (15) subject
to the dynamic constraint of (14).

For the sake of simplicity, we define

~ ~

B=[cB], I = o) F e CA], Q=[q o0 ], A =‘[f F] (16)
[B] [l] [A o QJd |

Theorem 1

The optimal incremental control Auo(k)‘ is given by

. : N
L
b (k) = - Gre(k)- GAX(K) - I G,y (8) by, (k+2) 17y
X 9-1 d d
where
G, = [R+ 5TkE]18TRT (18a)
G, = [R + 5TRE] 18 TkE . (18b)
Gy (1) = - G : : (18¢)
T -1To
Gy (2) = [R + BRB]T B X(2-1), 2= 2,..., N - (18d)



(«'p)

~

and where the (p+n) x (p+n) matrix K 1is the nonnegative definite solution

of the algebraic Riccati equation
K = ATRA - ATRBIR + BIRB] 1BTRA + Q (19)

Furthermore, the (p+n) x p matrices i(%) are given by

K@) = Réri(z-i), fo= 2, N X(1) = - Kérif (20)
where Kc is the closed loop matrix defined by
AC - A - B[R + BTRE]BTRA (21)
A proof is elementary, and is omitted. []
Theorem 2
The optimal controller uo(k) is given by
o) K . ML
u (k) = - GI iio e(i) - Gxx(k]f- 251 GdCQ)yd(k+2) (22)

where it is assumed that y(k) = yd(k) = 0, x(k) =’O for ,k = Q,m—l,....
. A proof is immediate from Theorem 1. []

It should be noted thét the optimal confroller uo(k) of (22) consists
of three terms; the first term represents the integral action on the tfacking
error, the second term represents the state feedback, and the third term is
the feedforward or preview action based on the local future information on
the demand vector.

We observe that if NL = 0, then the preview action disappears from (22),
so that uo(k) becomes |

k

L e(i) - G_x(k) (23)
i=0 X

WK = - G,



Moreover, since Gd(l) = - GI’ if NL = 1, then we have
o k '
u (k) = - GI iEo e(i) - Gxx(k) - Gd(l)yd(k+1) (24a)
k
=-G6, Iz [y@d) -y ,(GE+1D] - G x(k) (24b)
I i=0 dvy . X

This is a state feedback controller with integral and feedforward actions.
Let v(k) be the discrete integral of tracking error e(k), namely

v (k)

H

v(k-1) + e(k) = (25a)
or

v(k) = - f'1 e (k) , (25b)

Thus it follows from (22) and (25) that the optimal controller is

expressed as

NL
(k) = - Gv(k) - 6.x(K) - I Gy (k+2) - (26)
=1

Noting that e(k) y(k) - yd(k), it follows from (1), (2) and (25a) that

v (k+1)

v(k) + CAx(k) +CBu(k) +CEw(K) - y, (k+1) L @n

Combining (1) and (27) gives

v(k+1) v - N | - | |
[ A + Bu(k) + Ew(k) - Iyd(k+1) (28)
x (k+1 x (k) '

[éﬁ] (29)
E ,

Substituting (26) into (28) yields

n

where

tr
I

-8-



v (k+1) v R . .
= A } =B I 6 (My (ke D - Iy (kel) + Bw(k) (30)
x (k+1) CLx) %=1

~

where AC is given by (20).

Therefore we observe that the closed loop characteristic is determined
by Kc’ or the state feedback and the integral action, so that thg stability
of the overall system is independent éf the preview action. It should be
noted that the controller uo(k) is independent of the matrix E; thus the
exact knowledge of the disturbance matrix is not necessary for designing the

optimal controller. Note that this is not the case if the state vector is not

directly accessible (see section 6.).

4. Preliminary lemmas

In order to prove the asymptotic stability of the closed loop system,
we need some preliminary lemmas for stabilizability (or reachability) and
detectability (or observability).
Lemma la
The pair (R, E) is stabilizable ifkand only if (A, B) is stabilizable
and the following rank condition holds:
0 C ; .
rank = p+n (31)

-
Proof

For the proofs of this and following lemmas, the PBH rank test (Kailath
1980) 1s employed. Assume that (A, B) 1is stabilizable. For the

stabilizability of (K, ﬁ), it suffices to show that for .any complex \X\ 21



rank[A-—kIp+n i B] = rank =p+n (32)

Since rank[A-—AIni B] = n for any complex | X |

v
-
-
=
o

see that (32) holds

~for A # 1. For the case of A =1, it follows from (31)5fhat

CA CB I C 0 C

e
®
=
=
I
]
w
=
=
]
1]
g}
+
=

(33)

v

Thus we have shown that (32) holds for any complex | X |2 1.
Now assume that (A, B) is stabilizable, so that (32) holds for any
complex | Al 2 1. Since the matrix [R _A1p+n §§] has a maximal row rank

for any complex | A ‘2 1, we see that rank[A —Alng B] = n :for any complex

| |2 1. Letting A

1 in (32), and using (33), we have (31). [J

A continuous-time version of Lemma la has been proved by Smith and
Davison (1972) by manipuiating the controllability matrix.- It.is also well
known that the rank condition of (31) implies that‘the system (C, A, B)

has no transmission zeros at z = 1 (Davison 1976).

Lemma 1b

~ ~

‘The pair (A, B) 1is reachable if and only if (A, B) 1is reachable and
the rank condition.of (31) holds.

For the reachability of (K, §), it suffices to show that (32) holds
for any complex A. Assume that (A, B) 1is reachable. Then it follows that
rank[A-—AIni B] = n for any complex A. Thus, for A # 1, we can easily
see that (32) holds. Moreover, for X = 1, (33) holds as shown above. This

~ ~

implies that (A, B) 1is reachable. On the other hand, if (A, §) is

-10-
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reachable, then (32) holds for any complex A. Hence, as in the proof of
Lemma la, wevhave rank[A -kIn§ B] = n for any complex A, and (31). This
completes the proof of Lemma 1b. []

By manipulating the controllability matrix, Seraji (1983) ha§ proved
Lemma 1b, and Young and Willems (1972) and Smith and Davison (1972) have
proved the continuous-time version of Lemma 1b.

Now let H, and H_be pxp and nxn matrices such that Q, =

HeTHe and Qx = H THX, respectively, Then we have

X
Q = i 'H : , (34)
where
H=[H of o | (35)
0 Hy
Lemma Z2a

Let Qe be positive definite. If ~(C, A) 1is detectable, then

(H, A) 1is detectable.
Proof

We can easily see that (CA, A) 1is detectable if and only if (C, A) 1is
detectable. For the detectability of (ﬁ, R), it suffices to show that for

any complex |Alz21,

~ ™ : T
. H : H 0
rank = rank =p+n (36)

K - AL : X
p+n

Suppose that (C, A) is detectable, and hence (CA, A) 1is detectable. Then

for any complex | x|z 1,

-11-



13

CA
rank = n : (37)
A - AIn :

But since rank He = rank Qe =P, it follows from (37) that (36)'holds\for
any complex |A|2 1. [] ‘
Lemma 2b

Let Qe be positive definite, and assume that A is ndnsingular. Then
if (C, A) 1is observable, (ﬁ, R)‘ is observable.

Suppose that (C, Aj is observable. Since A 1is nonsingular, (CA, A)
is observable if and only if (C, A) is observable. Therefore (37) holds
for any complex X, so that we see from iank He = p; that (36) holds for any
complex A. This implies that (ﬁ, X) is observable. [] |

It should be noted that if Qx = 0, then Lemmas Za and 2b give necessary

and sufficient conditions for the detectability and observability of

(ﬁ, K), respectively.

5. Property of feedback system

In this section, we consider the stability of the closed loop system

described by (30).

Theorem 3a

Suppose that the following conditions are satisfied:
a) Qe and R are positive definite; |
b) The rank condition of (31) holds:

0 C ,
rank =p + n; : (31)

-12-
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c) (A, B) 1is stabilizable;
d) (C, A) 1is detectable.
Then the algebraic Riccati equation of (19) has the unique nonnegative
definite solution E, and the eigenvalues of Rc of (21) are éll inside
the unit circle in the complex plane, namely, Kc is asymptotically and
exponentially stable. [J

From Lemmas la and 2a, it follows that (R, ﬁ) is stabilizable and
(ﬁ, R) is detectable. Furthermore, since R is positive definitg the
algebraic Riccati equation

K = ATKA - ATRB[R + BRB] 1BRA + A (19")

is well defined. Thus the theorem is proved by applying the well known
theorem for the linear quadratic regulator (Kucera 1972, Kwakernaak and
Sivan 1972). [J
Theorem 3b

Suppose that the conditions of a), b) of Theorem 3a are satisfied.
Mwaww,a%mwﬁht
c') (A, B) is reachable;
d') (C, A) 1is observable and A is nonsingular.
Then the statement of Theorem 3a holds, except .that the algebraic Ricgati
equation has the unique positive definite solution.
It follows from Lemmas 1b and 2b that (K, §) is reaéhablé and (ﬁ, K)

is observable. The rest of the proof is standard (Kucera 1972, Kwakernaak

and Sivan 1972). [J
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Remark 1

It should be noted that the condition of (31) implies that r 2 p.
Thus for Kc to be asymptotically stable, the number of control variables
must be greater than or equal to that of the output variables to be
controlled. This is quite common in practical control problems.
Remark 2

It follows from (18c), (18d) and (20) that the preview gains are

given by

T 1T ~ T 4-1

K] 1B (A ) KI, 0= Lo, N ‘ (38)

Gy®) = - [R + B
Thus, under the assumption of Theorem 3a or 3b, the informafion on fhe
futufe values of the demand vector becomes less important as £ increases,
since Kb is exponentially stable.
Now we show that under the assumption of Theorem 3a or 3b, a completg
regulation occurs for the optimal closed loop system.
Theorem 4

Assume that the conditions of either Theorem 3a or 3b are satisfied.

If the demand vector 1is a step function, then a complete regulation occurs:

lim e(k) = 0 (exponentially) (39)
k=0 i ‘

and also
lim x(k) = x and 1lim u®(k) =4 (40)
k> k>

where X and u are constant vectors related by

AX + Bu + Ew

X
(41)

Y4 Cx

i

and where w(k) =w for k > 0.

14-



16

Proof
By taking the increment of (30), or by substituting Auo(k) from (17)
into (8), it follows that
Ek+1) = A E(K) + £(K) | )
where E(k) = [el (k) Ax (K)]7, and
NL .
f(k) = - IAy, (k+1) - B I G,(®)Ay, (k+R) (43)
d 0=1 d d .

Since the demand vector is a step function, we have Ayd(k+£) = 0 for any 2X.
Thus £(k) £ 0, so that (42) reduces to ¢E(k+l) = ch(k){ But since Rc is

exponentially stable from Theorem 3a or 3b, it follows that 1lim &(k) = 0, so
’ : . : ' ) ko> ]

that 1lim e(k) = 0 and lim Ax(k) = 0. By using (17), we have 1lim Au®(k) = 0

ke k> ke
Thus we Have shown (40); moreover from (1) -and (2), we have 4. g
Theorem 5
Assume that the conditions of .either Theorem 3a or 3b are satisfied. If
the demand vector' satisfies

lim y, (k) =, (44)

ke

then a complete régulation also occurs: e(k) =« as k -~ , and we have

(40) and (41). The convergence of e(k) is, however, not necessarily

exponential, since it depends on the rate of convergnece of demand yd(k).
A proof is immediate by noting that Kc is exponentially stable and

that f(k) - 0 as k> iﬁ (42). Q0

Remark 3

It may be noted that since (41) can be written as

-15-
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the rank condition of (31) implies that‘there existylﬁ and ;' for given
yy and w. Note that if p = r, then the steady states u and x are
independent of the quadratic weights 6 and R. The transient responses,
however, heavily depend on the quadratic weights. It should be also noted
that if r > p, namely, the number of contfol variables are greater than that
of the output variables to be controlled, then the steady states u and X
will be affected by the quadratic weights.
Remark 4

We note here that the asymptotic stability of a dynamic system is
generally preserved for small perturbations in the system parameters. Thus
it follows from Theorem 4 or5 that a complete regulation occurs for the closed
loop system of (30) in the presenée of small perturbations in A, B,'C; E
matrices, namely, the controller is insensitive to small change in system

parameters. Furthermore, the arbitrary pertuibations are allowed as long as

the ciosed loop system is asymptotically stable.

6. Observer based controller

When the state vector x(k) is not directly measurable, we are led
to the introduction of an observer or a Kalman filter to obtain the estimate
of the state vector (O’Reilly 1983). In this section, we assume that the
measurable output vector is given by |

! ¥y (€)= € x(K) | (46)

~16-



where ym(k) is the m x 1 measurable output vector, and Cmy,is the

m X m constant matrix. Usually the p x 1 output vector to be regulated
is a part of the measurable output vector, so that there exists the p x m
‘matrix M such that C = MCm. This is called thé readability condition
(Francis and Wonham 1976).

Since w(k) is constant, we have

xx+1) A E x (k) B |
+ [ ]uo(k) ' (47)
w(k+1) 0 I w(k) 0
q , :
Y (K) [C, 0] [XCk)] (48)
w (k) : '

Let Ymk_1 be the measurements up to k-1, namely, Ymk-l = {ym(O), ym(l),

., ym(k—l)}. Let _ﬁ(k) and W(k) be the estimates of x(k) and w(k)
based on the measurements Ymk_l, respedtively. Then the full order observer

for the system of (47) and (48) is given by

R (k+1) A E I[x) L, BY .
N = [ R + [y, () - C R(K)] + % (k) (49)
w(k+1) 0 I.q w-(k) Lw g . 0

where Lx and Lw are nxm and q X m constant gain matrices, respec-
tively, which are determined so that the (n+q) x (n+q) matrix
AL = A-—LXCm E (50)

-L C I
W q

is asymptotically stable (0’Reilly 1983). It should be noted that 4°

u (k)
in (49) is obtained by replacing x(k) by X(k) in (22) or (26).
Lemma 3

Suppose- that the following rank condition holds:

-17-
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Cm 0
rank =n+q (51)
In-A E :

If (Cm, A) 1is detectable, then we can find suitable gains LX and Lw

such that A of (48) is asymptotically stable.

L

Proof

We show that the pair

A E :
c_ 0], (52)
{{m ] [9 Iq]}

is detectable. It suffices to show that for any complex | Al 21,
C 0
m
rank AIn -A -E =n+q (53)
0 A-1)1
( )q
Since (C_, A) is detectable, for any complex BYERT
rank =n (54)
AIn - A s ; :

Thus (53) holds for any complex X # 1. If X¥ 1, (53) also holds from the
condition of (51). The rest of the proof is obvious from the definition of -
detectability. []

Note that the detectability (observability) of (Cm, A) follows from
the detectability (observability) of (C, A). It should be also noted that
the rank condition of tSl) implies that the system (Cm, A, E) has no
transmission zeros at z = 1 (Davison 1976), and that “m 2 q, namely, the
numBer of output variables is not less than that of the unmeasurable
disturbances.

Now define the estimation errors by X(k) = x(k) - Xx(k) and w(k) -

w(k) - w(k). Then, from (47)-(50), we have

-18-
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F+DY . v [x) '
ol e [ ] | (55)
7 (k1) W (K) |

If we employ the estimate X(k) in place of the state vector x(k) in
the controller of (26), then we have

8% k) = u® (k) + 6 X(K) (56)

since X(k) = x(k) - x(k). However, if AL is asymptotically stable, X(k)

~0 . . .
converges to zero, so that the controller {1 (k) is asymptotically equivalent
to ul (k).

Substituting C56) into (28) and combining the resultant system with.

(55) yield
[v(k+1)] I A B3 .
‘ A I BG 'O E
x(k+1)| = . X x| o+ | wao
X (k+1) B X (k) 0
0 AL ' —
w(k+1) i i | W(K) |
-B| M I |
+ f - ‘RzlGd(SL)yd(kﬂZ,) - | yg (k#2) . (57)

0 0
Thefefore we have the following theorem.
Theorem 6
éuppose tﬁat the conditions of Theorem 3a are satisfied. If the rank
condition éf (51) holds, and if the demand vector yd(k) converges to ;&;
then there exist v and x such that

lim v(k) = v and 1lim x(k) = x (58)

k =00 k>

Hence a complete regulation is achieved under the observer based.controller

of @°(k).
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A proof is omitted. []
Remark 5

Conditions b), c¢), d) of Theorem 3a together with the readability
conditions (C =’MCm) are equivalent to the ﬁecessary and sufficient conditions
for the existence of a robust controller for the system of (1), (23 and (46)
(Davison and Goldenberg 1975, Davisonki976). /
Remark 6

As in Remark 4, the observer based controller of (56) achieves a complete
regulation under small perturbations of system parameters. Héwever, it is to
be noted that the robustness of the.LQ regﬁlator is not preserved for the
case when a state observer or a Kalman filter is introduced into the state

feedback loop (Doyle and Stein 1979, O’Reilly 1983).

' &eferences

Athans, M. (1971), On the design of PID controllers using optimal linear
regulator theory. Automatica, vol. 7, no. 5, pp. 643-647.

Bradshaw, A., and Porter, B. (1976), Design of linear multivariable discrete-
time tracking systems for plants with inaccessible states. Int. J.
Control, vol. 24, no. 2, pp. 275-281.

Davison, E.J. (1972), The output control of linear time-invariant multivariable
systems with unmeasurable arbitrary disturbances. IEEE Trans. Automat.
Control, vol. AC-17, no. 5, pp. 621-629.

Davison, E.J. (1976), The robust control of a servomechanism problem for linear
time-invariant multivariable systems. IEEE Trans. Automat. Control, vol.
AC-21, no. 1, pp. 25-34.

Davison, E.J., and Goldenberg, A. (1975), Robust control of a general servo-
mechanism problem: The servo compensator. Automatica, vol. 11, no. 5,
pp. 461-471.

-20-~



Desoer, C.A., and Wang, Y.T. (1980), Linear time-invariant robust servomechanism
problem: A self-contained exposition. Control and Dynamic Systems (C.T.
Leondes, Ed.), vol. 16, pp. 81-129.

Doyle, J.C., and Stein, G. (1979), Robustness with observers. IEEE Trans.
Automat. Control, vol. AC-24, no. 4, pp. 607-611.

Ferreira, P.G. (1976), The servomechanism problem and the method of the state-
space in the frequency domain. Int. J. Control, vol. 23, no. 2, pp. 245-255.

Francis, B.A., and Wonham, W.M. (1976), The internal model principle of
control theory. Automatica, vol. 12, no. 5, pp. 457-465.

Furuta, K., and Komiya, K. (1982), Design of model-following servo -controller.
IEEE Trans. Automat. Control, vol. AC-27, no. 3, pp. 788-792.

Kailath, T. (1980), Linear Systems. Englewood Cliffs, NJ: Prentice-Hall.

Katayama, T., Ohki, T., Inoue, T., and Nakayama, S. (1984), A new apprbach
to optimal control of supercritical once-through steam generator.
9th IFAC World Congress, Budapest, July 2-6.

Kucera, V. (1972), The discrete Riccati equation of optimal control.
Kybernetika (Prague), vol. 8, no. 5, pp. 430-447.

Kwakernaak, H., and Sivan, R. (1972), Linear Cptimal Control Systmes.
New York: Wiley-Interscience.

O’Reilly, J. (1983), Observers for Linear Systems. New York: Academic.

Seraji, H. (1983), Design of digital two- and three-term controllers for
discrete-time multivariable systems. Int. J. Control, vol. 38, no. 4
pp. 843-865.

Smith, H.W., and Davison, E.J. (1972), Design of industrial regulators.
Proc. IEE, vol. 119, no. 8, pp. 1210-12165

Tomizuka, M. (1975), Optimal continuous finite preview problem. IEEE Trans.
Automat. Control, vol. AC-20, no. 3, pp. 362-365. '

Tomizuka, M., and Rosenthal, D.E. (1979), On the optimal digital state vector
feedback controller with integral and preview actions. Trans. ASME, J.
Dynamic Systems, Measurement, and Control, vol. 101G, no. 3, pp. 172-178.

Young, P.C., and Willems, J.C. (1972), An approach to the linear multivariable
servomechanism problem. Int. J. Control, vol. 15, no. 5, pp. 961-979.

-21-



