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in Iterative(or Systolic) Arrays
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Faculty of Engineering
Osaka Electro-Communication Univ.

18-8, Hatsu-cho, Neyagawa-shi, 572, Japan

Abstract In this paper we present the following two systolic simulation
theorems. '
(1) Let Mi( 1 <i <k ) be any simple SIMD machine with the same
instruction set, each with time complexity Ti(n), where k is an
even integer. Then there exists a systolic array A which simulates
allM's (1<i<k)in2Z 21 @)+ kn+ 2n+0(1) steps.
(2) TFor any one-way kn time-bounded cellular automaton M there

exists a systolic array A which can simulate M in kn + n steps.

1. Introduction

There has been increasing interest in the study of systolic systems which
overlap I/0 operations and computations. In the design of systolic
algorithms, speeding up the I/0 operations, without sacrificing their total

throughputs, is an important problem.



In [1] and [2] we have developed time-efficient conversion techniques
from cellular algorithms and from SIMD algorithms, both of which separate
computations from I/0 operations, into systolic ones, respecfiVely.

In this paper we will develop several more high-speed ‘simulation
techniques for the l-dimensional(l-D) multiple SIMD machines with the same
instruction set and for the 1-D cellular automata with restricted
information-flows. It is shown that a more remarkable speed up is attained

in their implementations than the former results in [1] and [2].
2. Systolic implementation theorems
A concept of systolic architecture was originally proposed for VLSI

implementations of some matrix operations, after that, many works have been

done for systolic arrays[6], [7], [11].

A linear systolic array, considered in this paper, consists of a single
buffer(B) and a number of linearly—connected processors, called systolic
cells(Ci), shown in Fig.l. Each processor Ci (i > 0) can communicate with

its nearest neighbour processors Ci_l(or B) and Ci+l' We measure the time

complexity of systolic arrays by the sum of steps required for loading

inputs, processing, and retrieving outputs. Consult [7] for further details.

Systolic Array ——|

Host

Computer

Fig.l A systolic array.

2.1 Systolic implementation of simple SIMD algorithms

A simple SIMD(single instruction stream/multiple data stream) machine M is
a restricted SIMD parallel computer model which consists of a control
unit(CU), a linear array of n processing elements(PE's), each with its own
finite number of registers, and a nearest-neighbour interconnection network,

shown in Fig.2. The initial data ags @5 ..., @, are preloaded to each PE,
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that is, a; at PEi' We measure the parallél time complexity T(n) by the

number of instructions broadcasted by the CU. The computational results are

left on each PE in a distributive manner.

Host Control Unit

Single Instruction Stream

bbb bk

PEo PE.——]PE; © - PExy,

e
Multiple Data Stream

Fig.2 An illustration of a simple SIMD machine.

The simple SIMD machine is in a subclass of the conventional SIMD machines
in the meaning that:

(1) Each PE has no main memory.

(2) The nearest-neighbour interconnection network is assumed.

(3) The set of instructions broadcasted by the CU is restricted,

thatis, to the set of one-step instructions, described in [1].

Our SIMD model is vrestricted, however, there are many simple-type SIMD
algorithms in the conventional SIMD parallel algorithms, such as sorting
algorithms [5], [9], [10], image processing algorithms [8], [12], [1l3], graph
algorithms [11], and so on. Thus our class of simple SIMD machines are
thought as a wide class of SIMD machines. For further details the reader

should refer to [1] and [3].
In [1] we have shown the following theorem.

[Theorem 1][1] (Single-Task Systolic Simulation Theorem)

For any simple SIMD machine M with time complexity T(n), there
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exists a systolic array A which simulates M in 2T(n) + 3n + 0(l)

steps.

(Proof sketch) Without 1loss of generality we assume that M has n
processing elements PEi(O < i < n-1), each with a single data register and an
address register, where n = 2™ for some integer m. A similar method
presented below can be applied to the simulation of M with k( > 2) data
registers. Let ai( 0<i<n-1) be thevdaté preloaded to PEi and It( 1 <
t < T(n) ) be the instruction broadcasted to each PE by the CU.

The organization of the systolic array A which simulates M is as
follows:
A consists of a buffer B and ( n + 1 ) systolic cells Ci( 0 <i_n). The
buffer B contains an input and output buffer registers, denoted by Bin and
B

respectively. The contents of Bin and BOu are updated by the host

t
respectively. Each systolic cell contains a [logzn]—bit

out’

computer and by CO’
address register Ra and five auxiliary registers, RO’ Rl’ R2’ R3, and RS. Let

Lj denote all Rj's on the array, referred to as the j-th layer(0<j< 3).

In the simulation of M, for each i,‘O L£i<<mn-1, Ci simulates PEi
individually. Cn acts as a boundary cell. Auxiliary registers in the

systolic cell are used for the foilowing purposes:

RO used as an auxiliary register for the address setting.

L1 used as a pipeline which transmits initial data and instructions
in the right direction.

L2, L3 : used as book-keeping registers which store the contents of the

data register in PE, L3 is also used as a pipeline which transmits

outputs in the left direction.

The host computer prepares the date for A in the following initial

data/instruction stream format such that:

% X % *
8y ap eeeees a _1 Il 12 X i IT(n)—l IT(n) »n ceeeso (1)
The data stream (1) is supplied to A through Bin according to the order ay»
S ERRRRE . il... at the rate of 1 symbol/ 1 step. We assume that Bgn = a;.
The symbol "*" and " g" represents a blank and a terminal symbol,
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respectively. Thus instructions are supplied at the rate of 1 instruction/ 2

steps.

. Systolic Array
Instructions Input Data

—— Co GG ------C,,

Inputting
=2 T(n)+n
. Processing
S
""" Outputting
Output Data -
S?l.. ..}ﬂ ' i t=2T(n)+3n+1

Fig.3 Time-space diagram for systolic simulation of

simple SIMD machine.

We assume that each cell can distinguish a;s It, "%" and "g" from each
other and can interpret and execute all instructions broadcasted by M. The
simulation in each cell consists of three phases, that is, an initial data
loading(I), an instruction-execution(II), and an output phases(III). The
register RS is. used to indicate the current phase-state that the cell is

assuming. On the whole array the simulation proceeds pipelinedly by

overlapping these phases. See Fig.3
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Fig.4 Configurations of the systolic array which simulates

a simple SIMD machine(n = 5 and T(n) = n).
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An output is obtained in BO in every two steps and it is taken into the

‘ ut

host computer at once. 7
The array requires 2T(n) + n steps for loading the data/instruction

stream and 2n + 1 steps for outputting. Thus 2T(n) + 3n + 0(l) steps are

required for the simulation. _

1 R2 and R3 only) of the

systolic - array A which simulates M. In that figure s denotes the content of

In Fig.4 we illustrate the configurations( on R
“the data register of PEi of M at time t. '

Next we consider the multiple-use of the single systolic array for the
simulation of many simple SIMD machines with' the same instruction set. By a
slight modification of the systolic cells we can make the symbol "<«" shown in
Fig.4(at time t = 21,....25) reset the entire systolic cells successively.,

This modification enables us to use the systolic array repeatedly.

[Theorem 2] (Multi-Task Systolic Simulation Theorem(ver.l))
Let Mi( 1<i<k ) be any simple SIMD machine, each with time
complexity. Ti(n), which has the same instruction set. Then there

exists a systolic array A which simulates Mi's (1 i<k ) in 2 X

ilélTi(n) + 3kn + 0(l) steps.

(Proof sketch) The host computer supplies the systolic array A with k
initial data/instruction streams, each separated by 2n blank symbols,

prepared in the following form:

1.1 1 ,1,.1 1 2 2 2 .2 2
cese *1,. * % kK ok ok ok P e
5o AL IR S Y I, (n) 2021 AT e I )
w — \——*/
Data/Instruction Stream 2n For Mz
For M
1 i i ettt e
k_k k k. -k k
chee e o Kk ok ok ok ok PP ¥Toeooo .
ao 1 an-lll 12 ITk(n) ..... (2)
e — i
2n For M l

In the proof of Theorem 1, R3 is used both for the temporary data

register and for the output pipeline. If we furnish an another register for

the output pipeline and give the symbol ". ‘a reset function, then the host



computer can overlap the I/0 operations. This speedups the simulation in

Theorem 2 by 2( k - 1 )n steps.

[Theorem 3] (Multi-Task Systolic Simulation Theorem(ver.2))
Let Mi( 1 <i<k) be any simple SIMD machine, each with time
complexity Ti(n), which has the same instruction set, Then there

exists a systolic array A which simulates Mi’s (1 <i<k)in 22X

ingi(n) + kn + 2n + 0(l) steps.

In Theorem 3 we obtained a high-speed version by overlapping the I1/0
operations. In the next theorem we develop an another high-speed version by

interleaving instructions.

[Theorem 4] (Two-Task Systolic Simulation Theorem(ver.3))
Let M1 and M2 be any simple SIMD machine, each with the same
instruction set and with time complexity Tl(n) and Tz(n),
respectively. Then there exists a systolic array A which simulates
both Ml and M2 in max( 2Tl(n), 2T2(n) ) + 4n + 0(1l) steps.

(Proof sketch) Suppose that Tl(n) < Tz(n). Let ai(bi) be an initial

data preloaded in PEi of MI(MZ)’ and I?(IE) be an instruction broadcasted by

M, at time t = j(by M2 at time t = k), where 0 < i < n-1, 1 < j é:Tl(n) and 1

1
<k ész(n). The host computer supplies A with an initial data/instruction

stream given below:

g Igeeeens Iy <n>13 (m) ¥ .
1 1

A modification for this simulation is to add only one more register to

each systolic cell given in proof of Theorem 1. The register,R2 is shared as

the temporary data register for M1 and M2. Note that it is not necessary to

broaden the I/0 bus which connects the systolic array to the host computer.

By combining Theorems 3 and 4 we get the following theorem. We omit the

proof.



[Theorem 5] (Multi-Task Systolic Simulation Theorem(ver.4))
Let Mi( 1 <i <k ) be any simple SIMD machine with the same

instruction set, each with time complexity Ti(n) such that Tl(n) <

Tz(n) LS é:Tk(n), where k is an even integer. Then there exists
a systolic array A which simulates Mi's (1<i<<k)in2Z ?if

T2i(n) + kn + 2n + 0(1l) steps.

In Table 1 we summarize our systolic simulation techniques developed in

this paper.
The number of data registers
required for the simulation.
(not include R_ and R,).
a 0
Time complexity of
simulated simple
IMD machine.
¢ * ) Time complexity of our
Theorem : algorithm
1 3 T(n) 2T(n) + 3n
: k
2 3 Ty 2 £, T (n) + 3kn
(i = 1vk)
. k
3 4 T; () 2 5;_4T,(n) + kn + 2n
(i = 1vk):
max( 2T1(n), 2T2(n))
4 4 Tl(n) and Tz(n) + 4n
k/2
5 5 Ti(n) 2 Ei=1 Ti(n) + kn + 2n
(i = 1vKk)

Table 1. The number of auxiliary data registers and parallel steps

required for our simulations.

2.2 Systolic implementation of.one—way cellular algorithms

A 1l-dimensional one-way cellular automaton(CA) M consists of an array of
finite state automata, called cells Ci(l < i £ n), which are uniformly

interconnected. See Fig:5. M is a pair M= ( Q, § ), where Q is the set of



cell states and S:Q2 -+ Q is the one-way local transition function. We denote
t . . : . ¢

the state of Ci at time t by sy At time t=0, CA receives an spatial input

in the way such that sg =‘ai(l < i< n). A step of computation of M consists

of a state transformation of each cell, that 1is, the simultaneous
t+1 t t

applibations of § at all cells in such a way that s, =6 ( s,, s, 1 ).
: L T(n) T(n) T (n) T N i+
The configuration 8] S, ceeeeeeS is considered as the output of T(n)

time-bounded CA, M, for an - input al, a Following the

greeeeeees 8.
convention in the cellular automata theory, we measure the time complexity

for the CA's by the parallel steps required only for the computations.

# a ay pm———— a, #

C() Cl ) C2 Cn Cn+l

Fig.5 Cellular automaton.
In [2] we get the following result for the two-way CA's.

[Theorem 6][2] For any two-way kn time-bounded CA, M, there exists a

systolic array A which can simulate M in kn + 3n steps.

If the direction of the information-flow of the CA's is restricted to

one-way, the following fast systolic simulation is possible.

[Theorem 7] For any one-way kn time-bounded CA, M, there exists an SA, A,

which can simulate M in kn + n steps.

(Proof sketch) We construct an SA, A which simulates M in kn + n steps.

First we prove the case k > 2. A consists of n systolic cells, each contains

four data registers Rl’ R2, R3, and R4. We refer to Rl and R2 in each cell
as the first layer. and R3 and R4 as the second layer. Initial data is loaded
through the buffer B according to the order a5 @ _qreeees @y 8y at the rate

of 1 data/ 1 step. The data movement on the array is as follows: Each data
continues to advance in the right direction at a unit speed on the first
layer, searching for empty R, and R, registers. When they are found, the

3 4

data stays at R3 and R4 until output signal is transmitted to that cell.
Due to the one-way information-flow of M, at evefy step each data on both

layers «can substantially simulate a 1l-step state transition of the

10



corresponding cell, since the C1 C2 C3 CL Cs

information necessary for the
Tine

simulation dis found in either the

right or the 1left neighbour cell.

From time t = 1 A begins to prepare

the firing squad synchronization which

will fire at time t = kn. The firing

tells each cell to ©begin output

(XY
-

operations. Each cell begins to shift

its data on the second layer in the

P

left direction at a unit speed. Note
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that at time t = kn the second layer
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the output operations. In Fig.6 we
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the case k = 2 and n = 5.
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In the case k = 1, n/2 cells are

sufficient. At time t = n the firing
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occurs and n data are output after n el aicadial a2l o il 5
steps. Thus A requires kn + n steps 10
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In this paper we have developed

algorithmic conversion techniques 1e

ﬂ'
o
g
G
0
- o

which simulate a certain class of SIMD

machines and one-way cellular automata 15

.g )

on systolic arrays. Several
time—efficient systolic simulation
theorems are established(Theofems 2,
3, 4, 5, and 7). The systolic Fig.6 Configurations of the
simulation theorem given in this paper systolic array A.

presents a uniform method which

11
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implements any simple SIMD algorithm and cellular algorithms onto VLSI
systolic arrays. The method enables us to use SIMD algorithms, which have
been developed and accumulated for conventional SIMD machines such as
ILLIAC-1IV, on the VLSI systolic arrays almost without 1loss of time
efficiency. Similar discussions for the two-dimensional arrays can be easily

obtained.
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