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Structural and Behavioral Equivalence Relations
in Automata Networks

Takashi SAITO and Hidenosuke NISHIO
TEE B TR Xz

Department of Biophysics, Faculty of Science, Kyoto University

1. Introduction

The automata network is an information processing system consisting of
intercommunicating finite automata. We can interpret it not only as
abstraction of biological systems (like a neural network),l'but also as
theoretical framework of artificial information processing systems (like a
logical network). From the logical point of view, the automata network is
a generalization of cellular automaton and Maculloch-Pitts neuron network.
The former is uniform both in structure and element automaton and the latter
is a ‘structurally nonuniform system that consists of one kind of elements
(i.e. threshold element). The theory of automata networks can be
considered to be the structural theory of automata in contrast to the
abstract theory of automata.

We formulate the automata network as an edge- and vertex-labeled
directed graph. A vertex-label corresponds to the finite automaton which
is to be placed at the vertex and an edge-label corresponds to the label of
the input terminal of a finite automaton on the vertex.

In this paper, we define, as to the set of vertices, the structural
equivalence relation induced by the structure of the graph and the
behavioral equivalence relation induced by the behavior (i.e. state
transition) of‘finite automaton on each vertex and investigate the
relationships between these relations. We have obtained some results in

particular about the element-uniform system. This study of the equivalence



relations on vertices can be considered to be an approach to the problem of

minimizing the number of elements of automata networks.
2, Definition of Automata Networks

We define the automaton networks in the following way. At first we

need the notion of a graph.

Definition 2.1 FEdge-labeled directed graph G

An edge-labeled graph (simply a graph) G is defined by G = (V',E),
where V' is a set of finite or infinite number of vertices with conditions
Vi = VUV, VN Vg =¢and V # ¢, where V is called the set of inner
vertices and Vi the set of input vertices. E is a set of labeled edges,
i.e. E = (EI’E2’"Ek) where E; & V X V' and for every vertex u € V there is
at most one vertex v € V' such that (u,v) € E; for every i (1 ¢ 1 £ k).

We also write E;(u) = v'if (u,v) ¢ E;, which means that there is an
edge labeled with i from v to u.

When we consider the automata network with output,  we specify the set
of output vertices Vo5 C V. If Vi =¢ (i.e. V' = V) then the graph G

becomes the base of an autonomous automata network.

Definition 2.2 Cell M

An automata network is compoSed of many cells, each of which is a
finite automaton placed at an inner vertex of graph G and defined as
follows.

A cell (or element automaton) M is defined by 3-tuple M = (Q,k,f),
where Q is a finite set of inner.states (Q designates also the set of input
and output élphabets )s k is the number of input terminals of M and f is
the state transition function called the local map defined as f : Qk+1—> Q.

If f(q,xl,x2,".,xk) = q', then q' represents the next state prdvided that
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the present state is q € Q and the input to the i-th terminal is x; ¢ Q.
The output of M is defined to be the same as the present state of M, The

set of all kinds of cells is denoted by M.

Definition 2.3  Automata network A

Suppose that a graph G is given. Then we can define an automata
network A = (G,d) by allocating cells to vertices.

That is, in A = (G,&4), G is an edge—-labeled directed graph and K is
an allocation map of cells, i.e.gk: V = M. If the indegree of v € V is
k, then ¢(v) is taken to be a k-input cell, It is also assumed that

d maps every vertex to a cell having a common state set Q.

A = (G,d) is called the element-uniform automata network if o maps all
vertices to one cell. In this case, o isalsocalled uniform. The so
called "cellular automaton" is element-uniform automata network with

"uniform" unlabeled graph.

Now we define the behavior of automata networks after that of cellular

automata.

Definition 2.4 Behavior of automata networks

Assume that A = (G,X) is given. When f is the local map of d(v) (i.e.
the cell M placed at v € V), we sometimes represent it by ¢{(v) if there is
no confusion.

Let &= (| Vi — Q) be the set of all input configurations to
automata network A. That is, @(v) = x represents that the’input sﬁate of
the input vertex v of automata network A is X.

C = {clc : V> Q} is the set of all state configurations of A as in
the case of a usual cellular automaton; We define the next state

configuration c' as follows: Let ¢ and ¢ be the present state configuration
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and the input configuration to A respectively. For veV, c'(v) =
&(C)(V) =A(v)(c(v),c(Ej(v)),eea,c(Ep(v))). We consider that if
E;(v) € Vi then c(E;(Vv)) = @(E; (v)). The mapping 5(}: C = C thus defined’

is called the global map as opposed to the local map.
3. Equivalence Relations on V

Definition 3.1 Equivalence relations on V

When G = (V',E) is given, we denote by R; the set of all equivalence
relations (or partitions) on V. For R € R;, when the vertices u and v are
equivalent in the sense of R, we denote (u,v) & R. Rp &€ R denotes the
equivalence relation such that for every pair of vertices u and v (u #v)
(u,v) & Ro. That is every pair of vertices are not equivalent. Ry
denotes the equivalence relation such that for every u, v € V, (u,v) ¢ RU.
This means that the number. ofA equivalence classes is one. If there is no

confusion, we may use R instead of R;.

When V is finite, an equivalence relation R € R is expressed by
specifying every equiv‘alence classes like R = ({v:&,..,vcll },
{v%,..,vgz},...). So when V = {vl,..vn}, Rg = ({vl},{VZ},..,{vn}) and
Ry = ({vl, V.’Z""Vn})‘ Sometimes we use the abbreviated notation like
({vl,vz},v3,v4) in place of ({VI’V2}’{V3}’{V4})'

For R, R' ¢ R;, we denote R' < Rif R' is a refinement of R.

Definition 3.2  Structural equivalence relation (SER)

R € R; is called a structural equivalence relation (SER) of automata
networkkA = (G,)), iff the following conditions are satisfied.

If (u,v) € R, then (u) =‘<.x(v)

and (Ei(u),Ei(v)) € R for every i (1 £ i < k).
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If E;j(u) € Vg or Ei(v) € Vi, we formally define that (Ei(u),Ei(v)j €R
only in the case of E;(u) = E;(v) € Vi, and (E4(u),E;(v)) ¢ R in other
cases. It E;(u) or E;(v) are undefined, we formally define that
(E;(u),E;(v)) € R only in the case that E;(u) and E;(v) are both undefined,

and (E;(u),E;(v)) € R in other cases.

S) denotes the set of all SER's of A = (G,d). S, is often denoted by

S if A is element uniform.

Algorithm for construction of S,

We assume here that V is finite and & is uniform, At first, we

27 T 1im
U, = Eim(“(Eiz_(Ei1 (u)))..).

define uy for u € V and x = Ey By ....Ej € (E},Ep,e,By)” as follows:

For arbitrarily given SER S and vertex pair u and v such that
(u,v) € S, we construct the minimum SER R such that (u,v) € R and S < R
(i.e. (u,\}) € R and (u,v) € R' for every refinement. R' of R) by the
following algorithm.

Algorithm A

1) For every vertex pair p and q, let (p,q) € R if (p,q) €& S.

2) Let (u,v) &€ R. |

3) For every x €& {El’"Ek}* such that 1 ¢ |x| ¢ [V|2 where |V| is the number

of vertices, Tlet (ux,vx) € R.

- By Algorithm A we say that R is constructed from S and the vertex pair

u and v,

Progosition 3.1

For given SER S and vertex pair u and v such that (u,v) & S,

Algorithm A gives the minimum SER R such that (u,v) € R and S < R.
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Proof

1) R is a SER.

At first we note that the number of the distinct vertex pairs (p,r) is
|V|2. Furthermore for x & {El,..,E1<}>:< such that |x]| = IV]Z, there exist
substrings x;, x5 and x5 such that x = xyx9x3 and (ux‘,vxl) = (uXIXZ,vX’XZ).
Thus there exists a proper prefix x' of x which satisfies that
(uy,vy) = (ugr,vyr).

Let p, q ¢ V and (p,q) € R. Then from the construction of R, there

exists x ¢ {E1,..,E }* such that p = u, and q = v
1 k

X x*

If [x| < [V]? then (E4(p),E1(0)) = (Ej(ug),Ei(vy)) = (uy, ,vyp,) € R
for every i (1 ¢ i £ k). This is because |in| §‘|V|2. ,

If [xl = IVIZ, then by the above remark (p,q) = (ux,vx) = (ugr,vyr)
where x' is a proper prefix.of x, Then this case is also reduced to the
above case.

Therefore if (p,q) € R then (Ei(p),Eiﬁp) € R for every 1 (1 { i £ k).

2) (u,v) & R.

It is trivial from the construction of R.

3) Ris the minimum SER.

Suppose that SER R' is a refinement of R and (u,v) € R'. Since
R' £ R, there exists a vertex pair p and q such that (p,q) € R and

(p,q) € R'. By the construction of R, there exists x €& {El,",Ek}* such

that p = ug, and g = v,. Let x = Ei‘EiL'"EiM' From the definition of

SER, if (p,q) = (UX,VX) é R' then (uEi ..E" ,VEi "Ei ) é R'. So
1 m—| 1 m-{
(uE_ B V. o ) € R'. By repeating this reasoning we obtain
T A A
(u,v) € R". This is a contradiction. Therefore R is the minimum SER such

that (u,v) & R.
4) S < R.

It is trivial from the construction of R. )i
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Let S be a set of SER's. SER(S) denotes the set of all SER's each of

which is constructed by the Algorithm A from an element R of S and a vertex

‘pair u and v such that (u,v) € R.

Algorithm B
At first we make the sequence of sets of SER's as follows:
So= {Rg},S1= SER(SO),...,SJ= SER(Sj_l),...,Sm+1= SER(Sy) = {Ryy} where S is
the first set of SER's such that SER(S) is {Ry]}.
m+1

Let 5y = U S..
j=1

Propositionf3.2

For a given automata network A = (G,&) where G is finite and A is
uniform, Algorithm B gives §,.

Let S be the set of SER's constructed by Aalgorithm B. If there
exists a SER R & S, then there exists a sequence of SER's
Rg <Ry < .0 < Rj < ...<'Rm = R where each Rj is the minimum SER such that
Rj—l < Rj' From each step of the algorithm, since Ry & S5, Ry € Sy. So

Ry € So. By repeating this reasoning, R € S. This is a contradiction. K

Definition 3.3 State configurations which are consistent with an

equivalencerelation
A configuration ¢ € C is defined to be consistent with an equivalence

relation R € R, iff if (u,v) € R, then c(u) = c(v).

Such a configuration is also called "R-consistent”. Cp denotes the

set of all R-consistent configurations.

Definition 3.4 Behavioral equivalence relation (BER)

For A = (G,X), B €& Ry is said to be a behavioral equivalence relation



(BER), if the following condition is satisfied.

If (u,v) € B, then for every c & CB and for every ¢ e &

Ffer(w) = dee) (V).

B, is the set of all BER's of A = (G,). we also write By in place of

By if G is understood.
4, Some Basic Properties of Two Equivalence Relations

Proposition 4.1

Suppose that there are two graphs ¢l = (V',El) and G2 = (V',Ez) with
the common set of vertices. E1 = (E1,..,E,) and E2 = (Ek+1""Em),°

Remark: The union of two graphs 6lyu G2 is defined accordir’lg‘to the graph
theory, i.e. Glu 62 = (v',El U E2?) where El W B2 = (E,Ey,..,By,

EyyqseesEp)e

Corollary 4.2 Let G = (V',(Eq,..Ey)) and G; = (V',E;).
k

Then SG = f\ SG .
i=1 i

Definition 4.1  Union of equivalence relations
For R, R'¢ Ry, we define their union RV R' as follows:
(u,v) € Rv R' iff there exists a sequence of vertices u = UlsUgyeenyly = V

m

such that (ui’ui+l) € R or (ui,ui+1) & R' for every i (1 £ i < m-1).

It is clear that if R and R' are equivalence relations in R then the

union RV R' is also an equivalent relation in Re.

Proposition 4.3 Let A = (G,d). Then S, and B, are closed under the

union of relations,
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Proof

1) We prove first if R, R' & SA then also RV R' ¢ SA;

Suppose that (u,v) € Rv R'. Thus there exists. . a sequence of vertices
u = Up,u9,...,uy = v such thét,(uj,uj+1) € R or (uj,uj+1) € R' for every j
(1 £ j ¢m-1). Then for every j (1 ¢ j £ m-1) the next condition holds:
d(uj) =<$(uj+1) and (Ei(uj)’Ei(uj+1)) € R or (Ei(uj),Ei(uj+1)) € R' for
every i (1 ¢ i £ k).

So d(u) = &(v) and (E;(u),E;(v)) € RV R' for every i (1 ¢ i £ k).

Therefore RV R' € §,. |

2) Secondly we prove that if R, R' € B, then RV R' € B,.

For this we show that if (ﬁ,v) é‘ Rv R then for every c € CRV gt and
for every e § , g(:f(c)(u) = g‘f(c)(v).

From the definition of union, if (u,v) € RV R' then there existé a
sequence of vertices u = ul,n,ﬁm = v sgch that (qj,uj+1) € R or
(Ujﬂﬁ;l)é R' for every j (1 ¢ j £ m-1). Since CRv r' € Cr and
CR\/ R' € Cgry Crv g = CRNCyee So for every c € Cp,, pr and for every
e J',f(c)(uj) = J‘f(c)(uj+l) for every j (1 < j £ m-1). Thus
g?(c)(u) = g.e(c)(v). Therefore R v R' € B,. H

Definition 4.2 TIntersection of equivalence relations
We define RA R', the intersection of R and R', as follows.

(u,v) € RAR' iff (u,v) € R and (u,v) € R'

The intersection of equivalence relations thus defined is clearly an

equivalence relation,

Proposition 4.4

SA and BA are closed under the intersection of

equivalence relations.
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Proposition 4.5 For every A = (G,d), Sy € By & Rg.
Proof By € R( is trivial. So we will show Sy, € B,. Take a pair

(u,v) fromR € S;. So since (u,v) € R, ok(u) = o(v) and (E;(u),E;(v)) € R
for every i (1 { i ¢ k). So for every c € Cg, c(u) = c(v) and c(E;(u)) =
c(E;(v)) for every i (1 { i ¢ k) (see Definition 2.4 and Definition 3.2).
So for every @€ P,
df ) (w) = h(u)(c(u),c(Ey(u)),..,c(By(u)))
=R (V) ((v),c(EL(v)) s e, e(B (M) = (eI (V).

Thus R € B,. .

Proposition 4.6 Tf  is uniform, then for every G, Sg =QB¢,

Proof Sa EQBO( is trivial from Proposition 4.5. So we will show

SG QQBO(. Let Re¢ QB‘*. Then from the definition of Bo\the next condition
holds. For every c € Cg, for everyg@e @, and for everyq, if (u,v) €R
then g(e(c)(u) = &\'.f(c)(v).
So k(1) (c(u),c(By(u)yer,c(B (1)) = d(vI(C(v),c(B(v) e, c(By(V))).
If there exists i such that (Ei(u),Ei(v)) &€ R then there exists
e Cp (B (w) # F(E{ (V)
We obtain that there exists 0\ such that
& (W (W), (B (W), ey (B (W) e, (B (u)))
£ L), E)), ey B (D)o e e (B (v)))
This is a contradiction. So for every i (E;(u),E;(v)) € R. Therefore

R€S; E
5. Relationships between S,, B, and Rg

Proposition 5.1

There is an automata network A = (G,X) such that

Sy & By &R

10
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Proof To prove the proposition, we construct the automata network as

follows.

A

(G, ) 1
| | vy)
G = ({v1,v2,v3:v4},(E,Ep)) V= ¢ ' )
{(v15v9),(v9,v1),(vg,v1) s (Vg vo)) 1l {2 1
: —{O)

[ma]
—_
I

{(V13V3)9(V29V3) ,(V3’V4) ;(V[‘_,VB)}

Q= (0,1} 5
¢ is uniform and local map f is as follows: Fig.1
f= f(q,il,xz) where q,x7 and x5 are the present state, the first input and
the secénd one, - respectively.

f(0,0,0) = £(0,0,1) = £(0,1,0) =1

In the other cases the value of f is defined to be O.

Thus the graph G is illustrated as in Fig.l.

RU= ({V19V2~’V3’V4})

| N

({VlaV29V3}9V4) ({VlsstV4},V3) (V2,{V1’V3,V4}) (Vl,{szV3,V4})

(« w jg///,//’ ,///////
V12Vl lV3sVy i)
/

~

({Vl,V3},V2,V4) (Vl,Vz,{V3aV4}) ({Vl,Vz},V3,V4) ((Vl,V4},V2,V3}

Rg = ((v1),{v9), (v5), (v;))

Vi vavahovy) (vinvas(vo,ve ) (Lviavads{vgsval) (vy,vali{vo,vyl)

— —

Flg.Z _ SA — BAn SA Soems s BA

We can obtain all equivalence relations in S,, B, and R; as
illustrated in Fig.2. Sg 1s constructed by Algorithm B in section 3. To
construct B, we check all equivalence relations in-§k according to the

definition of BER. We use the abbreviated notation of equivalence relation

.

11
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and not all refinement relations are illustrated. - R

In Proposition 4.3, we showed that SA and By are closed under the

union of equivalence relation. Therefore if S € SA and B € By, then

SV'B‘é B,. The next proposition shows that there is a case where
SV B€ S,.
Proposition 5.2 There exists an automata network A = (G,&) such that for

some S € Sy and B€ ByN'S,, SV B €S, holds.

Proof To prove the proposition, we construct the automata network as
follows. Graph G (Vi =%) is illustrated in Fig.3. & is uniform,
Q= (0,1} and locél map f satisfies the next condition:

f(q,O,xz) = f(q,l,xz) for every q and x9 € Q.

SA = {RO’RU’SI’SZ’S3} where

RO = ({Vl}s{Vz}!{V3},{V4}9{V5})

({VI’VZ:V3’V4’V5})

9p]
—
Il

({Y19V3}sV2,V43V5)

So = ({v1sv9,v3},v4,V5)

83 = ({VI’VZsV3},{V49V5})
Fig.3
By N Sy = (By,By,B3,B,) where |
Bl = ({Vl,Vz},V3,V4,V5) B2 = (V1,V2’V3:{V4’V5})

By = ({vy,v3},vy,{vy,vg)) By, = ({vy,vg)svay{vy,vs))

Since S;v By = 5, € Sy and SoV By = Sg €85,, the proposition is proved. K

Propositions 4.3 and 4.4 show that S, and B, are closed under union and
intersection of equivalence relations, but they do not imply that every

refinement of an equivalence relation R in S, or B, is necessarily a member

12
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of 5y or By respectively. In fact, in the example used in the proof of

Proposition 5.2, B, is a refinement of S3 but it is not a member of S,.

Definition 5.1 One-pair relation
A relation R € R; is said to be one-pair relation, if there exist vy,
WZQ‘V such that R = ({Vl,Vz},{VB},";{Vn},u) where V = {vq,v9,

V3,..,Vn,..}.

Let OP,, denote a one-pair relation which satisfies that u £ v,
(u,v) € OP,,. By Ry we denote the set of all one pair relations, where

the set of vertices is understood.

Proposition 5.3 If Ry €Sy (or By), then S, (or By) = Rg.

In some cases, however, there exists a non trivial equivalence
relation R (i.e. R # Rg, R # Ry ) in Sy, while S, contains no one-pair

relation. In fact we have the following proposition.

Proposition 5.4 There exists an automata network A = (G,R}) such that

for any one-pair relation OP,, & Sp and S, g {RO,RU}.

Proposition 5.5

Let A = (G,&).
Sy = Rg iff the following conditions holds:
® is uniform and for every i (1 < i< k)
E;(u) = u for every u € V or
there exists a certain vertex v € V' such that Ei(u) = v for every u & V.
Proof
1) 1f S) = Rp then a one-pair relation OP,, € S).  Therefore OP , is
the SER such that (u,v) & OP,y+ Then gl(u) = A(v) and (E;(u),E;(v)) € OP,,

for every i (1 £ i £ k). However OP,, is a one-pair relation, Ei(u) and

13
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E;(v) must be u or v. Then E;(u) = u and Ej(v) = v or E;(u) = v and
E;(v) = u or E;(u) = u and Ej(v) = u or E;(u) = v and Ej(v) = v for every i
(1 ¢ i< k). Since this condition holds for every one-pair relations,
ol is uniform and for every i (1 < i ¢ k) E;(u) = u for everyu € V  or
there exists a certain vertex v € V' such that Ei(u) = v for every u € V.

2) From the proof of only if part, it is clear that if the condition
holds then all one-pair relations belongs to 5,. Then S, = Rg from

Proposition 5.3. .

Proposition 5.6 If f is uniform and the element automaton is autonomous,

then for every G By = Rg

Progositkion 5.7 Suppose that ¢ is uniform and not autonomous., If G is a
graph such that indegree of every vertex is one, then By = §,.
Proof If B, = {RO,RU} then the proposition is trivial. So we assume
the case where there exists R'€ B, such that R # Rp» R # Ry and R é Spe Inm
other words, there exists a vertex pair u and v such that (u,v) € R and
(El(u),El(v)) € R. Then there exists a state configuration c € Cp such
that c(Eq(w)) # c(E(v)). |

Since K is uniform and non autonomous, there must occur the case where
for every ped, fc)(u) =A(c)(c(u),c(Eq(u)))

| £ () (c(v),e(B1(v)) = dge)(v)

Therefore R & BA. This contradicts to the assumption that R & BA‘ So

BA = SA. H

Proposition 5.8

There is an automata network A = (G,) such that ¢ is uniform, G is a

graph where the indegree of every vertex is two, and S, = B, # Re.

14
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Proof

The graph is illustrated in Fig.l. Q = {0,1}, o is uniform and local
map £ is as follows:

f = £(q,xy,x9) such that £(0,0,1) = £(0,1,0) = £(1,0,1) = £(1,1,0) = 1

and in the other cases the value of f is defined to be O. .|
6. Concluding Remarks

We have forfnulated the framework of the automata network and
investigated some properties of two kinds of equivalence relation in the
automata network.

From the Propositions 4.5, 5.1, 5.6, 5.7, and 5.8, we have the
following conjecture: for every graph G, with some exceptions, where the
indegree of every vertex is more than one, there exists a nonautonomous of
such that Sy g By, We are interested in this conjecture because it implies
that we can choose some suitabled for every graph G and the automata
network A = (G,X) can behave mofe "freely" than constrained by the
interconnection relations (Sp)-

We are also interested in the problem to get the conditions for that

SA = {RO,RU], but we have not succeeded in solving it.

15



