

Title	A normal form theorem for first order formulas and its application to Gaifman's splitting theorem(LOGIC AND THE FOUNDATIONS OF MATHEMATICS)
Author(s)	MOTOHASHI, Nobuyoshi
Citation	数理解析研究所講究録 (1984), 516: 40-52
Issue Date	1984-03
URL	http://hdl.handle.net/2433/98389
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

A normal form theorem for first order formulas and its application to Gaifman's splitting theorem

By

Nobuyoshi MOTOHASHI (本 橋 信 義)

 $\forall x_1 \exists y_1 \dots \forall x_n \exists y_n \exists z \forall u \leq x \exists v \leq z B(u, y, v)$, where $B(x, y, z) \in X$. Since X is closed under \land , \lor , two sets $\sum(X)$ and $\cancel{\Phi}(X)$ are closed under \land , \lor in the following sense: for any formulas A and B in $\sum(X)$ [$\cancel{\Phi}(X)$], there are formulas in $\sum(X)$ [$\cancel{\Phi}(X)$] which are obtained from $A_{\land}B$ and $A^{\lor}B$ by prefixing some quantifiers in them in the usual manner.

Let W(x,y,z) be a formula in $\Sigma(X)$ which has no free variables except x,y,z. Then, the theory T_{W} in L consists of the following sentences;

Tr: $\forall x \forall y \le x \forall z \le y(z \le x)$,

 $Ex(W) : \forall x \forall y \exists z W(x,y,z),$

Un (W) : $\forall x \forall y \forall z \forall w (W(x,y,z) \land W(x,y,w))$. $\supset z=w)$,

Bn (W): $\forall x \forall y \forall z (W(x,y,z) \supset z \leq x)$,

and

Col(W): $\forall \bar{w} [\forall u \leq x \exists v A(u, v, \bar{w}) \supset \exists y \forall u \leq x \exists v (W(y, u, v) \land A(u, v, \bar{w}))],$ where $A(x, v, \bar{w})$ is a formula in L.

Since Col(W) is a schema, T_W is an infinite set of sentences. A mapping f from a set of formulas in L (domain of f) on to a set of formulas in L (range of f) is called a formula-mapping if f(A) and A have the same set of free variables for each formula A in the domain of f.

In this paper, we shall give a concrete method to construct a formula-mapping f_W whose domain is the set of formulas in L and whose range is a subset of $\Phi(X)$, and prove the following fact.

THEOREM A. For any formula A in L , the formula A $\supset f_W(A)$ is provable from T_W in L ,and the formula $f_W(A) \supset A$ is provable in L , i.e. $T_W \vdash_L A \supset f_W(A)$ and $\vdash_L f_W(A) \supset A$.

This theorem shows that any formula A in L is equivalent to $f_W(A)$ in $\overline{\Phi}(X)$ with respect to the theory T_W , and furthermore the implication from $f_W(A)$ to A is provable logically. This is a normal

form theorem for first order formulas, of a new type.

1 ...

In \$1 below, we shall show some applications of Theorem A above and one of which, Corollary E below, is a generalization of Gaifman's splitting theorem, Corollary G below, in Gaifman [1].

The construction of f_W requires two auxiliary formula-mapping h and g_W , where h is a formula-mapping whose domain is the set of formulas (denoted by $\Pi(X)$) of the form $\forall x \exists y B, B \in X$, and whose range is a subset of $\Phi(X)$, and g_W is a formula-mapping whose domain is the set of formulas in L and whose range is a subset of $\Phi(X)$. Moreover, we can prove;

LEMMA 1. For any formula A in $\Pi_2(X)$, the formula A \supset h(A) is provable from T_W in L and the formula h(A) \supset A is provable in L, i.e. $T_W \vdash_L A \supset h(A)$ and $\vdash_L h(A) \supset A$.

LEMMA 2. For any formula A in L, the formula A $\supset g_W(A)$ is provable from T_W in L and the formula $g_W(A) \supset A$ is provable from Tr, Ex(W), Un(W) in L,i.e. $T_W \vdash_L A \supset g_W(A)$ and Tr, Ex(W), Un(W) $\vdash_L g_W(A) \supset A$.

Although Tr, Ex(W), Un(W) are not formulas in $\Pi_{2}(X)$, there are formulas Tr°, Ex(W)°, Un(W)° in $\Pi_{2}(X)$ which are obtained from Tr, Ex(W), Un(W) by prefixing some quantifiers in them, respectively. Therefore, they are equivalent each other. Let $f_{W}(A)$ be one of formulas in $\Phi(X)$ which are obtained from $g_{W}(A) \wedge h(Tr^{\circ}) \wedge h(Ex(W)^{\circ}) \wedge h(Un(W)^{\circ})$ by prefixing some quantifiers in it. Then, Theorem A clearly holds from Lemma 1 and

and Lemma 2. So, in order to prove Theorem A above, it is sufficient to construct h and $g_{\widetilde{W}}$ and prove Lemma 1 and Lemma 2 , which will be done in $\S 2$ below.

21. Some applications.

1

In this section, we shall show some applications of Theorem A to normal form theorems and splitting theorems. From Theorem A, we have the following fact, immediately.

COROLLARY B. It T is a theory in L such that $T_W \subseteq T$ for some formula W in $\Sigma(X)$, then for any formula A in L, there is a formula B in $\Sigma(X)$ such that $T \downarrow_L A \supset B$ and $\downarrow_L B \supset A$.

If T = PA, the first order axioms of Peano Arithmetic (cf. p.68-69 in Takeuti [4]) ., $L = L_{PA}$, the logic for PA , and X = the set of open formulas in L, then the assumptions of Corollary B hold by Matijasevic's theorem ([2]). Therefore, we have;

COROLLARY C. For any formula A in L_{pA} , there is a formula B of the form $\forall x_1 \exists y_1 \dots \forall x_n \exists y_n \exists \bar{z} \forall \bar{u} \leq \bar{x} \exists \bar{v} \leq \bar{z} C(\bar{u}, \bar{y}, \bar{z})$, where $C(\bar{x}, \bar{y}, \bar{z})$ is an open formula, such that $PA \vdash_L A \supset B$ and $\vdash_L B \supset A$.

A weak form of Corollary C is proved in Motohashi [3] (Theorem F in [3]). Suppose that α and Δ are two L-structures such that Δ is an extension of α . Then, Δ is an outer extension of α (denoted by $\alpha \subseteq \Delta$) if $\Delta \models a \leq b$ and $b \in [\alpha]$ imply $a \in [\alpha]$, for any elements a, b in $|\Delta|$. Δ is a cofinal extension of α (denoted by $\alpha \subseteq \Delta$) if Δ is a model of the sentence. Trand for any b in $|\Delta|$, there is an element a in $|\alpha|$ such that $\Delta \models b \leq a$. Let Δ be a set

of formulas in L. Then, $\not\equiv$ is an S-extension of $\not\cap$ (denoted by $\cap \subseteq_S \not\subseteq$) if $\cap \models A[\overline{a}]$ implies $\not\sqsubseteq \models A[\overline{a}]$, for any formula $A(\overline{x})$ in \subseteq and any sequence \overline{a} of elements in $|\cap|$. Let \triangle_0 be the set of bounded formulas in L (cf. p.133 in [1]) and $\nearrow \bigcirc$ (X) be the set of formulas of the form; $\forall \overrightarrow{u} \leq \overrightarrow{x} \exists \overrightarrow{v} \leq \overrightarrow{y} B(\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{u}, \overrightarrow{v})$, where $\square \in X$.

LEMMA 3. (i) If $X \subseteq \Delta_0$, then $\mathfrak{F}_0(X) \subseteq \Delta_0$.

(ii) If $\mathfrak{A} \subseteq \mathfrak{F}_0(X)$ then $\mathfrak{A} \subseteq \mathfrak{F}_0(X)$ and $\mathfrak{A} \subseteq \mathfrak{F}_0(X)$ then $\mathfrak{A} \subseteq \mathfrak{F}_0(X)$

From Theorem A and (iii) of Lemma 3, we have:

COROLLARY D. Suppose that Ω is a model of T_W and $\mathcal L$ is a ' $\underline{\mathcal T}_0$ (X)-extension of Ω . If $\mathcal L$ is a cofinal extension of Ω , then $\mathcal L$ is an elementary extension of Ω .

(Proof). Assume that $\Omega \models T_W$, $\Omega \subseteq_{\Xi_0}(X)$ and $\Omega \subseteq_{\Xi_0}(X)$. Let $A(\bar{x})$ be an arbitrary formula in L and \bar{a} a sequence of elements in $|\Omega|$ such that $\Omega \models A[\bar{a}]$. Let B be the formula $f_W(A)$. Since $T_W \models_L A \supset B$, we have that $\Omega \models B[\bar{a}]$. By (iii) of Lemma 3, Δ is a $\Phi(X)$ -extension of Ω . Hence, $\Delta \models B[\bar{a}]$, because $B \in \Phi(X)$. Since $\vdash_L B \supset A$, we have that $\Delta \models A[\bar{a}]$. This means that Δ is an elementary extension of Ω . (q.e.d)

From Corollary D and (i), (ii) of Lemma 3, we have:

4

THEOREM E. Suppose that Ω and \mathcal{L} are models of T_W , and X is a subset of Δ_0 . If \mathcal{L} is a $\Phi_0(X)$ -extension of Ω , then there is an elementary extension \mathcal{L} of Ω such that $\Omega \subseteq \mathcal{L} \subseteq \mathcal{L}$.

(Proof). Assume that $n \models T_W$, $x \models T_W$, $x \subseteq \Delta_0$, and $n \subseteq \Phi(x)$. Let C be the set $\{b \in |\mathcal{Z}|; \ \mathcal{L} \neq b \leq a \text{ for some a in } |\mathcal{A}| \}$. Then, clearly $|\lambda| \subseteq C$. Suppose that f is an n-ary function symbol in L and $b_1, b_2, ..., b_n$ are elements in C. Let $a_1, a_2, ..., a_n$ be elements in $|\Omega|$ such that $A \not\models b_1 \leq a_1$, $A \not\models b_2 \leq a_2$,..., $A \not\models b_n \leq a_n$. Since element a in |n| such that $\alpha \models \forall x_1 \leq a_1 \dots \forall x_n \leq a_n \exists y \leq a (f(x_1, \dots, x_n))$ $(x_n)=y$). Since the formula $\forall x_1 \le u_1 \dots \forall x_n \le u_n \exists y \le v(f(x_1,\dots,x_n)=y)$ belongs to $\Phi_0(x)$, $x \models \forall x_1 \leq a_1 \dots \forall x_n \leq a_n \exists y \leq a(f(x_1, \dots, x_n) = y)$. Hence, we have that $\langle a, + \exists y \leq a(f(b_1, ..., b_n) = y), \text{ because } \langle a, + b_1 \leq a_1, ..., a_n \rangle = y$, if $b_n \le a_n$. This means that $a \not\models f(b_1, ..., b_n) \le a$. Therefore, the value of the interpretation of the function symbol f in & at b_1, b_2, \ldots, b_n belongs to the set C . So, the set C is closed under functions which are interpretations of function symbols of L in L. By the definition of \bot , $\cap \subseteq_{\mathbf{c}} \bot \subseteq_{\bullet} \bot$. By (ii) of Lemma 3, $\swarrow \subseteq_{\Lambda} \bot$. On the other hand, $\Phi_0(x) \subseteq \Delta_0$ by $x \subseteq \Delta_0$ and (i) of Lemma 3. Hence, we have that $\Omega \subseteq \underline{\mathfrak{F}}_{\alpha}(X)$ Therefore, we conclude that ${f C}$ is an elementary extension of ${f N}$ by Corollary D .

From Theorem E, we have:

COROLLARY F. Suppose that X is a subset of \triangle_0 and T is a theory in L such that $T_W \subseteq T$ for some W in $\Sigma(X)$.

If A and L are models of T such that L is an $\overline{\Phi}_0(X)$ -extension of Ω , then there is an elementary extension Σ of Ω such that $\Omega \subseteq_{\mathcal{C}} \Sigma \subseteq_{\mathcal{C}} \Omega$.

Let T = PA and X = the set of open formulas. Then, we have the following theorem from Corollary F and Matijasevic's theorem.

COROLLARY G (Gaifman's Splitting Theorem). If α and α are models of PA such that α is an extension of α , then there is an elementary extension α of α such that $\alpha \leq \alpha \leq \alpha$.

 \S 2. Some proofs. In this section, we shall construct two formula-mappings h and g_W , and prove Lemma 1 and Lemma 2 in the introduction of this paper.

LEMMA 4. $\vdash_{L} \forall xA(x) \equiv \forall x \forall u \leq xA(u)$.

à .

Lemma 4 is an obvious consequence of the definition of \forall .

LEMMA5. (i) $\vdash_{\mathbf{L}} \exists \bar{z} \forall \bar{u} \leq \bar{x} \exists \bar{v} \leq \bar{z} \mathsf{A}(\bar{u}, \bar{v}) \supset \forall \bar{u} \leq \bar{x} \exists \bar{z} \mathsf{A}(\bar{u}, \bar{z})$.

(ii) $\text{Tr}, \text{Bn}(W), \text{Col}(W) \vdash_{\overline{L}} \forall \overline{u} \leq \overline{x} \exists \overline{z} A(\overline{u}, \overline{z}) \supset \exists \overline{z} \forall \overline{u} \leq \overline{x} \exists \overline{v} \leq \overline{z} A(\overline{u}, \overline{v})$.

(Proof). Since (i) is obvious, we prove (ii) only. For the sake of simplicity, we assume that the lenghts of \bar{x} and \bar{z} are the same number 2. Let B, C, D, E be the following formulas;

B: $\forall u_1 \leq x_1 \forall u_2 \leq x_2 \exists z_1 \exists z_2 \land (u_1, u_2, z_1, z_2)$,

 $c : \forall u_{1} \leq x_{1} \exists z_{1} \exists z_{2} \forall u_{2} \leq x_{2} \exists v_{1} \exists v_{2} (w(z_{1}, u_{2}, v_{1}) \land w(z_{2}, u_{2}, v_{2}) \land A(u_{1}, u_{2}, v_{1}, v_{2})),$

 $D: \exists z_{1} \exists z_{2} \forall u_{1} \leq x_{1} \exists w_{1} \exists w_{2} \forall u_{2} \leq x_{2} \exists v_{1} \exists v_{2} (w(z_{1}, u_{1}, w_{1}) \land w(z_{2}, u_{1}, w_{2}) \land w(w_{1}, u_{2}, v_{1}) \land w(w_{2}, u_{2}, v_{2}) \land A(u_{1}, u_{2}, v_{1}, v_{2})),$

 $\begin{array}{c} {\rm E}: \; \exists z_1 \exists \; z_2 \forall \; {\rm u}_1 \leq {\rm x}_1 \forall \; {\rm u}_2 \leq {\rm x}_2 \exists \; {\rm v}_1 \leq z_1 \exists \; {\rm v}_2 \leq z_2 {\rm A}({\rm u}_1.{\rm u}_2,{\rm v}_1,{\rm v}_2) \; . \\ \\ {\rm It} \; {\rm is} \; {\rm sufficient} \; {\rm to} \; {\rm prove} \; \; {\rm Tr}, {\rm Bn}({\rm W}) \; , {\rm Col}({\rm W}) \; {\rm \vdash}_{\rm L} \; \; {\rm B} \supset \; {\rm E} \; . \\ \\ {\rm But}, \; {\rm this} \; {\rm is} \; {\rm obvious} \; {\rm because} \; \; {\rm Col}({\rm W}) \; {\rm \vdash}_{\rm L} \; \; {\rm B} \supset \; {\rm C} \; , \; \; {\rm Col}({\rm W}) \; {\rm \vdash}_{\rm L} \; \; {\rm C} \; \supset \; {\rm D}, \\ \\ {\rm and} \; \; {\rm Tr}, {\rm Bn}({\rm W}) \; {\rm \vdash}_{\rm L} \; \; {\rm D} \supset \; {\rm E} \; . \end{array} \qquad \qquad ({\rm q.e.d.}) \end{array}$

LEMMA 6. Suppose that A is a formula;

 $\forall u \le x \ \forall x_1 \exists y_1 \dots \forall x_n \exists y_n \forall \overline{u} \le \overline{v}C(\overline{u}, u, x_1, \dots, x_n, y_1, \dots, y_n)$ and B is a formula;

 $\forall x_{1} \exists y_{1} \dots \forall x_{n} \exists y_{n} \forall u \leq x \forall \bar{u} \leq \bar{v} \exists z_{1} \dots \exists z_{n} (W(y_{1}, u, z_{1}) \land W(y_{2}, u, z_{2}) \land \dots \land W(y_{n}, u, z_{n}) \land C(\bar{u}, u, x_{1}, \dots, x_{n}, z_{1}, \dots, z_{n})).$

Then, $Col(W) \vdash_L A \supset B$ and $Ex(W), Un(W) \vdash_L B \supset A$.

(Proof). For each i=1,2,...,n+1, let A_i be the formula;

 $\forall x_{1} \exists y_{1} \dots \forall x_{i-1} \exists y_{i-1} \forall u \leq x \forall x_{i} \exists y_{i} \dots \forall x_{n} \exists y_{n} \forall \bar{u} \leq \bar{v} \exists z_{1} \dots \\ \dots \exists z_{i-1} (W(y_{1}, u, z_{1}) \land \dots \land W(y_{i-1}, u, z_{i-1}) \land \dots$

 $C(\bar{u}, u, x_1, \dots, x_n, z_1, \dots, z_{i-1}, y_i, \dots, y_n)$

Then, A_1 is A, A_{n+1} is B, $Col(W) \vdash_L A_i \supset A_{i+1}$, and $Ex(W),Un(W) \vdash_L A_{i+1} \supset A_i$, for each i=1,2,...,n. Therefore, we have that $Col(W) \vdash_L A \supset B$ and $Ex(W),Un(W) \vdash_L B \supset A$. (q.e.d.)

Now, we define the formula-mapping h and prove Lemma 1. For each formula A of the form $\forall x_1, \dots, \forall x_n \exists \bar{z} B(x_1, \dots, x_n, \bar{z})$, $B \in X$, let h(A) be the formula;

 $\forall \bar{x}_1 \exists y_1 \dots \forall \bar{x}_n \exists y_n \exists \bar{z} \forall \bar{u} \leq \bar{x} \exists \bar{v} \leq \bar{z} B(\bar{u}, \bar{v}).$

By Lemma 4, A is equivalent to the formula $\forall \bar{x} \ \forall \bar{u} \le \bar{x} \ \exists \bar{z} B(\bar{u}, \bar{z})$.

On the other hand, $Tr, Bn(W), Col(W) \vdash_L \forall \bar{x} \ \forall \bar{u} \le \bar{x} \ \exists \bar{z} B(\bar{u}, \bar{z}) \supset h(A)$, and $\vdash_L h(A) \supset \forall \bar{x} \ \forall \bar{u} \le \bar{x} \ \exists \bar{z} B(\bar{u}, \bar{z})$ by Lemma 5.

Therefore, we have that $T_W \vdash_L A \supset h(A)$ and $\vdash_L h(A) \supset A$. This completes our proof of Lemma 1.

In order to construct $g_{\overline{W}}$ and prove Lemma 2 , we require some preliminaries.

A quasi $\underline{\Phi}(X)$ -formula A of degree k (k=0,1,2,...) is a formula of the form;

$$\forall x_{1} \exists y_{1} \dots \forall x_{n} \exists y_{n} \forall x_{n+1} \exists y_{n+1} \dots \forall x_{n+k} \exists y_{n+k} \forall u_{1} \leq x_{1} \dots \forall u_{n} \leq x_{n}$$

$$B(u_{1}, \dots, u_{n}, x_{n+1}, \dots, x_{n+k}, y_{1}, \dots, y_{n+k}),$$
where
$$B(x_{1}, \dots, x_{n+k}, y_{1}, \dots, y_{n+k}) \in \Sigma(X).$$

If A is a quasi $\mathfrak{F}(X)$ -formula of degree k of the above form and k is a positive integer, let $j_W(A)$ be the formula;

$$\forall x_{1} \exists y_{1} \dots \forall x_{n} \exists y_{n} \forall x_{n+1} \exists y_{n+1} \forall x_{n+2} \exists y_{n+2} \dots \forall x_{n+k} \exists y_{n+k}$$

$$\forall u_{1} \leq x_{1} \dots \forall u_{n} \leq x_{n} \forall u_{n+1} \leq x_{n+1} \exists z_{n+1} \dots \exists z_{n+k} ($$

$$\forall (y_{n+1}, u_{n+1}, z_{n+1}) \wedge \dots \wedge ((y_{n+k}, u_{n+1}, z_{n+k}) \wedge$$

$$\exists (u_{1}, \dots, u_{n}, u_{n+1}, x_{n+2}, \dots, x_{n+k}, y_{1}, \dots, y_{n}, z_{n+1}, \dots, z_{n+k})).$$

Then, $j_{W}(A)$ is a quasi $\mathfrak{T}(X)$ -formula of degree k-1 because $\mathfrak{T}(X)$ is closed under Λ (cf. introduction of this paper).

If A is a quasi $\Xi(X)$ -formula of degree 0, then A has the form; $\forall x_1 \exists y_1 \dots \forall x_n \exists y_n \forall u_1 \leq x_1 \dots \forall u_n \leq x_n \exists \overline{z} C(\overline{u}, \overline{y}, \overline{z}) \text{ , } C(\overline{x}, \overline{y}, \overline{z}) \in X.$ Let $J_c(A)$ be the formula;

$$\forall \bar{x}_1 \exists y_1 \dots \forall \bar{x}_n \exists y_n \exists \bar{z} \forall \bar{u} \leq \bar{x} \exists \bar{v} \leq \bar{z} C(\bar{u}, \bar{y}, \bar{v}) .$$

Then, $j_{W}(A)$ is a formula in $\Phi(X)$.

From Lemma 4, Lemma 5, and Lemma 6, we can obtain the following lemma.

LEMMA 7. $T_W \vdash_L A \supset j_W(A)$ and $Tr,Ex(W),Un(W) \vdash_L j_W(A) \supset A$.

Now, we can define g_W by the following; For each formula A in L, let A° be one of formulas which are equivalent to A and have the form $\nabla x_1 \exists y_1 \dots \nabla x_n \exists y_n B(\bar{x}, \bar{y})$, where B is an open formula. Then , A° is a quasi- $\underline{\Psi}(X)$ -formula of degree n . Let $g_W(A)$ be the formula $j_W^{n+1}(A^\circ)$, where $j_W^0(A^\circ)$ is A° and $j_W^{n+1}(A^\circ)$ is $j_W(j_W^{n}(A^\circ))$ for each i=0,1,..... Then, clearly g_W is a formulamapping whose domain is the set of formulas in L and whose range is a sub-set of $\underline{\Psi}(X)$. Moreover, Lemma 2 holds by Lemma 7. This completes our proofs of Lemma 1 and Lemma 2.

References

- [1] H.Gaifman, A note on models and submodels of Arithmetic,

 Conference in Mathematical Logic London'70, Springer Lecture

 Note No.255, 128-144.
- [2] Ju.V.Matijasevic, Diophantine representation of enumerable predicates, Mathematics of the USSR-Izvestija, vol.5(1971), 1-28.
- [3] N.Motohashi, Preservation Theorem and Relativization Theorem for Cofinal Extensions, to appear.
- [4] G.Takeuti, Proof Theory, North-Holland, Amsterdam, 1975.