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SOME PROPERTIES OF ONE-STEP RECURRENT TERMS

IN LAMBDA CALCULUS

SACHIO HIROKAWA
Department of Computer Science
Shizuoka University

Hamamatsu 432, Japan

ABSTRACT

One-step recurrent term f3) is a term whose one-step
reductums are reducible to itself. The following pfoperties of
one-step recurrent terms are shown.

(a) Every leftmost reduction of one-step recurrent term is a part
of some cycle which returns to that term.

(b) Leftmost reductum of one—step recurrent term is one-step
recurrent.

(c) If a reduction cycle can be left by contracting a redex at a
point, then the redex occurs at any point in the cycle.

(d) If a term is one-step recurrent, then either it is a hf or
has no nf.

These properties are proved by analyzing the behavior of the
residuals through the reductions. A fundamental lemma, which the

author calls "decomposition lemma™, plays a central role.

1. INTRODUCTION

A one-step recurrent term is a term whose one-step reductums
are all reducible to itself. The notion was introduced in(3)

referring to some conjecture (4. It is a weakened notion of the
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recurrent term given iﬁ (L,2,4,5) or of the minimal form stated
in (1,2). A recurrent term is a term which is reducible to itself
after any reduction. Roughly, its reduction graph contains only
cycles returning to itself. It is obvious that every recurrent
term is one-step recurrent. The converse, which is equivalent to
thé above conjecture, is still open, and it is our motivation of
this paper.

To study the problem more closely, this paper examines some
properties of one-step recurrent terms. The proof of the results
will be carried cut by analyzing the behavior of the residuals in
the reduction process.

We state some definitions which are needed in the later
arguments. The general notions and terminology are referred to
(1) .

We write M—N when term M is reducible to term N by one-step
reduction, i.e., by contracting some g-redex A in M. Sumetimes
we write M;?N when we want to emphasize the redex being
contracted. The symbol "—»" is used for the transitive closure
of — . When A 1is the leftmost redex or the head redex, we
write M—gaN or M-EeN, respectively. Given a set % of redex
occurrences in M,Ddz;ziN represents a complete development of
(M, F ). Let ¢ :M—»L be a reduction starting from M. Then 7/
represents the set of residuals of % in L.

Strong equivalence of reductions o and T is denoted by
0 =T. In the sequel, we draw some diagrams of reduction. In
these diagrams we understand any two reductions to be strongly
equivalent when they start from the same point and terminate at

another same point.



‘2. FUNDAMENTAIL LEMMAS

Lemma 1 (Decomposition lemma) Let % be a set of redex
occurrences in term M a.nd-»letcr':M-—»N’. If N contains no residual
of # then . ¢ has .a decompés%tion such that ¢ = MZ-?;)&L-—»N.

'Proof By induction on the length of 0 . Suppose that 0 is of the
form (@ :M %’) M'—a.i)) N and that 0, contracts a redex A in M. Then by

a;
induction hypothesis for M'—» N

‘ . o
and F/c,,0; has a decomposition M — »
) y ]
such that S //
F/a,- <pl n L7
0 =M'—»L'—>N. s L
. 7
Case 1 A belongs to % . (see L’
Figure 1l.) -~ Then reduction G . + Figure 1

followed by a complete development of (M,?/o—a) is a complete
development of (M, 7). Therefore L=L‘ and 0 = MMEL—»N.

Case 2 A\ does not belongs to 7 . (See Figure 2.) Consider the
complete developments of (M,7Y{4}). Then we have the strong

equivalences of reductions:
F-cpl {ay/¢ -pl
——» L=

»L?

VR 1A 00 L N

=M Zo )M‘?/“-CQIL‘.

Hence @ = M-2—Ply1, — N.
Q.E.D. : Figure 2

Lemma 2 (2} Let % be the set of all redexes in M and G(M) be the

term obtained by a complete development of (M,% ). Then necessary
and sufficient condition for M to be recurrent is that G(M) is

reducible to M.
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Proof If M is recurrent, then G(M) is reducible to M. So it
suffices to show the sufficiency.
Then let M=L_ —>L,— L,—>L3—---L,_,—L,be an arbitr

OpA LA TR AL A, LA ary
reduction of M, where Aiis the redex contracted by the reductiop

o 1 n-2 n-1

L;>L;,; Since G(M) is reducible to M, we have a reduction cycle

MTZyG(M)—=»M.

0 1 2 3
0 Ao 1 4, 2 4; 3 4,
& 3 & Lo & - & L1
M-;_’»G(M)—-»M——»G(M)—»M?G(M)?M—»G(M)? R
A T A T A PN
1} ' | \ H
' ' ) '
| | ! [l
L—>L >L —> L 5L > o oo
OA° 1 A, 2 AZ 3 AB 4 Aq,
Figure 3

Thenconsider the n-times composition of ¢+ T . (See Figure 3.)
The i-th O erases all the redexes of i-th M, so i-th G(M)does
not contain any residual of A; in Li{ . By lemma 1, Ljsgis

reducible to i-th G(M). Hence L; is reducible to M. Q.E.D.
Using the decomposition lemma, we can simplify the proof of
the following theorem. (As for the term with only one redex in

it, the theorem is an easy consequence of lemma 2.)

Theorem 3 (3) Let M be a term having two redexes. If M is one-

step recurrent, then M is recurrent.

Proof Let A;be the leftmost redex in M and 4, be the other one.

Since M is one-step recurrent, we have two reductions such that

q M—f—)M —»M, Gy M?M——»M. Consider the residual of 4,
1 2

in M at the end of 0,. Since 4;is leftmost, its residual must



be leftmost if it exists. Hence the reduction G, +G0;: MTM——»M
2

2 .

—>M—»M erases both 4,and 42, and by lemma 1, we have 0, +0;=

{4';A2}.¢2 . .
M—»G(M)—» M. By lemma 2, M is recurrent. Q.E.D.

Lemma 4 Let 0 : M—»L and T : L—»M. Let L->N by contracting a
redex A which is not residual of any redex in M. Then N is
reducible to M.
Proof Consider the infinite reduction G+ T + 0 + T + +-* ., (See
Figure 4.) Let Ai'be the redex 4 in Lj.

Suppose that every term M;(i>?1l) contains a residual of A (=
A’ ). Let A:-, be such a residual in M. Now consider the redex 4% in
L,. By the assumption, A% is not thebresidual'of any redex in M,,
so neither of 4'. Since M i (121) contains a residual of A, M;(i2
2) contains a residual of Az.Continuing the similar argument, M;
has at least i redexes, i.e., the residuals of 4', 4%, ... and
A% A contradiction. Therefore there is a term M which has no

residual of A . By lemma 1, we have L—%M;= L?N—»Mi =M.

Q.E.D.
M Lo M Iy M, L. M,
[11) [11] 1] [11] i "" m
M=l —EToM—I], LM Il —»M—Ts .-
Al 1} Db eeeerenninnnnnns 0}
JC Yt SUUTRUURURRY ¢ SO
' 3
Figure 4 beeeeee 4
Lemma 5 T
{ ;2 o
‘Let T: M—MN, ¢ : M'—»M and T :M'9SN'. M—M"'
'}
Then there is a reduction ¢’ : N—»N' . 'tll Y-J/t
: ,
such that o+ t'=T + ¢’ . (See Figure 5.) N-=—-3»N'

Figure 5
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: o
Proof By induction on the length n of M—M'.
Base Step: n=l. For brevity we prove only the following case . such
that M=(Ax.P)Q, M'=(Ax.P)Q', N=P(x:=Q) and N'=P{x:=Q']. If we
contract Q to Q' at every occurrence of Q in N=P[x:=Q], we can
obtain N'. So we have N—»N'.(See Figure 6.)

0. 5 . .
Induction Step:Let C=M—»M'L>M'. By induction hypothesis for G,

we have the left square of Figure 6. By induction hypothesis for

0, » we have the right square. Thus N is reducible to N'. Q.E.D.

M=(Ax.P)Q—M'=(Ax.P)Q" M smr1——T2 Sy

2 2 2 Z 2

N=P[x:=Q]~"?N'=P [x:=Q'] N-=---3»N'"--—-3»N"
Figure 6 Figure 7

3. LEFTMOST REDUCTION OF ONE-STEP RECURRENT TERM

As for the actual form of terms, the lemma 13.3.2 in (1) is

extended to one-step recurrent terms in the following theorem.

Theorem 6 If M is one-step recurrent, then either M is a nf or

has no nf.

Proof Suppose M is not in nf. Consider the term N obtained by
contracting the leftmost redex in M. Since M in one-step
recurrent, N 1s reducible to M. Thus we have the following
infinite reduction: M-£9N-4»M~£>N—*"' , which is quasi leftmost.

Since every term with infinite quasi leftmost reduction has no nf

(1), M has no nf. ' Q.E.D.



Using .the notion of quasi-head reduction we can prove:

Theorem 7 If M is one-step recurrent, then either M is in hnf or

has no hn€.

Theorem 8 Let M be a one-step recurrent term and N be a term

obtained from M by leftmost reduction . Then N is reducible to M.

Proof Suppose M is reducible to L by contracting the leftmost
redex in M. Since M is one-step recurrent, L is reducible to M.

£
Let n be the length of the leftmost reduction M—»N.

M Then consider the reduction
(R 2
L—>»M r mBro-sndbromud .- —»M,
1 A L . . 2
l:--»l;——»nd which is n—-times composition of M—L—»M.
2 0 2
N-—~----- »L—»M By lemma 5,0 = M—»N—»M. (See Figure 8 for
Figure 8 the case of n=3.) : ’Q.E.D;

Theorem 9 Let M be a one-step recurrent term and L be the term
obtained from M by leftmost reduction. If L is reduced to N by

contracting a redex in L, then N is reducible to M.

Proof Suppose L is reduced to N by contracting a redex 4 in L .
Case 1: A is not a residual of any rédex iﬁ M.

By theorem 8 we have L—M, so N—»M by lemma 3.
Case 2: A is a residual of some redex 4 in M.

Since M is one-step recurrent, we have the following
reductions G °: M—g)P—%)M,”‘C: M?Q—»M, where Q is obtained by

2
contracting A . Let n be the length of M—L and T' be the
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reduction T followed by n-times O . By lemma 4, we have t'=‘d':

2
M-»L — M. Since T’ erases the redex 4’ , the term obtained by T”

contains no residual of A . Thus N-»M by lemma 1. Q.E.D.

Theorem 10 If M is obtained from a one-step recurrent term by

leftmost reduction, then M is one-step recurrent.

Proof Let L be a one—-step recurrent term and L—E»M——éN. Then by
theorem 9 N—»L, so we have N—»M. Thus M is one-step reéurrent.
Q.E.D.

The following theorem is an extension of a result about
recurrent terms given in (5). By theorem 10 we can prove thé

theorem similarly to (5S).

Theorem 1l Let M be a one—-step recurrent term which is not in

hnf. Then M can be reduced to a cne-step recurrent term cf the
form A x; -+ Xn.(AX.P)QR,--- R, , where (Ax.P)Q 1is a one-step
recurrent term of order zero and R{s are one-step recurrent

term.

Proof Let M =Ax,”-xm.()x.M,)MzN,~~N&.We prove the theoremby
induction on k.

Base Step: k=0. If the term (Ax.M;)M,were not of order zero, then
we would have a head reduction like ux;M1)lei»yJ42 By theorem
8, we have Jy.-M'—(Ax.M,)M,. A contradiction. Hence the order of
(Ax.M; )M, 1is zero.

Induction Step: If the term (}x.M; )My 1is of order zero the

. R
theorem holds trivially. Otherwise (Ax.M;)M;—»y.M' for some M'.



' Thus we have a head reduction of M such that
R ,
M=AX- Xpe (AXM; YMpNyooe Npg—M' "=2% e+ Xpmo (AY-M")N--0 Ny,
By theorem 10,M'' is one-step recurrent. By induction hypothesis

the theorem holds for M''. Hence it also holds for M. Q.E.D.

3. KLOP'S CONJECTURE

A plane is an equivalence class of terms by the cyclic
equivalence, where M and N are said cyclically equivalent if and
only if M N and N ‘M. We say that a plane can be left Qhen
there is a term M in the plane and irreversible step M N for
some N which does not belong to the plane. These notions are due
to (4).

The original motivation of considering one-step recurrent

term comes form the following theorem:

‘Theorem 12 (3) The following (a) and (b) are equivalent.

(a) (Klop's conjecture (4)) If a plane can be left at one point,
then it can be left at any point.

(b) A term is recurrent if and only if it is one-step recurrent.

Proof Since every recurrent term is one-step recurrent, the
only-if part 1is trivial in (b). |

First we prove (a)==>(b). Let M be a one-step recurrent
térm. Then the plane which contains M can not be left at M.
Therefore it cannot be left at any point. Hence any term
reducible from M is reduciblé to M.

Next we prove (b) <==(a). Suppoée that a plane can be left at

Las
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a point M and that it can not be left at another point N. Then N
is one-step recurrent. By (b), N is recurrent. Therefore M is
recurrent. This contradicts to the assumption that M has an

irreversible one-step reduction. Q.E.D.

Theorem 13 If a plane can be left at one point by one-step

leftmost reduction, then it can be left at any point by one-step

leftmost reduction.

Proof Suppose that we can leave a plane ( at a point M by one-
step leftmost reduction MjgN. And Suppose that M' is a term in
A and M‘—&N'. Then there is a reduction M-»M'. So we have N-»N'
by lemma 5. Since N is not reducible to M, neither is N'. Thus

the plane can be left at M' by one-step leftmost reduction.

Q.E.D.

Theorem 14 Let M be a term on a plane & which can be left at M

by contacting a redex A in M. Let ¢ : M—»N and T: L—»M be

arbitrary reductions on &« . Then

(1) N contains some residual of 4 .

(2) A is a residual of some redex

in L. (See Figure 9.)

Figure 9
Proof Let M' be the term obtained by contracting in M.
(1) Suppose that {A}/q-= $. Then by lemma 1, we have a
decomposition of such.that g = MTZQWP—»N. Since N belongs to

A we have N-»M. Hence M'-»M. A contradictions. Therefore{4}/o-=¢.

10
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(2) If A 1is not the residual of any redex in L, then by lemma 4,

we have M'-—» L.. Hence M'—» M. A contradiction. Q.E.D.
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