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Quantization of Open System Based on Quantum State Diffusion II
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1 Introduction

The quantum mechanics is a very fundamental theory in microscopic and closed systems. The

system evolves unitarily; there is any loss of information. On the other hand, there are various

irreversible phenomena, the transition from a pure state to a mixed state in macroscopic or nano

scale systems. The method of open quantum systems have been researched in order to explain

such phenomena by the use of a theory consistent with the quantum mechanics. The dynamics

of open quantum systems is phenomenologically described by the Lindblad master equation[l]

under the Markovian assumption. The positivity of the density matrix p and Tr{p} = 1 are

preserved as long as the system evolves according to this equation. The quantum state diffusion

(QSD) [2] is equivalent to this formalism and a very effective tool for numerical simulation of

complex problems, compared with the description depending on the master equation. In this

paper, we study an application of the QSD for a dissipative quantum chaos.

So far, many researchers have studied the quantum-classical correspondence (QCC) for

Hamiltonian systems. Such researches and results are very fruitful and interesting[3] . How

ever, there is an another type of chaotic systems; the chaotic behavior can occur in a dissipative

system. Thus, it is necessary to investigate a dissipative quantum chaos in order to discuss

the QCC in more detail. Moreover, this subject is also related to a measurement theory in

the quantum mechanics [4] . We examine a quantity sensitive to the initial condition and define

pseudo-Lyapunov exponent as its candidate. Then, we discuss a crossover in the quantum ver

sion of Duffing oscillator. The effective Planck constant f3 and the effective Planck cell play an

important role in this analysis. The more detail discussion is given in the Ref. [5].
1E-mail: ohba@waseda.jp
2E-mail: ota@suou.waseda.jp

- 678-



2 Quantum version of Duffing oscillator

The classical equation of Duffing oscillator is mx - 2"(mx+mw5x3/l2 -mw6x = mW6l2g cos(wt).

If we choose a set of dimensionless parameters (r, g, 0) == b/wo, g, w/wo) = (0.125, 0.3, 1.00),

we find the chaotic motion in the Poincare surface[6]; strange attractor.

In order to treat the quantum version of Duffing oscillator, we determine the Hamiltonian fI

(fIt = fI) and the Lindblad operator t phenomenologically[5]: fI = P2/2 + f32Q4/4 - Q2/2 +

r(QP + PQ)/2 - gQcos(Ot)/f3 and t = vT(Q + i p), where Q and P are the dimensionless

position and momentum operator, respectively, and [Q, p] = i. The dimensionless parameters

r, 9 and 0 are the same as ones in the classical equation of motion. Notice that 13 is introduced

naturally when the operators are transformed to the dimensionless expressions. We show stro-
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Figure 1: These are the stroboscopic maps for ({Q), (p)). The each point in these figures
represents the data at every 27T"/0 for a single realization of complex Wiener process. Figures
(a), (b), (c) and (d) are for 13 = 0.01, 0.10, 0.40 and 1.00, respectively.

boscopic maps for «(Q), (p)) in the Fig. 1 for a certain realization of complex Wiener process

(t) which is related to the QSD[2, 5]. The each point in Fig. 1 represents the data at every

27T"/0 for a single realization of (t), The initial state is a pure coherent state Io:)(al, where

Re{o:} = y'2(Q) and Im{a} = y'2(p). These show that a strange attractor appears certainly

and the system behaves chaotically in 13 = 0.01, while it has been lost in 13 r-.J 0(1). For interme

diate case, there remains the remnant of strange attractor. We find that the scale of system gets

large as 13 goes to zero. These observations are successful to show the loss of chaotic behavior

except for 13 = 0.01 at least. Therefore, let us call that the system is in the classical region

for 13 = 0.01 and in the quantum region for 13 = 1.00, respectively. These analyses without

averaging over the ensemble for (t) have been already studied in Ref. [2]. In particular, Fig. 1

agrees with the results in it,

3 Sensitivity to the initial conditions

The above results are inadequate to understand fully the QCC in this model due to the following

points. First, it is doubtful whether in 13 = 0.01 the chaotic dynamics survives or not, since we

only obtain a figure like strange attractor in the stroboscopic maps. The problem remains even

if one claims on the basis of this assertion that the chaotic behavior may occurs in 13 = 0.01.

It is not clear at what region of intermediate (3 = 0.01 and (3 = 1.00 the classical behavior

survives. The definition of the classical region or the quantum region is obscure. Finally, we do
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not consider the proper quantity related to the behavior of system, as {3 -> 1.00.

We examine the above three points, based on an analysis of a quantity sensitive to ini

tial conditions: .6.{T) = N-1L::{1,2} {8Q 12 {T)2 + OP12 {T)2)1/Z, where OQIZ{T) = Tr{QPl{T)}

Tr{QP2{T)} and c5P12 (T) = Tr{PPl{T)} - Tr{Pp2(T)}. Pl(T) and PZ{T) denote two density

matrices for different initial states Pl(O) and P2(0), respectively. T is the dimensionless time,

T = wot. The subscript of {I, 2} represents the summation over the sets of chosen initial condi

tions and N is the number of those sets. We have randomly chosen initial states, using the data

of constant phase maps calculated.

The calculation of .6.(T) is similar to the derivation of Lyapunov exponent in the classical

mechanics. We call a resultant value got from the simulation as pseudo-Lyapunov exponent.

Before numerical simulations, we have to determine a suitable value of E == .6.(T = 0). Notice that

two points in the phase space are not distinguishable in the view of quantum mechanics, if they

coexist inside the same Planck cell. The Planck cell is limited by the Heisenberg's uncertainty

relation. In this model, the commutator [Q,F] = [x,ftJ!{3280 = i is fulfilled, where x and ft are

original position and momentum operators, respectively. Then, the Planck cell has a constant

volume of .6.Q.6.P = 1/2 in the scaled phase space, whereas it has .6.x.6.p = n/2 = {32So/2 in the

original phase space. With the fixed value of typical action 80 for the system, the smaller {32

corresponds to the smaller nand the system exhibits the more classical behavior. Thus we define

an effective Planck cell as {3280/2; its linear size is almost equivalent to {3 in the unit of .J80 /2.

We present the results in the case of E = 0.01 (fixed), where two points in the phase space are

distinguishable only for the classical region ({3 = 0.01). Another case is given by Ref. [5]. In Fig. 2
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Figure 2: These figures are the time evolution of .6.(T) with E fixed as 0.01. The complex
Wiener process is used in QSD. Figures (a) and (b) are obtained with single realization of
complex Wiener process for each initial condition (20 samples). Figures (c)-(d) are obtained
with averaging over 100 realizations of complex Wiener process for each initial condition (10
samples). Figures (a), (b), (c) and (d) are for {3 = 0.01, 0.10, 0040 and 1.00, respectively.

(a), we find an exponential increase of .6.(T) , a characteristic behavior of chaos. This corresponds

to the fact that maximal Lyapunov exponent is positive in classical mechanics. This behavior is

also consistent with the existence of the strange attractor, and verifies that the quantum version

of Duffing oscillator keeps still a chaotic behavior for {3 = 0.01. In Fig. 2, we see very different

behaviors between (b) and (c)-(d). For these values of {3, all initial two points coexist inside of

the effective Planck cell and are indistinguishable from each other. Nevertheless, starting from

the inside of the effective Planck cell, .6.(T) for {3 = 0.10 increases gradually and crosses the size

of effective Planck cell after some duration and then increases simply. This suggests that the
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remnant of chaotic dynamics still survives for f3 = 0.10. However, ~(T)S for f3 = 0.40 and 1.00

always stay within the effective Planck cell. The chaotic dynamics has been completely lost in

these cases. This observation suggests that there exists some critical stage as f3 goes from 0.10

to 1.00. In Ref. [5], we have discussed an effect of dissipation in this system, using a degrees

of localization introduced in the QSD formalism. we find that it suppresses the occurrence of

chaos in the quantum region, while it, combined with the periodic external force, plays a crucial

role in the chaotic behaviors of classical system.

4 Summary

We apply the QSD to the quantum version of Duffing oscillator and discuss the QCC and

dissipative quantum chaos in this system. We calculate the constant phase map and the pseudo

Lyapunov exponent, varying Planck constant effectively and show there is a certain clear critical

stage in which a crossover from classical to quantum behavior occurs. Furthermore, we discuss

the effect of dissipation in the dissipative quantum chaos by means of a degrees of localization

introduced in the QSD formalism[5]. Unfortunately, the pseudo-Lyapunov exponent is not

a quantity characterized a dissipative system. Therefore, it will be necessary to discuss the

connection between the classical trajectory (strange attractor) and the quantum observable

which characterize a dissipative quantum system.
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