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The QeD vacuum as a disordered medium:
A simplified model for the QeD Dirac operator

Antonio M. Garcia-Garcia
Laboratoire de Physique Theorique et Modeles Statistiques, Bat. 100,

Universite de Paris-Su.d, 91405 Orsay Cedex, France

James C. Osborn
Physics Department, University of Utah, Salt Lake City, UT 84112, USA

We model the QCD Dirac operator as a power-law random banded matrix (RBM) with the ap­
propriate chiral symmetry. Our motivation is the form of the Dirac operator in a basis of instantonic
zero modes with a corresponding gauge background of instantons. We compare the spectral corre­
lations of this model to those of an instanton liquid model (ILM) and find agreement well beyond
the Thouless energy. In the bulk of the spectrum the (dimensionless) Thouless energy of the RBM
scales with the square root of system size in agreement with the ILM and chiral perturbation theory.
Near the origin the scaling of the (dimensionless) Thouless energy in the RBM remains the same as
in the bulk which agrees with chiral perturbation theory but not with the ILM. Finally we discuss
how this RBM should be modified in order to describe the spectral correlations of the QCD Dirac
operator at the finite temperature chiral restoration transition.

PACS numbers: 72.15.Rn, 71.30.+h, 05.45.Df, 05.40.-a

In recent years the relation between spontaneous chiral
symmetry breaking (SXSB) in QCD and the phenomenon
of conductivity in a disordered medium has been investi­
gated in the literature [1-3]. In the latter, conductivity
is produced by electrons that although initially bound to
impurities may get delocalized by orbital overlapping. In
QCD the quark zero modes initially bound to an instan­
ton get delocalized due to the strong overlap with other
would-be zero modes and consequently chiral symmetry
is broken. In the case of atoms the overlap is effective
only among nearest neighbors due to the exponential de­
cay of the electron wavefunction. However, in the QCD
vacuum, the decay is power-law and long range hopping
is possible. Thus even if one assumes a perfect trade be­
tween impurities and instantons and between electrons
and quarks, the associated Anderson model should posses
long range hopping. Such models have already been dis­
cussed in the literature [4, 5]. The main conclusion of
these works was that power-law hopping may induce a
metal insulator transition even in one dimensional sys­
tems if the exponent of the hopping decay matched the
dimension of the space. Similar findings were also re­
ported in a related model, a random banded matrix with
a power-law decay [6, 7].

Random matrix techniques have already· been used in
the context of QCD. In the infrared limit the eigenvalue
correlations of the QCD Dirac operator do not depend on
the dynamical details of the QCD Lagrangian but only on
the global symmetries of the QCD partition function [8].
Thus random matrices with the correct chiral symmetry
of QCD (termed chiral random matrices) [9] accurately
describe the spectral properties of the QCD Dirac oper­
ator up to some scale known as the Thouless energy. For
larger energy differences dynamic features become im-

portant and the standard random matrix model ceases
to be applicable.

In this letter we study an improved matrix model for
QCD which reproduces features of the eigenvalue spec­
trum beyond the Thouless energy. We want to incorpo­
rate the phenomenological fact that the matrix elements
of the QCD Dirac operator in a basis of zero modes decay
as a power of the instanton-anti-instanton distance into
the random matrix approximation. We thus propose a
chiral RBM as an effective model of the QCD Dirac op­
erator. We first give a brief introduction on the role of
instantons in the QCD vacuum. Next we introduce the
chiral RBM and describe its main properties at both the
origin and bulk of the spectrum. In the latter case an
analytical treatment is possible. Then we compare the
spectral correlations of this model with the results of an
instanton liquid simulation. Finally we discuss how the
RBM can be modified to describe the spectral correla­
tions of the QCD Dirac operator at the finite tempera­
ture chiral restoration transition.

SXSB FROM INSTANTONS

The discovery of instantons has had a large impact on
our understanding of non-perturbative aspects of QCD
[10] (for a modern review see [11]). Instantons are clas­
sical solutions of the Yang-Mills equations of motion in
Euclidean space. An important property is that the Eu­
clidean QCD Dirac operator has an exact zero eigenvalue
in the field of an instanton. The spectral properties of the
low lying modes of the Dirac operator are thus controlled
by these non-perturbative configurations.

Unfortunately the construction of a consistent QCD
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where V is the space-time volume. The ILM provides a
phenomenological model for these low energy modes of
the QCD Dirac operator. In a basis of N /2 instantonic
zero modes 'l/JI(Z-t) and N/2 anti-instantonic zero modes
'I/JA (Zj) the matrix elements of the Dirac operator take
the form (for zero quark mass)

for large separations Rij = Z-t - Zj between the center
of instanton i and anti-instanton j with Pi and Pj their
sizes. Due to the chirality of the zero modes only matrix
elements connecting an instanton with an anti-instanton
do not vanish. Physically the amplitude of the matrix el­
ements T1A represents the probability for a quark to hop
between an instanton and an anti-instanton. An isolated
(anti-)instanton would cause an exact zero mode but this
degeneracy is lifted through overlap with neighboring in­
stantons. Thus the would-be zero modes are effectively
split around zero. As more (anti-)instantons are added a
continuous band spectrum is formed with a spectral den­
sity finite at zero. As mentioned previouslYl it is precisely
this dynamically generated non-zero spectral density that
causes, through the Bank-Casher relation, a finite value
of the chiral condensate.

(4)V RBM = (~t ~)

where G is a N /2 x N /2 complex matrix with indepen­
dently distributed Gaussian variables with zero mean.
The variance of the matrix elements Gij are chosen to de­
cay as a power of r = Ii - il which measures the distance
from the diagonal. Since the ILM uses periodic boundary
conditions we use a periodic form of the power-law decay
[17] given by

THE CHIRAL RANDOM BANDED MODEL

Here we study the spectral properties of an ensemble
of chiral random Hermitian N x N matrices given by

where 0: and b are real parameters. The choice of com­
plex matrix elements corresponds to a matrix model with
a unitary symmetry which is appropriate for QCD with
the phenomenologically relevant SU(3) color group. Due
to the chiral symmetry, the eigenvalues of (4) come in
pairs of ±f.i. This feature induces an additional level re­
pulsion around zero which results in different spectral
correlations for eigenvalues near zero (the origin) and
away from zero (the bulk).

In the bulk the spectral correlations should not be af­
fected by the block structure and should coincide with
the non-chiral version of (4) which has been intensively
studied in recent years [7, 17]. The use of the supersym­
metry method [18] permits an analytical evaluation of
both spectral properties and eigenfunction statistics [7]
in a certain region of parameters. In the thermodynamic
limit the eigenfunctions are multifractal for 0: = 1 and
localized (delocalized) for 0: > 1 (0: < 1) respectively [7].
The spectral correlations in the 9 = Ee/!::J. >> 1 (Ee is
the Thouless energy and !::J. is the mean level spacing)
limit can be expressed through the spectral determinant
of a classical diffusion operator [19]. The two point corre­
lation function is defined as R2(S) = !::J.2(p(f.)p(f.+s!::J.))-1
where p(f.) is the density of states at energy f. and the
average is over an ensemble of RBM. For the unitary en­
semble (our case)

_ 1 82 D(Slg) cos(21rs)
R2(s) - --42 -82 ln --2- + 2 2 2 D(s.g). (6)

1r S S 1rS •

Due to the power-law decaYl the spectral determinant
D(s,g) = TIn '!'o(1 + S2/f.~)-1 (€n = glnI 2et

- 1) corre­
sponds with a process of anomalous diffusion [7]. For
1/2 < 0: < 1 the dimensionless conductance increases
with the system size as 9 = Get (b)N2-2et with Get(b) a
known constant. The scaling of 9 thus resembles that of
a weakly disordered conductor in d = 2/(20: - 1) dimen­
sions [7].

(2)

(1)

'DILM = (i~A iT~A)

with the N /2 x N /2 overlap matrix given by

vacuum based on instantons faces serious technical diffiw
culties. Exact analytical multi-instanton configurations
are hard to obtain since the Yang-Mills equations of mo­
tion for QCD are nonlinear and therefore a superposition
of single instanton contributions is not itself a solution.
Additionally quantum corrections may spoil the semi­
classical picture implicitly assumed of a QCD vacuum
composed of instantons well separated and weakly inter­
acting. These problems have been overcome either by
invoking variational principles [12] or by phenomenolog­
ically fixing certain parameters of the instanton ensem­
ble. The latter casel usually referred to as the instanton
liquid model (ILM) [13L yields accurate estimates of vac­
uum condensates and hadronic correlation functions [14]
just by setting the mean distance between instantons to
be N /V ~ 1frn-4 and the mean size Ii ~ 1/3 frn. Lattice
simulations have also supported the picture of a QCD
vacuum dominated by instantons [15].

An advantage of these models is that they satisfactorily
explain how chiral symmetry is spontaneously broken in
the QCD vacuum [12]. The chiral condensate (the order
parameter signaling SXSB) (ij;'I/J) is related to the spec­
tral density p(f.) of the QCD Dirac operator around zero
through the Banks-Casher relation [16]l

(.T. I) r r 1rp(f.)
<p'IfJ = - E~V~OO -V l
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FIG. 1: Spectral rigidity for the REM in the bulk. Points
correspond to the numerical simulations of the chiral REM
for b = 1. Lines correspond to the analytic result of the non­
chiral REM (6) for the given values of g.

The above results were derived for the non-chiral RBM.
As mentioned above they are also expected to describe
the chiral RBM (4) in the bulk region. We have chosen
the scale of b in (4) to agree with results for the non­
chiral model. Strictly speaking, the factor ea(b) was
derived [7] for b » 1 and it is not clear how the result
is modified for smaller b. Below we will show that in
fact the analytic results agree very well even near b =
1. Unlike in the bulk, analytical results for the spectral
correlations close to the origin are not known. They can
be obtained by modifying the supersymmetry method
to account for the chiral structure. This issue will be
postponed to a future publication [20] and in this letter
we will rely on numerical calculations for the study of
the spectral correlations close to the origin. Lastly we
remark that though the power-law decay in the instanton
liquid is not in principle related to the matrix index, as in
our matrix model, numerical simulations show that both
models yield similar results [6]. We stick to (4) due to
the availability of analytical results.

Given the known results for the non-chiral RBM we
can now choose the parameter 11. Recall that our moti­
vation to propose a random banded model is the decay
of the ILM overlap matrix elements (3). It was shown
in [5] that the spectral properties of systems with power­
law hopping are similar in different dimensions provided
that the decay exponent equaled the dimension. Since
in the ILM the decay exponent (three) is less than the
dimension (four) we expect this to map onto a ID RBM
model with a < 1. We choose 11 =3/4 because the vol­
ume dependence of the dimensionless conductance in this
case 9 ~ 1.17..IbN [7] coincides with what is expected for
QeD according to chiral perturbation theory [21]. As
mentioned above, the spectral properties of the RBM at
a =3/4 are similar to those of a disordered conductor in
four dimensions.

L

FIG. 2: Spectral rigidity for the ILM and REM in the bulk.
Points correspond to numerical simulation of the ILM. Lines
correspond to the analytical result of the non-chiral REM (6)
for the given values of g.

RESULTS

We generated sets of matrices for the RBM and the
ILM and calculated their eigenvalues in order to compare
the spectral correlations. The results of each simulation
are averaged over 104 configurations. For both models
the simulations were done in the quenched approximation
which allowed us to use values of N ranging from 320 up
to 1280. For the ILM we used the same model studied
in [1] including the standard density of NJV = 1frn -4.

Additional details can be found in [11].
We first check that the result (6), derived for the the

non-chiral RBM, agrees with the chiral results in the
bulk. The analytic formula is actually divergent for
11 = 3/4 and needs a cutoff in the spectral determinant
D(s,g). If we calculate the number variance which is
given by E2(L) = L + 2 JoL(L - s)R2(s)ds we find that
it is strongly cutoff dependent. Instead we look at the
spectral rigidity ~3(L) = -b JoL(L3 -2L2x+x3)E2(x)dx
which is not sensitive to the cutoff.

In Figure 1 we show the spectral rigidity in the bulk
of the chiral RBM obtained from numerical simulation
at b = 1 along with the analytic formula of the non­
chiral model for different values of g. The values of 9
were chosen by eye to match the numerical results for
the corresponding N. We find good agreement with the
theoretical expectation 9 ~ 1.17VN within about 2%.

In Figure 2 we compare the spectral rigidity in the
bulk of the ILM with analytical predictions of the RBM.
Again the values of 9 for each volume were chosen by
eye to closely match the ILM. The analytic results using
these values of 9 agree well with the ILM up to a scale of
about 30% of the number of positive eigenvalues (NJ2).
The values of 9 scale closely to 9 ~ 1.23VN except for
the smallest volume (N = 320) where a 5% deviation
is observed. This corresponds to b~ 1.1. The observed
scaling of the dimensionless Thouless energy in the chiral
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FIG. 3: Number variance ~2(L) close to the origin. Points
correspond to numerical simulation of the ILM. Lines cor·
respond to numerical simulations of the chiral RBM for the
given values of b.
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RBM are in agreement with QCD theoretical predictions
[1, 21] and lattice results [22].

We do not yet have analytical results for the spectral
correlations of the RBM at the origin and therefore rely
solely on numerical simulations. In Figure 3 we show the
number variance near the origin for the ILM and chiral
RBM. The corresponding values of b for the RBM were
also chosen by eye to provide a good fit. The agreement
between both models is very good up to about 50 eigen­
values but we could not fit all volumes with a single b.
The reason for that is that the chiral RBM has the same
9 '" IN scaling as in the bulk while the instanton liquid
shows a weaker volume dependence. We find the scaling
b R:l 1.4 N-O.13 which gives 9 R:l 1.4 N°.43 for the ILM. It
would be interesting to compare these results with lat­
tice simulations where a 9 '" IN scaling has also been
reported close to the origin.

Finally we mention how the chiral RBM should be
modified to describe QCD at finite temperature. As usual
in field theory, temperature is introduced by compacti­
fying one of the spatial dimensions. Thus the effect of
temperature in Euclidean QCD is to reduce the effective
dimensionality of the system to three. Now since the
effective dimension of the space matches the power-law
decay of the QCD Dirac operator ('" 1/R3) one expects,
according to [5, 6], multifractal wavefunctions typical of
a metal-insulator transition. The same chiral REM pro­
posed in this paper may be used in this situation but
with a: = 1 (see [23] for a model with similar spectral
properties). The above arguments suggest that if the
restoration of chiral symmetry at finite temperature is
dominated by instantons, the physical mechanism lead­
ing to the quark-gluon plasma state of matter would be
similar to a metal-insulator transition. Clearly further
work is needed to explore this exciting relation.

To conclude, we have proposed a chiral random banded

model with power-law decay in order to describe the spec­
tral correlations of the QCD Dirac operator beyond the
Thouless energy. We have thus combined the asymp­
totic power-law tail observed in instanton liquid models
with the random matrix approach valid for small spac­
ings. We have provided some numerical evidence that
the resulting chiral RBM does (at least for the two-point
function) describe the spectral correlations of the QCD
Dirac operator well beyond the Thouless energy. Finally
we have mentioned that at the finite temperature chiral
restoration transition the appropriately modified chiral
RBM predicts a metal-insulator behavior including mul­
tifractal wavefunctions and the physics of the Anderson
transition in the QCD vacuum.

We thank J.J.M Verbaarschot for illuminating discus­
sions. A.M.G. was supported by the ED network "Math­
ematical aspects of quantum chaos" .
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