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INTRODUCTION

Rice (Oryza sativa L.) is one of the Gramineae family crops, 
the daily meal of over two-thirds of the world’s population and 
provides approximately 20% of a human’s calories consumed 
(Wogu et al., 2010). World rice production amounts are 782 
million tons over the total area of approximately 167 million 
hectares (FAO, 2018). It is cultivated commercially in several 
countries in the world. It is particularly important in Asia 
(90.7%), America (5.2%), Africa (3.4%), Europe (0.6%) and 
Oceania (0.1%) as a commercial crop (FAO, 2018). China, 
India, Indonesia, Bangladesh, Vietnam, Thailand, Myanmar, 
Philippines, Brazil, Japan are the top ten rice producers 
worldwide in 2018 (FAO, 2018). In Egypt, it has a production 
area of 4280 metric tons at an area of 0.445 million/ha and a 
productivity of 9.6 tons/ha. There are still a lot of challenges 
to achieving food security worldwide. Therefore, there is a 
need to improve high-yielding varieties. Adequate knowledge 
of genetic variation in different genotypes is a preliminary 

step in breeding programs for the selection and production of 
new varieties (Kumbhar et al., 2015; Ahmed et al., 2016). Rice 
genotype diversity is an essential method of transmission of 
genetic information (Nambara & Nonogaki, 2012; Martínez-
Andújar et al., 2012). The recent method, the biplot technique, 
provides breeders with a complete visual representation of all 
aspects of variables by producing a biplot that simultaneously 
represents both mean efficiency and stability (Yan & Holland, 
2010; Gedif & Yigzaw, 2014; Yan & Frégeau-Reid, 2018; Bányai 
et al., 2020). Multivariate analysis is a sufficient measurement 
of the degree of difference between genotypes. Principle 
component analysis (PCA) and cluster analysis are both used 
to assess variation as multivariate methods (Maji & Shaibu, 
2012; Tiwari et al., 2020). PCA is used to study diversity and 
to determine commitment to several specific characteristics. 
Cluster analysis is used when we need to classify genotypes 
according to genetic or agronomic traits into different groups 
(Shabir et al., 2013). Also, Nachimuthu et al. (2014) used PCA 
to assess variation between rice genotypes derived from various 
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countries. They studied many characteristics like filled grains 
number per panicle, grain yield per plant, panicle length and 
plant height. They found that there was a high coefficient of 
variation for the number of filled grains per panicle and grain 
yield per plant and when using PCA. They defined traits that 
had an impact on variation. However, (Chakravorty et al., 
2013) assessed the variability of the rice genotypes by PCA. 
Results showed that the number of grains per panicle affected 
the variety of genotypes studied. Also, Sanni et al. (2012) used 
cluster analysis to evaluate the variability of 434 rice genotypes 
in 10 agronomic traits under upland conditions. Their results 
showed that seven groups were derived from ten agronomic and 
botanical traits. They stated that certain clusters in breeding 
programs are valuable in determining parental genotypes. 
The objective of this research was to (i) estimate the possible 
diversity between the rice genotypes studied by multivariate 
analysis, (ii) define the contribution of each studied trait to the 
total variation under the irrigated condition and (iii) determine 
the best genotypes for the breeding of new high yielding cultivars 
under irrigated condition in future. 

MATERIAL AND METHODS

Plant Materials 

On the Rice Research and Training Center (RRTC) 
experimental, Sakha Agricultural Research Station, Kafr El-
Sheikh Governorate, Egypt, twenty-two rice (Oryza sativa L.) 
genotypes originating from different countries were evaluated 
for various quantitative traits (Table 1). The germplasm included 
commercial Egyptian varieties, imported varieties, Egyptian 
landraces, Egyptian advanced lines and accessions from the 
collections of the International Rice Research Institute (IRRI), 
Los Banos, Philippines and National Small Grains, USDA, ARS, 
USA. Seeds were kindly provided by the International Rice 
Research Institute (IRRI), Los Banos, Philippines; USDA-ARS, 

National Small Grains Collection, USA and Rice Department, 
Agriculture Research Center (ARC), Giza, Egypt.

Field experiments

The research was conducted at the Rice Research and Training 
Center (RRTC) experimental farm, Sakha, Kafr El-Sheikh, 
Egypt, in the two-rice successive cultivated seasons 2017 and 
2018. The seeds of the twenty-two rice genotypes were grown 
in the nursery and transplanted in four rows after 30 days from 
sowing. The experiment was arranged in a randomized complete 
block design (RCBD) with three replicates. Each replicate 
consists of three rows, 5 m long, 20 cm in length between rows, 
comprising 25 hills each of a single plant. The recommended 
cultural rice practices have been applied as usual for the ordinary 
rice field in the region. A specific dose of N: P: K (10: 18: 18) was 
applied during ground preparation at a rate of 80 kg/ha. Urea 
was applied at a rate of 80 kg/ha, first at tillering and second 
dose at booting. Hand-weeding was done regularly to minimize 
the infestation of weeds. 

Data Collection

Seven quantitative traits were determined using the rice 
(O. sativa) descriptor methods (IRRI, 1980). The variables 
included in the descriptive and multivariate analysis were 
phenological (for each plot the number of days to heading) 
and agro-quantitative (plant height (cm), panicle length (cm), 
number of panicles per plant, number of filled grains per panicle, 
1000-grain weight (g) and grain yield per plant (g)). The data 
were calculated based on ten randomly selected guarded plants 
from each plot. Data were recorded on a single plant-dependent 
basis for each genotype.

Statistical Analysis

Mean averaged data were obtained over two years and used to 
measure mean values. The twenty-two genotypes were divided 
into groups using the method of unweighted pair group system 
of average linkage (UPGMA) and studied traits were analyzed 
using principal component analysis (PCA). The datasets were 
first tested with normality tests for normality and then subjected 
to variance analysis using an appropriate model (Anderson 
& Darling, 1952). PCA was used to determine the degree of 
characteristic variance between genotypes based on (Everitt & 
Dunn, 1992). While biplot analysis was used to select the best 
performing genotype. PCA as one of the factor analysis methods 
is a reduction of a large number of variables correlated with 
smaller sets of variables called factors or components (Cattell, 
1965). The group array, the amount of variance expressed by the 
combined variables, was estimated by the highest correlation 
coefficient in each array, as suggested by Seiller & Stafford 
(1985). The experimental results were statistically analyzed 
using Genstat version 12.0 software for multivariate analysis. 
The UPGMA was performed using the statistical method 
of numerical taxonomic and multivariate analysis methods 
(NTSYS version 2.1 software package (Rohlf, 1998). 

Table 1: List of 22 rice genotypes used in this study
No Genotype Origin Source of seed Subspecies group

1 IR 20 Philippines IRRI Indica
2 IR 22 Philippines IRRI Indica
3 IR 24 Philippines IRRI Indica
4 IR 50 Philippines IRRI Indica
5 IR 64 Philippines IRRI Indica
6 IR 74 Philippines IRRI Indica
7 Bala India IRRI Indica
8 IET 1444 India IRRI Indica
9 Arabi Egypt USDA, USA Japonica
10 Agamy M1 Egypt USDA, USA Japonica
11 Nahda Egypt USDA, USA Japonica
12 Yabani M1 Egypt USDA, USA Japonica
13 Yabani M7 Egypt USDA, USA Japonica
14 Yabani 15 Egypt USDA, USA Japonica
15 Yabani lulu Egypt USDA, USA Japonica
16 Giza 14 Egypt USDA, USA Japonica
17 Giza 171 Egypt ARC, Egypt Japonica
18 Giza 172 Egypt ARC, Egypt Japonica
19 Giza 177 Egypt ARC, Egypt Japonica
20 Giza 178 Egypt ARC, Egypt Indica/Japonica
21 Giza 181 Egypt ARC, Egypt Indica
22 Gz 1386‑5‑4 Egypt ARC, Egypt Indica
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RESULTS 

Rice Genotypes Performance Under Irrigated Condition 

Table 2 presents the sum of values, mean, minimum and 
maximum, standard deviation and coefficient of variance 
(CV) for the various traits. The largest variation with CV 20.71 
was observed in GYP, followed by PH, NPP, PL and DH with 
CV = 15.31, 14.06, 10.57 and 9.53%. TGW and NFGP had the 
lowest variation (CV = 7.91 and 4.87, respectively). Table 2 shows 
that DH ranged from 93 days for the earliest rice genotype Giza 
177 to 135 days for the latest rice genotypes IR 20 with an average 
of 111.5 and 42 days for both mean and range, respectively. For 
PH the range varies from 80 cm for the shortest genotype IR 24 
to 140 cm for the tallest genotype Arabi with an average of 106.8 
and 60 cm for both the mean and range, respectively. Besides, PL 
ranged from 18.32 cm for the Agamy M1 rice genotype to 27.1 
cm for the rice genotype IR 64 with 22.32 cm and 8.78 for the 
mean and range, respectively. Furthermore, the NPP range varies 
from 15 panicles per plant for the lowest rice genotype Nahda to 
28 panicles per plant for the highest rice genotype Giza 178 with 
20.86 and 13 panicles per plant for both the mean and range, 
respectively. Moreover, the NFGP varied from 111 for the lowest 
rice genotypes IR 20 to 139 for the highest rice genotypes Giza 178 
with 123.7 and 28 for the mean and range, respectively. For TGW 
the range varies from 18.98 g for the lowest rice genotype Bala 
to 26.45 g for the highest rice genotype Giza177 with 21.98 and 
7.47 for both the mean and range, respectively. Finally, for GYP 
varied from 24.63 g for the lowest rice genotypes Nahda to 44.87 
g for the highest rice genotype Giza 178 with 30.05 and 20.24 g 
for the mean and range, respectively. The variation between the 
genotypes studied was mainly due to the highest variation in grain 
yield per plant followed by plant height then in the number of 
panicles per plant with a coefficient of variation reached (20.71, 
15.31 and 14.06) for each of them, respectively (Table 2). Diverse 
frequency distribution models for the characters studied resulted 
when the Scree histogram was applied (Figure 1).

Principle Component Analysis 

PCA is a method used to identify character contribution in 
variation among different genotypes which could be a valuable 
selection tool for rice improvement. The PCA result has 
demonstrated the rice collection’s genetic diversity. Proper 
values measure the importance and contribution of each 
component to total variance, while each value indicates the 
degree of contribution of each original variable associated with 
each main component. Seven PCA were collected for the seven 
characteristics, but only the first two PCA (PC1 and PC2) were 
approved to show the variation in the studied characteristics 
as they reported an eigenvalue greater than 1.0 (3.3575, 
1.2647), respectively (Figure 2), while the other components 
were rejected because they were less than one resulting in 
an eigenvalue. In the principal component analysis of the 
relationships between the measured parameters, under irrigated 
replications, the eigenvalue of two principle components was 
greater than one, which together represented 66.1% of the total 
variance in which the PC1 had the highest variability (48%) 

followed by PC2 (18.1%) (Figure 2). Whereas other major 
components were neglected (Table 3). 

The first principal component PC1 is related to the contribution 
of five characteristics, r = 0.504 for GYP, r = 0.478 for NPP, 
r = 0.415 for NFGP, r = 0.401 for TGW and r = -0.321 for 
DH (P<0.01) (Figure 3). Meanwhile, the second principal 
component PC2 correlated only with two traits, r = -0.693 for 
PH and r = 0.499 for PL (Table 4) (Figure 4).

Identifying Superior Rice Genotypes Under Irrigated 
Conditions

As a result, the traits in PC1 traits had the greatest influence on 
the total variation of the genotypes studied followed by traits in 
PC2 (Table 5). This revealed varying yield output among the rice 
genotypes. To visualize the relationship between genotypes, the 
origin of the plot was drawn to connect. So, in breeding programs, 
they could be used significantly to identify superior rice genotype. 
Figure 5 presents the plot distribution of both genotypes and PCA 
traits. This revealed that the number of panicles per plant is the 
closest correlated trait with grain yield per plant since they have a 
small angle between them, followed by 1000-grain weight and then 
filled grains number per plant. All traits were positively correlated 
with PC1 because they had scored more than zero except for days 
to heading and plant height. Genotypes distributed in the four 
quarters of the biplot revealed that both Giza 178 and Giza 181 
rice genotypes were the most representative of variation as their 
scores were positive and more than other PC1 varieties followed 
at the same time by the genotype Giza 177. These three varieties 
were associated with grain yield per plant and the number of 
panicles per plant (Figure 5).

Cluster Analysis

Cluster analysis results according to dissimilarity (Table 6) 
showed five main cluster groups, four of which contained 
subclusters. The first major group included three varieties, the 
indica rice genotype Giza 181, the indica/japonica rice genotype 
Giza 178 and the japonica rice genotype Giza 177, all of which 
derive from Egypt. The second main group included only one 
rice genotype Giza 171 which is japonica type from Egypt. The 
third major group consisted of seven varieties, six of which were 
japonica genotypes (Yabani lulu, Yabani 15, Yabani M7, Giza 14, 
Yabani M1 and Giza 172), originating in Egypt and the indica 
rice genotype IET 1444 originating in India. In addition, the 
fourth major group consisted of seven indica genotypes (IR 74, 
IR 64, Gz 1386, IR 50, Bala, IR 24 and IR 22) all originating in 
the Philippines and indica rice genotype, except for Bala and 
Gz 1386 originating in India and Egypt, respectively. The fifth 
and last main group included four varieties, four of which are 
japonica genotypes (Agamy M1, Nahda and Arabi) from Egypt 
and the indica genotype IR 20 from the Philippines (Figure 6).

DISCUSSION

The variation between the genotypes studied was mainly due 
to the highest variance in grain yield per plant followed by 
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Table 2: Descriptive statistics for the estimated variables in 22 rice genotypes
Trait Sum Mean Min. Max. Range SD CV

Value Genotypes Value Genotypes

HD 2453 111.5 93 Giza177 135 IR 20 42 10.63 9.535
PH 2349 106.8 80 IR24 140 Arabi 60 16.35 15.31
PL 490.9 22.32 18.32 AgamyM1 27.1 IR 64 8.78 2.358 10.57
PNP 459 20.86 15 Nahda 28 Giza178 13 2.933 14.06
FGNP 2721 123.7 111 IR 20 139 Giza178 28 6.035 4.879
TGW 483.5 21.98 18.98 Bala 26.45 Giza177 7.47 1.740 7.918
GYP 661.0 30.05 24.63 Nahda 44.87 Giza178 20.24 6.222 20.71

The trait and statistics codes are HD: days to heading; PH: plant height; PL: panicle length; PNP: number of panicles per plant; FGNP: number of filled 
grains per panicle; TGW: 1000‑grain weight; GYP: grain yield per plant.; SD: standard deviation; CV: coefficient of variance

Figure 1: Frequency screen histogram of studied traits with the normal curve.The trait codes are HD: days to heading; PH: plant height; PL: panicle 
length; PNP: number of panicles per plant; FGNP: number of filled grains per panicle; TGW: 1000-grain weight; GYP: grain yield per plant
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plant height then in the number of panicles per plant with a 
coefficient of variation reached (20.71, 15.31 and 14.06) for 
each of them. This agrees with the findings of Nachimuthu 
et al. (2014) who found that the coefficient of variation (CV) 
for both grain yield per plant and plant height was 23.19 and 
18.82, respectively. We followed in this study (Clifford & 
Stephenson, 1975), which improved by Guei et al. (2005) who 
mentioned that (PC1, PC2, PC3) are usually more effective 
in symbolizing models of variability significantly between 
genotypes and that the traits correlated with them are more 
useful in distinguishing genotypes. According to this criterion, 
the first two main components were gathered, which means 
that these characteristics will play a major role in providing a 
wide variation for rice improvement. This agrees with Guei et al. 
(2005) who confirmed that traits in PC1, PC2 reflect variation 
in rice genotypes. Days to heading were found in one principle 
component with yield and features of its components, while 
plant height in another PC meaning that the days to heading 
had more effect in the variation than plant height. This is in 

Figure 2: Scree plot diagram of Eigenvalues constructed on seven 
studied traits recorded in 22 rice genotypes

Figure 3: Contribution of studied traits in the first principle component (PC1).The trait codes are HD: days to heading; PH: plant height; PL: panicle 
length; PNP: number of panicles per plant; FGNP: number of filled grains per panicle; TGW: 1000-grain weight; GYP: grain yield per plant

Figure 4: Contribution of studied traits in the second principal component (PC2).The trait codes are HD: days to heading; PH: plant height; 
PL: panicle length; PNP: number of panicles per plant; FGNP: number of filled grains per panicle; TGW: 1000-grain weight; GYP: grain yield per plant
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agreement with Rashid et al. (2008) who found that days to 
heading and grain yield are located in PC1 and with Ogunbayo 
et al. (2005) who declared that plant height was found in PC2. 
Grain yield per plant and yield traits (1000-grain weight, number 
of filled grains per panicle and panicle number per plant) affect 
positively the PC1 on the contrary of days to heading that hurt 
the same PC1. This indicates the increase in grain yield per 
plant and yield traits (panicle number per plant, number of 
filled grains per panicle, 1000-grain weight) as a result of early 
heading. To be sure, improving a given yield trait will direct 
the improvement of other yield traits collected in the same 
PC as long as they have the same positive effect. In PC2, the 
plant height had a negative effect while the panicle length had 
a positive effect, suggesting that smaller plants have smaller 
panicles. These findings are consistent with other studies (Caldo 

Table 6: Matrix of dissimilarity according to Euclidean square based on studied traits in rice genotypes
* 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 0
2 2.43 0
3 3.30 1.70 0
4 5.11 3.46 2.52 0
5 4.28 3.21 2.65 2.74 0
6 4.07 2.88 2.27 2.78 1.02 0
7 3.86 2.74 2.46 2.77 3.92 3.77 0
8 3.89 3.93 3.94 4.75 3.67 4.20 4.18 0
9 3.46 3.32 2.62 3.48 3.34 3.62 3.16 2.41 0
10 4.76 4.33 3.97 3.08 2.95 3.36 3.90 3.74 3.26 0
11 2.79 2.89 3.08 3.94 4.32 4.39 3.13 3.52 2.18 3.68 0
12 3.93 3.88 3.82 3.39 3.67 4.07 3.23 3.36 2.65 1.91 2.43 0
13 2.87 3.05 3.23 3.44 3.35 3.42 2.66 3.72 2.99 2.59 2.61 1.70 0
14 3.68 2.87 2.88 2.47 3.43 3.38 1.84 4.20 3.24 2.60 2.75 2.04 1.50 0
15 3.65 3.05 2.87 2.41 3.06 3.17 2.53 3.80 2.70 1.83 2.38 1.40 1.47 1.05 0
16 4.51 3.38 2.78 1.66 1.93 2.11 2.95 4.02 3.24 1.80 3.79 2.62 2.52 2.02 1.73 0
17 4.29 3.52 3.50 2.81 3.82 4.09 2.26 3.59 3.00 2.46 2.69 1.57 2.20 1.48 1.53 2.46 0
18 4.84 3.61 4.01 3.71 3.94 4.05 4.25 4.32 4.25 3.17 3.69 3.57 3.96 3.32 3.00 3.28 3.10 0
19 4.12 3.92 4.19 3.78 3.55 3.79 3.71 3.74 3.73 1.63 3.43 1.92 2.10 2.25 1.87 2.49 2.21 2.77 0
20 6.71 5.81 5.61 4.04 4.53 4.50 5.57 6.81 6.14 3.34 5.99 4.56 4.56 4.04 3.82 3.30 4.60 4.30 3.66 0
21 7.71 6.17 5.86 4.41 4.57 4.61 6.23 6.80 6.66 4.38 7.00 5.91 6.11 5.33 5.13 3.99 5.47 4.08 4.84 3.20 0
22 5.82 4.71 4.55 3.70 3.30 3.18 5.14 5.57 5.27 2.96 5.42 4.48 4.39 3.94 3.60 2.74 4.40 3.07 3.24 2.36 2.24 0

* Code numbers of varieties are listed in Table 1

Table 5: Traits in resulted principle components in 22 rice 
genotypes
PC1 PC2

Days to heading Plant height
Number of panicles per plant Panicle length
Number of filled grains per panicle
1000‑grain weight
Grain yield per plant

Table 4: Principle components for studied traits in 22 rice 
genotypes
Trait PC1 PC2 PC3 PC4 PC5 PC6 PC7

HD ‑0.321 0.291 0.512 ‑0.646 0.309 0.091 0.168
PH ‑0.090 ‑0.693 0.595 0.283 0.062 0.267 0.044
PL 0.270 0.499 0.491 0.234 ‑0.592 0.174 0.046
PNP 0.478 0.028 ‑0.229 ‑0.094 0.254 0.730 0.335
FGNP 0.415 0.187 0.249 0.348 0.572 ‑0.470 0.249
TGW 0.401 ‑0.378 0.020 ‑0.475 ‑0.381 ‑0.370 0.434
GYP 0.504 ‑0.086 0.166 ‑0.304 0.115 0.002 ‑0.778

HD: days to heading; PH: plant height; PL: panicle length; PNP: number 
of panicles per plant; FGNP: number of filled grains per panicle; 
TGW: 1000‑grain weight; GYP: grain yield per plant

Table 3: Eigenvalue, proportion and cumulative variation of 
analyzed components
Principal components Eigen value The proportion 

of variation %
Cumulative 
variation %

PC1 3.3575 48.0 48
PC2 1.2647 18.1 66
PC3 0.8246 11.8 77.8
PC4 0.6519 9.3 87.1
PC5 0.5674 8.1 95.2
PC6 0.2571 3.7 98.9
PC7 0.0768 1.1 100

Figure 5: Biplot distribution of 22 rice genotypes and studied traits 
depending on principal component axes PC1 and PC2 
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Both the principal component and the cluster methods are 
effective tools for providing information on variability in 
agronomic traits. Use multiple trait profiles evaluated under 
the target environment may help boost improvements in 
selection in variable environments. So, when developing new 
rice varieties, it is recommended to consider the findings of 
this study.
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