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Correlation effects in solids from first principles

Ferdi Aryasetiawan
Joint Research Center for Atom Technology-Angstrom Technology Partnership,
1-1-4 Higashi, Tsukuba, Ibaraki 305-0046, Japan

Abstract

First principles calculations of bandstructures of crystals are usually based on one-particle
theories where the electrons are assumed to move in some effective potential. The most
commonly used method is based on density functional theory within the local density ap-
proximation (LDA). There is, however, no clear justification for interpreting the one-particle
eigenvalues as the bandstructure. Indeed, the LDA failure to reproduce the experimental
bandstructure is not uncommon. The most famous example is the bandgap problem in
semiconductors and insulators where the LDA generally underestimates the gaps.

A rigorous approach for calculating bandstructures or quasiparticle energies is provided
by the Green function method. The main ingredient is the self-energy operator which acts like
an effective potential but unlike in the LDA, it is nonlocal and energy dependent. The self-
energy contains the effects of exchange and correlations. An approximation to the self-energy
which has proven fruitful in a wide range of materials is the so-called GW approximation
(GWA). This approximation has successfully cured the LDA problems and has produced
bandstructures with a rather high accuracy. For example, bandgaps in s-p semiconductors
and insulators can be obtained typically to within 0.1-0.2 eV of the experimental values.

Despite its success, the GWA has some problems. One of the most serious problems is its
inadequacy to describe satellite structures in photoemission spectra. For example, multiple
plasmon satellites observed in alkalis cannot be obtained by the GWA. Recently, a theory
based on the cumulant expansion was proposed and shown to remedy this problem. Apart
from plasmon satellites which are due to long-range correlations, there are also satellite
structures arising from short-range correlations. This type of satellite cannot be described
by the cumulant expansion. A t-matrix approach was proposed to account for this.

Although traditionally the Green function method is used to calculate excitation spectra,
groundstate energies can also be obtained from the Green function. Recent works on the
electron gas have shown promising results and some approaches for calculating total energies
will be discussed. '
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1 Introduction

The electronic structures of molecules and solids are now routinely calculated using the Kohn-
Sham (KS) density functional theory (DFT) [52, 61] within the local density approximation
(LDA). In this theory, one solves a single-particle Hamiltonian with an effective local potential
containing the Hartree potential Vg and an exchange-correlation potential Vz.:

1 ,
—Ev”+wr+wcww=aw (1)

The resulting one-particle eigenvalues ¢; are often interpreted as one-particle excitation energies
or in the case of a crystal, as quasiparticle energies (bandstructures) measured in photoemission
experiments. There is no clear theoretical justification for this, except for the highest occupied
states. For sp systems, it is found that the bandstructure is often in rather good agreement
with experiment. It is remarkable that the LDA, being a simple approximation, can go a long
way in accounting for the electronic structures of many materials. However, there are serious
discrepancies. The most well-known of these is the band-gap problem in semiconductors (Si,
GaAs, Ge, etc.) where the LDA bandgpas are systematically underestimated. This is illustrated
in figure 1. The discrepancies become worse in strongly correlated 3d and 4f systems. In the
so called Mott-Hubbard insulators of transition metal oxides, the LDA band gap is much too
small. In some cases, the LDA even gives qualitatively wrong results. For example, the Mott-
Hubbard insulator CoO and the undoped parent compound of the high T, material LapCuQO4 are
predicted to be metals whereas experimentally they are insulators. Apart from these problems,
LDA sometimes overestimates the valence bandwidth, for example in Na and Ni.

A proper way of calculating single-particle excitation energies or quasiparticle energies [64,
65] is provided by the Green function theory [38, 39]. It can be shown that the quasiparticle
energies E; can be obtained from the quasiparticle equation:

‘[——%VQ(I‘) + VH(r)]\Ili(r) + /d3r' S(r, ' B;)¥;(r') = E;¥(r) (2)

The non-local and energy dependent potential 3, or the self-energy, contains the effects of
exchange and correlations. It is in general complex with the imaginary part describing the
damping of the quasiparticle. It is then clear that the different single-particle theories amount
to approximating the self-energy operator ¥. Thus we can think of the V. in DFT as a local
and energy independent approximation to the self-energy that gives the correct ground state
density. Approximating ¥ by the exchange operator

occ

B(r,r') = —vo(r — ') 347 (1)gi(r') (3)

results in the Hartree-Fock approximation. ,

Improving the LDA means finding corrections to the self-energy beyond VEPA, There are a
number of attempts, amomg these are Generalized Gradient Approximations (GGA) [67, 16, 17,
18, 101, 95, 88], Self-Interaction Correction (SIC) [26, 71, 108, 87, 100, 102, 7], LDA+U [4, 5,
68, 93, 94, 6], Optimized Effective Potential (OEP) Method (Exact Exchange + Correlations)
[103, 62, 63, 22, 23], and more recently Dynamical Mean-Field theory (DMFT) (for a review
and references, see [40]). This note describes the GW approximation (GWA) [46] which has
been found to be successful in accounting for quasiparticle energies for a wide range of systems
from atoms to solids. The GWA may be thought of as a generalization of the Hartree-Fock
approximation (HFA) but with a dynamically screeneed interaction. Recent development in
going beyond the GWA is also presented. These include the cumulant expansion method and
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the t-matrix approach. In addition, applications of the Green function theory to total energy
calculations and the issue of self-consistency will be discussed. -

This note also describes practical implementations of the GWA. Conventional methods for
calculating the self-energy use plane waves as basis functions which are suitable for sp systems.
However, applications to 3d and 4f systems using plane-wave basis are unsuitable due to a large
number of plane waves needed to describe the localized 3d or 4f states. A method for treating
systems with localized states is described. The method is based on the linear muffin-tin orbital
(LMTO) approach [3] and basis functions needed to describe the screened Coulomb interaction
and the self-energy are products of the LMTO’s.

2 Theory

2.1 Photoemission experiments measure quasiparticle energies

In a photoemission experiment, photons are used to excite electrons out of a crystal leaving
holes behind and giving information about the occupied states. In an inverse photoemission
experiment (BIS), electrons are sent into the crystal to probe unoccupied states. Photoemission
processes are usually interpreted in terms of the three-step model [34, 81, 89, 20] consisting of

e optical excitation of an electron;

e its transport through the solid with the possibility of inelastic scattering with other elec-
trons;

e the escape through the surface into the vacuum.

To illustrate the basic principle, here we consider a simple case of normal emission where photo-
electrons are emitted normal to the sample surface. The more general case is considerably more
complicated and for a more detailed discussion, we refer to Ref. [92)].

Using conservation of energy

Eo(N) +w = Ef(N - L,k) + k*/2 (4)

where Ey(N) is the groundstate energy of the solid, w is the photon energy, E¢(N — 1,k) is an
excited state of the (N-1) electrons, and k2/2 is the kinetic energy of the outgoing photoelectron.
For a given crystal wave vector k , the photoelectron spectrum usually shows peaks at well
defined energies w — k?/2 = Ef(N —1,k) — Eg(N) which may be interpreted as the quasiparticle
excitations and they can be shown to correspond to peaks in the imaginary part of the Green
function. When the positions of the peaks are plotted as a function of k , we obtain what is
called the bandstructure.

;From the Fermi Golden Rule, the probability per unit time of emitting an electron of
momentum k is

I(k,w)=2mY [(N—1,fKklA p|N)*6(w—k*/2—¢j) (5)
/

where A is the electromagnetic vector field, ey = Ef(N — 1) — Ey(N). Since the photoelectron
usually has a high energy we can approximate ("sudden approximation”)

IN-Lfk)mclIN=1,f), alN)~0 (6)
In second quantized form A -p =3, Almc;fcm. Using ckclT + c;’ck = §)y we then have

Ik,w) =21 Y (N =L fIY Agmem|N)P6(w — k2/2 — €5) (7)
f m
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which can be rewritten

I(k,w) =2m Z AgmAmms (w — kz/Q)Akm’ (8)
where
Amm' (@) = S AN = 1, flem|N)(N|ch/ [N = 1, f)(w ~ €) (9)
f

The quantity A will be shown later to be proportional to the imaginary part of the Green
function, assuming the matrix elements Ay, are constant.
2.2 The Green function and the self-energy

To describe the photoelectron spectra measured in photemission and inverse photoemission
experiments we need a quantity that the propagation of a hole or an added electron. A suitable
quantity is the one-particle Green function Refs. [36, 78, 59] which is defined as:

iG(z,z) = (N|Tl(z) $'(z')]IN)

{ (N|9(z) Pt (z')|N) for t>¢ (electron) (10)

(N|9t(z') P(z)|N) for t<t (hole)

We have used a notation x = (r,t). T is the time ordering operator, and |N) is the groundstate
of N electrons. Thus, for t > t, the Green function is the probability amplitude that an electron
added at z’ will propagate to z, and for #' > ¢, the probability amplitude that a hole created at
z will propagate to z'. A possible spin flip can be incorporated in the definition of G.

iFrom the Green function we can obtain:

e The expectation value of any single-particle opefator in the ground state.
e The ground state energy
e The excitation spectrum

The field operators are defined in the Heisenberg representation and they satisfy the equation

of motion 5 |
i) = [(z), H] | -y

where the Hamiltonian is given by
B = [&r@)h)be)
g [ @rd § et - i) (12)

ho is the kinetic energy operator plus any single-particle operator such as an external field.
Evaluating the above commutator, the equation of motion for the Green function is then

[i% - ho(x)} Gz, ')

+ i/d3r1 o(r — 1) (N|T[ (r1, )9 (1, )d(x, )t (', #)]| V)
= §(z —2') | (13)
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The quantity R ) R )
(NIT[Y (e, )9 (e, )9 (r, )91 (', )] V)

is a special case of the two-particle Green function defined by

G2(1,2,3,4) = ()X (N|T[H(1)9(3)d! (4)91(2)| V) (14)

describing the propagation of two particles from 2,4 to 1,3 where we use a short-hand notation
1 = z;. The two-particle Green function, in turn, satisfies an equation of motion involving a
three-particle Green function, forming a hierarchy of equations. To break the hierarchy, the
two-particle Green function is expressed in terms of the one-particle Green functions. Formally,
we introduce the mass operator M (z,z') such that

/dle(x,:cl)G(:cl,x') -
—i / d*ry v(r — ry) (N|T[! (r1, ) (r1, ) (x, )47 (r', )] | V) (15)
so that
[i% - ho(x)} G(z,z') — /da:1M(:c,:1:1)G(x1,:c') =é(z — 2') (16)

As will be shown later, the mass operator contains the Hartree potential and the self-energy is
defined to be the mass operator without the Hartree potential, thus containing the effects of
exchange and correlation only:

E=M-Vy (17)

Fourier transforming Eq. (16) and using the definition of the self-energy we get

w = hox) = Va(] G(r,x',w) = [ driS(e,ry,w)Glrn,rw) =6 —x)  (18)
We define a noninteracting Green function Gy as a solution to Eq. (18) with ¥ = 0. Noting
that w — hg — Vg = Gy ', the exact Green function G satisfies the Dyson equation

G = Go+ GG
1 .
= —_— 19
Gyl -2 (19)

3 Spectral representation of the Green function

The spectral representation of the Green fucntion is obtained from the definition in Eq. ( 10)
by noting that ) o X ,
P(r,t) = exp(iHt) ¥(r,0) exp(—iHt) (20)

Inserting a complete set of N & 1-particle eigenstates of H and performing the Fourier transform
give

' hi(r)hi(x") pj(r)p;(r')
Glr,r,w) = Z ot B(N-1)-Eg(N) =i | 2; w— E;(N +1) " Eo(N) + 16 (21)
where
hi(r) = (N - 1,i¢(r, 0)|N) (22)
[)j(r) = <N|¢(I‘,0)|N + Lj) (23)
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|N +1,3) is the ith eigenstate of the N +1 electrons with eigen energy E;(N +1) and Eo(N +1)
is the groundstate energy of the N + 1 electrons.
We can write the Green function in a more compact form

e = [ s JER [T JER )
The spectral function A (density of states) is proportional to the imaginary part of G
A(r,r',w) = —%Im G(r,r',w)sgn(w — p) | (25)
and it is given by
A(r,r',w) = Zf’ r)fF(r')0lw — p + e(N — 1,4)]

+ Zgi r)g; (t')d[w — p — (N + 1,4)] (26)

ei(N £ 1) is the excitation energy of the V £ 1 electrons:
ei(N+1)=E;(N+£1) - EyN 1) (27)
which is positive and the quantity g is the chemical potential
p=E(N+1)—-E(N)=E(N)- E(N-1)+ O(1/N) (28)

The poles of the Green function are therefore the exact excitation energies of the N 1 electrons.
As an example, for a noninteracting case the many-body states become single-Slater deter-
minants. The quantities h; and p; are replaced by the one-particle wavefunctions satisfying

Hy; = €i9; (29)

and the excitation energies are replaced by ;. The noninteracting Green function is then given
by

occ unocc Ar * rI

(rr,LU') Zwl )¢1,( )+Z¢]( )1/)_7( )

30
w—g; —16 w—¢€j+1i6 (30)

The energy is measured with respect to the chemical potential 4.

3.1 Quasiparticles

For atoms and molecules, the excitation energies are discrete and the poles of the Green function
are consequently discrete. In crystals, the excitation energies become continuous and the poles
of the Green function form a branch cut. It is then not meaningfull to speak about individual
poles. It is here the concept of quasiparticle comes in and it may be understood as follows.
iFrom Eq. ( 19), the spectral function A is schematically given by

A(w)

7 3 m G

_ 1 [Im 3;(w)]
oo Xl: |w = &i — Re E;(w)|? + |Im &;(w)]? (31)

where G; is the matrix element of G in an eigenstate 1; of the noninteracting system Hy. In
a crystal, the state label i corresponds to the wavevector k and band index n. A is usually
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peaked at each energy E; = ¢; — Re ¥;(E;) provided ImX(E;) is small. This peak is called a
quasiparticle peak with a life-time given by |Im X;(E;)|. The life-time is a consequence of the
fact that quasiparticle excitations are not eigenstates of the interacting Hamiltonian.

The weight of the quasiparticle (strength of the Lorentzian) can be obtained by Taylor
expanding Re¥ around the quasiparticle energy:

OReX(E;
ReX(w) = ReX(E;) + (w — Ei)—%;(—-l + (32)
-We obtain for w close to E;
lIm %;(w)|
ImG;(w) = Z;
) = 2 T B i S o) (3
where .
ziz[l_f’_R‘iEi_(Ez‘_)] <1 (34)
ow '
i From the definition of G we have
/de(r,r';w) =§(r —r') (35)
or
/ dwAy(w) = 1 (36)

Since Z; is usually less than one, this means the rest of the weight must be distributed at
other energies. At some other energies wy, the denominator may be small and A(w,) could also
show peaks or satellite (incoherent) structure which can be due to plasmon excitations or other
collective phenomena. This is in contrast to the nonineracting case where the quasiparticle peak
is just a delta function with an infinite life-time and without any incoherent features.

(From the classical theory of the Green functions a solution to equation (18) can be written

as
) tp!
G(r,r,w) = ; ‘I"(:’f)g;(g)’ ) (37)
where ¥, are solutions to
Hy (r) ¥, (r,w) + /d3r S(r, v, w) ¥ (r, w) = Ej(w)¥;(r,w) (38)
We define a quasiparticle wave function ¥; with energy E; as a solution to
Ho(r) Ui(r) + / de'S(r, v, B)U(x') = E;Ui(x) (39)

The eigenvalues E; are in general complex and the quasiparticle wavefunctions are not in general
orthogonal because T is not Hermitian but both the real and imaginary part of ¥ are symmetric.

3.2 Derivation of the self-energy

There are several ways of evaluating the self-energy, either by using Wick’s theorem (see, e.g.
Ref. [36]) or by functional derivative. We follow the latter because it is physically appealing
and give a summary of the steps. For more details we refer to Refs. [47, 59]. We introduce a
time varying field ¢(z) which functions as a mathematical device and will be set to zero in the
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end. It is similar to the principle of virtual work in classical mechanics. For a time-varying field
it is convenient to work in the interaction (Dirac) representation:

ko (r,6)) = Ut to) ln(r, o))  (40)
The time development operator Uis given by
U(t,tg) =T exp [ / dré(r) ] (41)
) = [ & o(e,6) $h(x, On(r, 1) (42)
The relationship between operators in the Heisenberg and interaction representation is
$u(z) = U1(t,0)$p(2)U(t,0) (43)
The field operator 1p(z) satisfies
.0 - - PR
iz (2) = [§(z), H($ = 0)] (44)

so it is the same as the unperturbed (¢ = 0) Heisenberg operator. The Green function can now
be written as

NI T[U (00, —00)dp(2)P}h (') IN)
(NO| (00, ~00)]|N0)

and |N?) is the unperturbed groundstate (the interacting groundstate before the application of
#). By taking functional derivative of G with respect to ¢ it can be shown that

6G(1,2)

G(z,z') = —

(45)

= G(1,2)G(3,3%) - G2(1,2,3,3* 46
5 = CL2GE,3) - Gl ) )
Using this result in Eq. (15) we get
[ 43 M(1,8)6(3,2) = Ve ()G(1,2) + [ a3 v(1,3)6§;(1é;2) (47)
where
v(1,3) = v(|ry - r3))d(t1 — t3) (48)
and Vg is the Hartree potential
Vir(e) = [ da's(z,2)p(a) (19)
Using the definition of the self-energy Z‘ = M — Vg and using the identity
) L 0G 6G™1
5¢(G G)=0—- 7 GWG (50)
we have
. §G71(3,2)
$(1,2) = —z/d3d4v 1,860,328 22 51
%(1,2) (LG8 G1)
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This expression is exact. The quantity §G~!/8¢ is related to the dielectric or response function.
Multiplying both sides of Eq. (18) by G™! and keeping in mind that hg contains the probing
field ¢ we find

6G~1(3,2)

6¢(4)

SVe(3)] 65(3,2)
56(4) | " 3p(4)

e~ 1(3,4)

= 6(3-2) |63 -4)+ (52)

We can see very clearly the stucture of the self-energy: Including the first term of 6G~!/d¢
results in the well-known Hartree-Fock approximation. Including further the second term, i.e.,
the change in the Hartree potential, in fact leads us to the GWA because, as indicated, 14+6Vy /é¢
is the inverse dielectric function so that

W(1,2) = /d3v(1,3)e“1(3, 2) (53)
is the screened Coulomb potential. We therefore have
Zew(1,2) =1G(1,2)W(L,2) (54)

The last term in 6G~1/§¢ is the response of the self-energy to the probing field and this consti-
tutes the vertex corrections. Thus, apart from the Green function, response functions are very
important quantities in the calculations of the-self-energy. Note that we have not invoked any
diagrams or many-body perturbation theory in deriving the GWA or the self-energy in general.

3.3 The response function

We have seen that the Schwinger functional derivative technique is a very convenient tool in
Green's function theory. Here we demonstrate again its usefulness by deriving the equation
satisfied by the charge response function. It is convenient to use a convention where repeated
index or variable means a summation or an integral. We first define the polarisation function
which may be thought of as a response function but with respect to the total potential V =
¢+ Vi

P(1,2) = %’;%

G111t

T V(2

o §G~1(3,4)

— ""LG(I, 3)——3“7—(—27‘—6;(4, 1+)

— iG(1,3) {5(3 _a)5(3-2)+ %%%)-} G4, 1)

= 1G(1,3)A(3,4,2)G(4,1T) (55)
where A is known as the vertex function:

A(1,2,3) = 6(1 — 2)6(1 —3)+% (56)

We have used the identity in Eq. (50) and Eq. (52) for 6G~!/é¢. From

0V
€ = _5¢
ép
1+’U%
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dp OV
= 1+vPe! (57)
we find
l=[1-vP]"! or e=1-oP (58)

We now calculate the response function:

R,2) = W

69(2)
5p(1) 6V (3)
V(3) 6¢(2)
= P(1,3)e71(3,2) (59)
Thus schematically
R=P[1-vP]™! or R=[1-Pu'P (60)

This equation for R is exact. If we use a noninteracting P° we arrive at the well-known time-
dependent Hartree or the random phase approximation (RPA) equation. The RPA has a simple
physical interpretation: The change in density due to a perturbing external field is given by
6p = P%(8Vexs + 6Vy), i.e., the system response to the total field as if it were not interacting.
When 1 — Pv = 0 we expect a new mode of excitation which can be understood as follows:
A density fluctuation §p giving rise to a potential v = vdp such that Pvép = Pév = dp, i.e.,
the potential generated by the density fluctuation induces the same density fluctuation. This
new mode of excitation is usually referred to as a plasmon. Thus a plasmon is a self-sustaining
density fluctuation. ' .

By using the spectral representation for G in Eq. (24, the polarization function can also be
expressed in terms of its spectral representation: '

/ /
rrw / d,S(rr,w)+ dw' S(K',I',(JJ)

w—w —16 w=—w +10 (61)

where S is proportional to the imaginary part of P and defined to be anti-symmetric in w:

S(r,r,w) = ——%_—Im P(r,r',w)sgn(w)
> hi(r)hi (2)p;(r)p; (r')6[w — e(N +1,5) — e(N - 1,1)]

i)j

(62)

For a noninteracting system, h; — ¥, p; = ¢§"° and e(N —1,4) — €0, e(N +1, j) — ;7.
Similarly, the response function R can be written in the form of Eq. (61).

In terms of the many-body states, |[M), the exact time-ordered response function can be
expressed as :

)IM)(M|p(2)[0) _ (015(2)|M)(M|5(1)]0)

{
1,2; =E -
R(1,2;w) M[ w—Epn+ Eg+ 10 w+ Ey —Ey — 10

(63)

Thus the poles of the response function yield the exact excitation energies.
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4 The GW approximation

The GWA is usually regarded as the first term in the expansion of the self-energy in the screened
interaction W. This point ov view is based on many-body perturbation theory. This is, however,
not very useful from physical point of view. If we do include higher order diagrams, we do not
necessarily get better results (in the sense of closer agreement with experiment). Straightforward
higher order diagrams can give a self-energy with wrong analytic properties which in turns results
in an unphysically negative spectral function (density of states) for some energies.

Egs. (51) and (52 on the other hand are exact and the GWA has been obtained by neglecting
the vertex 02/d¢ in 6G~!/d¢. It has not been obtained by summing diagrams as is normally
done in many-body perturbation theory. The GW self-energy has the same form as the exchange
operator in the HFA with the bare Coulomb potential substituted by a screened Coulomb in-
teraction. It is more physical and useful to regard the GWA as a Hartree-Fock approximation
with a frequency-dependent screening which cures the most serious deficiency of the HFA.

The GWA has been applied with success to many systems ranging from alkali metals [99,
77, 82, 83], semiconductors [55, 41], transition metals [8, 11], metal surfaces [30, 31] to clusters
[85]. The list is by no means exhaustive.

4.1 Explicit expression for Loy

Fourier transforming Eq. (54) we obtain

Z(r, v, w) 537? / dw' G(r,r',w + W YW(r,r',w')
= % /dw' G(r,r',w+ ' )(r—r)
+§2;r- / dw' G(r,r',w + W )We(r,r',w') (64)

The first term gives the bare exchange

Ex(rvr = _Zfl r)fz 'U(!'—l') (65)

and the second term gives the correlation part of the self-energy which has the following spectral
representation:

(o] ! ! -
¢(r,r',w) / duw' rrw)+/ dw'M (66)
u

w-—w —1 w—w +1

The spectral representation of the correlation part of the screened Coulomb interaction W, =

i 0 D(I I’ wl) D(l ]'I (4”)
[e ]
‘176 ! / d / b ) / ! ) 3 67
( ! ? ) w ( ’l 1'6 y ( ’I ' 1'6 ( )

Using the spectral representations of G and W, in Eq. ( 64) gives (Appendix B)
[(r,r;w) = —sgn(w—p) /Ooo dw'8(p — w — WNA(r, ', w + ') D(r, v, w)
+sgn(w — ) /(;oo dw'0(—p+ w — W )A(r, v ,w - W)D(r,r',w)
= —sgn(w—p) Y fi(r)f7 () D(r,r', 05(w)) Olai(w)]
5

+sgn(w — 1) Y gi(r)g (r') D(r,x', Bi(w)) 6[B;(w)] (68)

i
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where
a(w) = —w+p-—eN-1,1) (69)
Bilw) = w-p—eN+1,9) (70)

The real part of the self-energy can be obtained from the Hilbert transform in Eq. ( 66).

4.2 Yow with a noninteracting Gy

In practice, most GW calculations have been performed using a noninteracting Green’s function.
The issue of self-consistency will be discussed at a later section. For a non-interacting system,
we have

e(N-1,i) = E(N-1,i)—E(N -1)
—ei+ E(N) - E(N - 1)

It

= —&tp (71)

e(N+1,j) = g —p ’ (72)
fi = vi, with g, <p , (73)

9 = .1/1;, with €; > p (74)

where ¢; is the single-particle eigenvalue of the the single-particle state 1; of the non-interacting
system. The spectral function of Gy is

A0(e, ) = S ()i - <) (75)

since A is real. For a non-interacting system, the spectral function consists of delta function
peaks at the single-particle eigenvalues whereas in the interacting system, apart from the quasi-
particle peak, the spectral function may have a satellite structure.

The spectral function of P for the non-interacting system is

S, xw) = 30 3 i)l ()5 (0)95() Ol — (g5 - €3)] (76)
z<u\_7>,¢
and the spectral function for Xy is (Appendix B)
Zi<y ¢i(r)1,bf(r')D(r, r' e —w)be —w) for w<p
[(r,r',w) = B (77)
Zi>u 1/);(r)'(pi(r')D(r, r’a w - 6;‘)9(&) - Ei) for w>pu

The bare exchange part becomes

r,r) = =) i) ()o(r - ) (78)

i<p

4.3 Coulomb hole and screened exchange (COHSEX)

A physically appealing way of expressing the self-energy is by dividing it into a screened-exchange
term Yggx and a Coulomb-hole term Ycou (COHSEX) [46, 47]. It is straightforward to verify
that the real part of the self-energy can be written as

occ

ReSspx (r, r',w) = sz ) (r')ReW (r,r',w — ;) (79)
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D(rr w')

—g—w (80)

ReZco (r,r',w) Zu;z Y (¢ P/ du
The physical interpretation of Xcon becomes clear in the static approximation due to Hedin
(1965a). If we are interested in a state with energy E close to the Fermi level, the matrix element
(¥Y|ReXcou(F)|¢¥) picks up most of its weight from states with energies ¢; close to E in energy.
We may then assume that E — ¢; is small compared to the main excitation energy of D, which
is at the plasmon energy. If we set E — ¢; = 0, we get

ReSoon (r,r) = %5 (k= ') W (r,+',0) (81)

This is simply the interaction energy of the quasiparticle with the induced potential due to the
screening of the electrons around the quasiparticle. The factor of 1/2 arises from the adiabatic
growth of the interaction. In this static COHSEX approximation, ¥con becomes local.

4.4 Geheralization of the HFA

The GWA may be regarded as a generalization of the HFA. ;From Eq. ( 64) and using the
spectral representation of Gy, the correlated part of the self-energy can be written as

Selr,r'sw) = 3 wi(n) ()W (r, 15w - 6)

i<p
+ Zz/)z )W (r,r';w - €) (82)
i>u
where
+ ’ _ L < We(r,r';u)
Wenriw) = 27r/_ dww-i—w’:tié (83)
In short we can write
S(r,r’;w) Z’W )i () Wo(r, r';w — €) (84)

where

WO(r7 I',;(A) - Ei) = {’l)([‘ - rl) - Wc_ (I‘, rl;w - 6i)} 0(/“ - Gi)
~Wr(r,r';w—€) 0(e; — p) (85)

Thus, the self-energy in the GWA has the same form as in the HFA except that it depends on
energy and contains a term which depends on unoccupied states as a consequence of correlation
effects. Thus the GWA can be interpreted as a generalization of the Hartree-Fock approximation
(HFA) with a potential Wy which contains dynamical screening of the Coulomb potential. Note,
however, that Wy is not the same as the dynamically screened potential W.

As previously mentioned, the HFA does not take into account the effects of screening which,
for insulators, results in too large band gaps. It can be shown that the GWA gives the correct
band gap, at least for localized states which are well isolated from the other states. Consider
the correlated part of the self-energy for an occupied core-like state 4.

(Ya|Zc(ea)|va) = (Yavpal W, (0)|patba)

+ ) (Yathil W (eq — €3)Witba)
i#d

+ ) (gl W (eq — €)|vivba) (86)

i
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Strictly speaking, the self-energy should be evaluated at the new energy E; = ¢4+ self-energy
correction and it is understood to be the case here. If 1,4 is localized and well separated in
energy from other states, then the first term is evidently much larger than the rest. Thus we
may make the following approximation:

(V| Ze(ea)|ta)

q

(Yaha| W, (0)|avba)
= S W OlYava) (57)

The last step is shown in Appendix A. This is a correction due to the work done on the electron
by the polarization field from zero to W,(0) (46, 47]. A similar result,

b lhabal WelO) )

is obtained for an unoccupied core-like state of the same character so that the energy separation
of the states is

A = T — T + (Papa| We(0)|9hapa)
(Yaba|v|atba) + (Yaba|We(0)|¥atba)
(Yaa|W (0)[vpatpa) (88)

which agrees with the intuitive result that the "gap” is given by the screened Coulomb inter-
action: A = U =~ W(0). Since W,(0) is negative, we see that the self-energy correction to the
HFA raises an occupied state and lowers an unoccupied state. This is still true also for states
which are not so localized.

5 Vertex corrections: Beyond GW

The GWA has proven to be very successful for describing quasiparticle energies for sp and even
3d systems. Its description for satellite structures, however, is less satisfactory. A number of
cases which reveal the shortcomings of the GWA in describing the satellite structure are

e The valence as well as the core photoemission spectra, of the alkalis show a series of plasmon
satellites which are located at multiple of plasmon energies below the main quasiparticle
peak. The GWA gives only one plasmon satellite and its position is typically 1.5 plasmon
energy below the quasiparticle peak [48].

o The valence photoemission spectrum of Ni shows the presence of a satellite at 6 eV which is
not obtained within the GWA. Similarly, the GWA appears to be insufficient for describing
the satellite structure in transition metal oxides and the situation becomes worse in the
f-systems.

The presence of only one plasmon satellite in the GWA follows from the fact that the self-
energy is of first order in W which contains one plasmon excitation through the RPA dielectric
function. From the diagram, it is clear that a hole or an electron interacts with its surrounding
by exchanging a plasmon. The too large plasmon energy can be understood qualitatively as an
average of the first and the second plasmon energies since they carry most of the satellite weight.
Because the peak in Im 3¢ is at one plasmon energy below the quasiparticle peak, the plasmon
satellite in the spectral function ends up at =~1.5 plasmon energy To get the correct satellite
energy the peak in Im ¢ should therefore lie somewhat closer to the quasiparticle energy.

The problem with the satellite structure in Ni or transition metal oxides is of a different na-
ture since the satellite energy is much lower than the plasmon energy. In the atomic picture, the
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ground state of Ni is a mixture of the configurations 3d°4s and 3d®4s%. The final configurations
after photoemission are 3d®4s and 3d"s2. The former corresponds to the main line (quasiparticle)
and the latter to the satellite. The two configurations are separated in energy by 6 eV which is
essentially the Coulomb energy of two d holes. This value is reduced by screening in the solid.
The presence of satellite at a certain energy implies that the imaginary part of the self-energy
should exhibit a peak at an energy slightly lower then the satellite energy. Such a two-hole
excitation state is partly described by the GWA to second order in the bare interaction but the
GWA mainly describes the coupling of the electrons to the plasmon excitation. A secondary
plasmon-like excitation is possible within the RPA when the band structure gives rise to two
well-defined peaks in Im €1

It is a major challenge to develop a theory beyond the GWA for real systems which can
overcome the problems described above. Here we describe those approaches which are based
on systematic diagrammatic expansions. One approach which has been applied with success
to the alkalis is the cumulant expansion [66, 19, 49]. As described in the next section, this
approach is suitable for dealing with systems which can be mapped into systems of electrons
coupled to bosons (e.g. plasmons) where long-range correlations dominate. However, short-
range correlations arising from multiple-hole interactions on the same site should be better
treated within the T-matrix approach, described in a later section. In this contribution, we are
concerned with vertex corrections related to the satellite description rather than quasiparticle
description.

The effects of vertex corrections on the quasiparticles have been studied by a number of
authors. These include a direct calculation of the second-order diagram (27, 28, 21] and vertex
correction based on the LDA V*¢ with application to Si [32]. Vertex corrections in the electron
gas (77, 37] are discussed in a review article by Mahan [79] where it is emphasized that it is
important to include vertex corrections in both the response function and the self-energy in a
consistent way [107, 14, 15, 90].

5.1 The cumulant expansion

One of the first applications of the cumulant expansion method was in the problems of X-ray
spectra of core-electrons in metals [84, 66]. The problem is modelled by a Hamiltonian consisting
of a core electron interacting with electron-hole excitations and a set of plasmons:

H = ecte+ Z sk,,clacka + Z wqbzlbq
ko q

+ Z ka'CLacka’CCT + Z cclgq (bq + bL) (89)
kk'c a

where c is the annihilation operator for the core electron, cLa is the creation operator for a
conduction electron of wave vector k, spin o, and energy ek, and b:‘, is the creation operator
for a plasmon of wave vector q and energy wq. The last two terms are the coupling of the core
electron to the conduction electrons (electron-hole excitations) and to the plasmons respectively.
The model Hamiltonian without the last term [75, 76] was solved exactly by Nozieres and de
Dominicis [84] and the full Hamiltonian was solved exactly by Langreth [66] who also showed
that the cumulant expansion also gives the exact solution. We consider the case with coupling
only to the plasmon field [72, 73] but not to the conduction electrons. The exact solution is
given by [66]

Ai(w):zen'a §(w— & — Ae F nwp) (90)
n=0 :

where + refers to absorption spectrum and — to emission spectrum. a =}, 9(21 / “’Z and Ae = aw,
is the shift in core energy due to the interaction with the plasmon field. The spectra consist
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therefore of the main quasiparticle peak at w = € + Ae and a series of plasmon excitations at
multiples of the plasmon energy below the quasiparticle peak. It has been assumed that the
plasmon excitations have no dispersion although this assumption is not necessary.

The physics of the cumulant expansion when applied to valence electrons was discussed in
detail by Hedin [49, 1]. More recently, the cumulant expansion was calculated to higher order
for a model Hamiltonian by Gunnarsson, Meden, and Schénhammer [43].

5.1.1 Theory
In the cumulant expansion approach, the Green function for the hole (t < 0) is written as
G(k,t) = i6(=t) (N|eL(0)&(1)IN)

= if (—t)e ientiC (k) (91)

1l

where k denotes all possible quantum labels. For w < u only the first term in equation (26)
contributes and the hole spectral function is

Atw<p) = ~ImG (k)
™
1 [
= o [ dte (NI ©)n0)IN)
1 . 0 iwt  —iegt+Ch (k,t)
= —Imz/ dte'e™ "k ' (92)
T —00
C" (k,t) is called the cumulant. Expanding the exponential in powers of the cumulant we get
1
G (k,t) = Go (k, ) {1 + O () + S[CH (kO + .. (93)

where Gy (k,t) = i0(—t) exp (—iext) . In terms of the self-energy, the Green function for the hole
can be expanded as
G =Go+ GopXGo + GoXGoXGy + . .. (94)

We may group the cumulant into terms labelled by the order of the interaction n:

(e ]
ct=% ck (95)
n=1 .

The above equations for G may now be equated and the cumulant can be obtained by equating
terms of the same order in the interaction. Thus to lowest order in the screened interaction W,
the cumulant is obtained by equating

GoCt = Gy2Gy = AGW (96)

where ¥ = Ygw = iGoW. If Gy corresponds to, e.g. the LDA G, then ¥ = Zgw — V. The
explicit form of AG(Y) is

AGM (1,2) = / d3d4Gy (1,3) T (3,4) Go (4,2) 97)

Using

occ

Go(1,2) = i) ¢n(r1) ¢} (ra)e 172ty — 1)

unocc

—i 3 b (r1) 65 (ra) e en(t2)g (1) — ). (98)
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and taking matrix element with respect to an occupied state ¢, yields
. 00 t )
GO (k,ty — tp) = —e““k(‘l“‘?)/ dt3/ T dty et (k, by — t) (99)
t1 —00
Without loss of generality we can set 2 =0 and t; =t < 0:
00 (e .
AGW (k,) = —e~kt / dty [ dr €78 (k, 7) (100)
t t3
The first-order cumulant is therefore
C* (k,t) = z/ dt' [ dr &S (k,7)
t t
0 00 o
~ / dt' [ dr &S (k, 1) + C" (k, 0) (101)
t t

C" (k,0) is a constant which contributes to an asymmetric line shape of the quasiparticle.
The cumulant can be expressed as an integral over frequency by defining a Fourier transform

dw
2

_ _WT{/ do! L E W) I (k,u') +/°°dw' T (k,w') }
w—w —10 " w—w' + 10

= i0(-71) / dw'e“"" T (k,w')

Z(k,7) e Y (k,w)

—if(1)e” T/u dw'e ™' TT (k,w') (102)

The second line uses the spectral representation of ¥ in equation (66) and the last line is obtained
from

dv e ™7 i dw" e '™ . /
2Tw—w —i6 e YTV
= 0 (—1)e e (103)
Similarly for the other integral. The self-energy becomes
[z . 0 .
E(k,7)=10(-7) e‘”/ dwe™T (k,w) — 0 (1) e“’h/ dwe ™l (k,w) (104)
—o0 u

The cumulant can now be expressed as, keeping in mind that ¢ < 0,

0 o] .
Ch(k,t) = i / at [ dr TS (k,7)
t v
0 0 . “ .
= i/ dt/ dr e*t+7 {iO(—T)e‘sr/ dwe™7T (k,w)
t t -0
; —67 e —twT
—10(7)e / dwe F(k,w)}
u
0 0 m
- -/ dt’/ dT/ duw == (& 1)
t t o

0 o0 (o]
+/ dt'/ dr dw e¥Ex =0T (k1)
t 0 w
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l_eek—w i)t
= dt’/
./ dw Ep — W w14 (k’w)
+z/dt/ L)
Ek—w+z<5
o0
— /dt,{/ d /de(’“_’f_)__}
ek—w—zé “ Ex—w+1i0

i(ep—w—18)t __ 1
/ dw T (kW)

(ek — w — id)°
sh
= —iS(k,ex)t + M
_ ow
W=E
i(er—w—18)t
+/ dw I(k,w) (105)
(ek — w — 6)2
The last line is obtained from
[ ar B D" g T
(e — w' — i6)? Ow Jooo  (w—w —16) =,
M (kw)
= —— (106)
w=¢€p
where )
!
P (k,w) / du' — w-us (107)
We can also evaluate C" (k,0) :
00 00 R © X
Cch(k,0) = i / dt' [ dreirT {i@(—T)e'ST / dwe ™™ T (k,w)
0 t
—if (7 / dwe T (, w)}
o0 oo
= / dt'/ dT/ dw eEx =T (K ()
tl
1(Ek—w+16)
- z/ dt’/ dw—— T (k,w)
€ —w + 10
_ / F(k w)
w ek —w+ zé)
P (
= 108
a e (108)
where o L (ko
P (k,w) = / dw’——(’,—“’—),— (109)
" w—w +1d

The total cumulant can be conveniently divided into a quasiparticle part which is linear in ¢ and
a satellite part:

Ch = Chp + C4 ' (110)

Thus collecting the linear terms in ¢t from equations (105) and (108) we get the cumulant con-
tribution to the quasiparticle:

Chp(k,t) = (iag + k) + (—ile + mi)t (111)
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where a5k
tag + Y = ‘—'(’—W) ,  Aeg =ReX(k,ex), nx =ImE(k, ex) (112)
0w |y=¢,
The contribution to the satellite is
m ei(ek—w-—ié)t
Ch(k,t) = / dw—————T (k,w) (113)
—00 (Ek - w - 15)

A similar derivation can be carried out for the particle Green function
G (k,t > 0) = —if (t) e7iErt+CT (k1) (114)

where k labels an unoccupied state. The result is

(k) = (i + ) + (—ilex — mit (115)
CP(k, 1) = /°° der(k, w) (116)
@ (ex — w + 16)
It is physically appealing to extract the quasiparticle part from the Green function:
Ghp (k,t) = i6(—t)e *+Cork)
= if(—t) et remiBtn)t B o 4 Agy (117)

The spectral function for this quasiparticle can be calculated analytically:

e Y ncos ay — (w — Ey) sin oy

Agp (k,w < p) = 118
S T e o)
Thus we can see that the quasiparticle peak ié essentially determined by the GW value.
(From equation (91) we have for ¢t < 0
(N[} (0)en(t)|N) = eTiext+C kD) ()

By analytical continuation to ¢ > 0 and using equation (92) the spectral function can be rewritten
as

Ak — __1__ o0 d iwt ,—iegt+C (k,t) 120
( ,’UJ) - 27[‘ _ te € ( )

where C"* for positive ¢ is obtained from C**(—t) = C"(t) since A(k,w) must be real.
The total spectra can be written as a sum of Agp and a convolution between the quasiparticle
and the satellite part:

Ak,w) = Agp (kyw)+ L/m dt e@te(—iBk+T+CH (k,0))t [ecg(k,t) _ 1]
’ ’ 27 J—o
= Agp (k,w) + Agp (k,w) * As (k,w) (121)
where

As (k,w) = %/dtei“’t {ecg("’t) - 1}

- %/dtei“’t{Cg (k1) + o [C (k,t)]2+...} (122)
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The second term Agp * Ag is responsible for the satellite structure. The Fourier transform of
C*% can be done analytically

© Jdt .
Ch (k,w < 0) / b ot ch (k1) (123)

oo 2T
_ /0 dt
T ) 2n

i(ex+w—w' —i6)t

=
0 u
= / -d—t/ dw'e—.—Q—I‘ (k,w') + c.c.
—o00 4T J—o0 (Ek —w - 'L(S)

(124)
Integrating over ¢ gives
1w :
Cl(k,w<0) = —Im/ dw' : Fz(k"" ) :
T —0 (e —w' — 1) (e + w — W' —1d)
10 L T (k,w')
= Tra ™ /_m W T = — ) (er tw = —33) e,
3} {I‘(k,z-:k + w) L (k,w") }
- +
oW \W'—w—¢er  etw—w")|y=,
[ (k,ex +w) =T (k,ex) — I (k, k)
= = (125)

As follows from equations 118 and 121, the quasiparticle energy in the cumulant expansion
is essentially determined by Ej, which is the quasiparticle energy in the GWA.
Let us apply the cumulant method to the Hamiltonian

H = ecle + wyb'd + gect (b" + b) v (126)
which is a simplified version of the model Hamiltonian discussed previously. First we must
calculate the self-energy to first order in the plasmon propagator

1 : 1

D(w)=w—wp+i6_w+w,,—i6 27

The effective interaction between the core electron and its surrounding is gD (see, e.g., Inkson
[69] ). The self-energy of the core electron as a result of the coupling to the plasmon is then

2w = 5 [d/G(0+w) D (W)

3 ig2/ " 1 1 1
27 wHw —e—i0 W —wp+i6 W +wp—id

g2

- w4 w, —€—10 (128)
The spectral function for ¥ is given by
T'(w) = g% (w — € + wp) (129)
and the self-energy correction to the core eigenvalue is
Ac = g; - (130)
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g 2
=T (;};) (131)
C" (k,0) = 0 and C% (k,t) becomes

m i(e—w—i8)t 2
/ dw—(a-———f—Q-F (w) = I ) et (132)
0 (e —w —10) Wp

The spectral function is thus given by

The derivative of ¥ at w = ¢ is
_B_E
Ow

1 o
A(w) = ;ImZ/ dt ezwte—zst+C (t)
—0 ‘
00 h n
= lImie_(!’/“’lv)2 /0 dtei(w—e—Ae)tZ [C" (1)]
" e n=0 n!
2 &1 g 2n
= *(Q/WP) el - —e— A .
e r;)n! (w,,) §(w— e — Ae + nwy) (133)

which is precisely the exact solution [66].

5.1.2 Comparison between the cumulant expansion and the GWA

To identify vertex corrections contained in the cumulant expansion, we compare it with the
GWA. Direct comparison in the self-energy diagrams is, however, difficult if not impossible.
This is because the cumulant expansion is an expansion in the Green function, rather than
in the self-energy. It is therefore more appropriate to compare the Green functions in the
two approximations. In figure 10 the Green function diagrams are shown to second order in
the screened interaction, which should be sufficient for our purpose. The cumulant expansion
diagrams are obtained by considering the three possible time-orderings of the integration time
variables t' in C? (k,t) with C (k,t) given by equation (122). As can be seen in the figure,
the cumulant expansion contains second-order diagrams which are not included in the GWA. It
is these additional diagrams that give rise to the second plasmon satellite and they are quite
distinct from the second-order diagram common to both approximations. The interpretation of
the latter diagram is that a hole emits a plasmon which is reabsorbed at a later time and the
hole returns to its original state before plasmon emission. This process is repeated once at a
later time. Thus there is only one plasmon coupled to the hole at one time. In contrast, the
other two diagrams, not contained in the GWA, describe an additional plasmon emission before
the first one is reabsorbed, giving two plasmons coupled to the hole simultaneously. Similar
consideration can be extended to the higher-order diagrams.

The cumulant expansion contains only boson-type diagrams describing emission and reab-
sorbtion of plasmons but it does not contain diagrams corresponding to interaction between
a hole and particle-hole pairs. This type of interaction is described by the ladder diagrams.
For this reason, the cumulant expansion primarily corrects the satellite description whereas the
quasiparticle energies are to a large extent determined by the GWA as mentioned before.

5.1.3 Applications

The cumulant expansion was applied recently to calculate the photoemission spectra in Na and
Al [13]. The experimental spectra consist of a quasiparticle peak with a set of plasmon satellites
separated from the quasiparticle by multiples of the plasmon energy (figure 11a). The spectra
in the GWA shows only one plasmon satellite located at a too high energy, approximately 1.5
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wp below the quasiparticle (11b)) which is similar to the core electron case. The cumulant
expansion method remedies this problem and yields spectra in good agreement with experiment
regarding the position of the satellites as can be seen in Fig. 11b. The relative intensities of the
satellites with respect to that of the quasiparticle are still in discrepancy. This is likely due to
extrinsic effects corresponding to the interaction of the photoemitted electron with the bulk and
the surface on its way out of the solid resulting in energy loss. These are not taken into account
in the sudden approximation. :

When applied to valence electrons with band dispersions the cumulant expansion does not
yield the exact result anymore as in the core electron case. Surprisingly, the numerical re-
sults show that the cumulant expansion works well even in Al with a band width of ~11 eV.
Considering its simplicity, it is a promising approach for describing plasmon satellites.

5.2 T-matrix approximation

In many strongly correlated systems, such as transition metal oxides, the photoemission spectra
often show a satellite structure a few eV below the main peak. The origin of this satellite is
different from that of the plasmon-related satellite which is also found in sp-systems and which
usually has a much higher energy. The additional satellite found in strongly correlated systems
is due to the presence of two or more holes in a narrow band after a photoelectron is emitted,
i.e. it is due to short-range rather than long-range correlations. An illustrative example is
provided by Cu and Ni. In Cu, the 3d-band is fully occupied so that after photoemission there
is only one d-hole in the system corresponding to the 3d” configuration resulting in no hole-hole
correlation. Consequently there is no satellite either and a single-particle theory is sufficient
to describe the electronic structure of Cu. On the other hand, the ground state of Ni already
contains a configuration with one d-hole so that after photoemission, the final state contains a
configuration with two d holes. Since the two holes are localized on the same atomic site, there
will be a strong d — d interaction resulting in the well-known 6 eV satellite which in the atomic
picture corresponds to the energy of the 3d® configuration.

So far there is no good ab initio scheme for dealing with short-range correlations. Most works
have been based on model Hamiltonians which have given important insights into the underlying
physics but which contain adjustable parameters, preventing direct quantitative comparison with
experiment. The GWA takes into account long-range correlations through the RPA screening
which determines to a large extent the quasiparticle energies. It is known that the GWA works
well for quasiparticle energies but from a number of calculations [8, 11, 12] it is clear that the
GWA has shortcomings in describing satellite structures. Even the plasmon-related satellites
are not well described as discussed in the previous section. A natural extension of the GWA
is to include short-range hole-hole correlations. This type of interactions seems to be suitably
described by the T-matrix approximation [60]. Previous calculations based on the Hubbard
model showed qualitatively that the T-matrix theory was capable of yielding a satellite structure
in Ni [69, 70, 86]. Most other works in Ni have also been based on model Hamiltonians [104,
98, 24, 58]. T-matrix calculation on a two-dimensional Hubbard model is also found to improve
the satellite description of the GWA [105]. In this section we develop a T-matrix theory for
performing ab initio calculations on real systems [96, 97]. The method is applied to calculate
the spectral function of Ni for which 6 eV satellite is not obtained in the GWA [8].

An extension of the T-matrix theory including Faddeev’s three-body interaction [33] was
made by Igarashi [56, 57] and by Calandra and Manghi [24, 80]. The theory has been applied
to Ni [58] and NiO [80] within the Hubbard model.
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5.2.1 T-matrix

The T-matrix is defined by the following Bethe-Salpeter equation:

T = U+UKT
1-UK]"'U (134)

where U is a screened Coulomb interaction and K is a two-particle propagator. Diagrammati-
cally, the multiple scattering processes are shown in figure 12. It is evident from the figure that
the T-matrix describes multiple scattering between two holes or electrons.

The full expression for equation (134) is

Tyor(1,213,4) = U(1 — 2)8(1 — 3)8(2 — 4)
+U(L-2) / d1'd2’ Koi(1,2(1',2')Tyer (1, 2']3, 4) (135)

where we have used a short-hand notation 1 = (r;,%1) and o labels the spin. The kernel K or
the two-particle propagator is given by

Kaa’(]-, 2|1,» 2,) = iGa(l” l)Ga' (2’a 2) (136)
where G, is a time-ordered single—pafticle Green function
iGo(1',1) = (NIT[g(1)8} (1)]|N) (137)

We have assumed that U is an instantaneous interaction which means that t; = t3, t3 = t4, and
tyr = tor. Without loss of generality, we may set t; = t = 0 and {3 = t4 = t. Equation (135)
then becomes

Tyo(r1,ra|r3, ry;t) =
U(ry —rz)d(ry —r3)d(ry —rq)d(t)

+ U(ry —rp) /d3r’1d37"2 / dt' Kggr (11, ra|r'1, /95 1)
X Tyor (t'1, 2|3, r45t — 1) (138)
Fourier transformation of the above equation yields

Toor(r1,r2|r3, ra; w) =
U(r; —rp)d(r; — r3)d(ry —ry)

+ U(r; — rz)/d37”'1d37‘§/Kaa'(rl,r2|r'1,r'2;w)

X Tye (r'1,1'2|r3, a5 w) (139)
where d!
Kyo(r1, rolt'1, ¥y w) = i/i—G,(r'l,rl;w — )Gy (r'g,ra; W) (140)
The Fourier transforms are defined by
o0 .
F) = / dt et f(8) (141)
—00
7 *© dw iwt
= — F . 142
) = [ 52 Fw) (142

— 465 —



Wk — b

Using the spectral representation of G,

As (W) ® o Ad(W)
do' / / 4
/ — —u5+ dww-—w’+i5 (143)
with a non-interacting A,
Ay (r, I"; w) = Z "/"ia(_r)"/]z‘a(r’)(s(w — €ig) (144)
i

an explicit form for the kernel K is given by

Ko (1, ralr’1, r'ojw) =

0 o (1)}, (£1) ot (¥'2) 9 (r2)

W = Eig — Ejgr — 10

ij
+“§° 1o (T Yo (r'2)Y] 5 (r2)

- Eza - E]o” + 1/6

(145)

The first term on the right hand side is due to hole-hole scattering and the second to particle-
particle scattering. This expression is similar to the RPA polarization propagator but the states
are either both occupied or unoccupied.

5.2.2 T-matrix self-energy

The self-energy can be obtained from the T-matrix which consists of the direct term

29(4,2) = —i / d1d3G(1,3)T(1,2(3,4) (146)
and the exchange term

£7(3,2) = ¢ / d1d4G(1,4)T(1,2|3,4) (147)

Fourier transformation gives
d - 3. 53
Yo (rg, rojw) = —z/d rd°rs

d !
—‘% Y Gor(r1, 1350 — W) Tprg(r1, ra|rs, ra; ') (148)
a./

Y2 (r3, ro;w) =i / d3rid3ry

dw'
5, Golry,rs; W' = w)Tye(r1, r2|r3, 145 0") (149)
We note that for the exchange term there is no summation over the spin since exchange between
particles of opposite spins is zero.

The spectral representation of T,/ is given by

r Qoo (W) ® - Qoo (W)
00" - . .c 1
)= / du w— w-z¢5+ gﬂdww—w'+u5 (150)
~ where ]
Qoo () = =T Tys () sgn(e ~ 2p) (151)
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The analytic structure of T is determined by K in equation ( 145) which can be seen by con-
sidering equation (134). The first order term in the T-matrix is the Hartree-Fock term which
is independent of frequency and therefore it does not influence the analytic structure. The
T-matrix without the first order term is then given by

T = UKU+UKT
1-UK]"'UKU - (152)

Thus, the analytic structure is determined by K because it can be shown that [1 — UK]™! has
no poles in the first and third quadrants (the poles of K lie in the second and fourth quadrants).
Using the spectral representations of G and T the self-energy can be written explicitly as

Im Eﬁ(rl;,rg;w > p) =
occ
/d37'1d37'3 z Yo' (T1) Yo (T3)
K'n'c’

x  Im Ty (r1,ro|r3, ra;w + winior) O(w + exrnror — 21) (153)

Im £%(rq,ro;w < p) =
unocc
- / Brid®rs 3 Ynior (01 Plomer (r3)
klnlal

x Im Ta’a(rlar2|r37 ry;w + Exinlor) 0(‘"‘*) ~ Exnio’ + 21) (154)

A similar expression for the exchange part can be easily derived by interchanging rs and r4 in
the T-matrix. The real part of ¥ is obtained from the spectral representation

H Ty (w') 00 Ly (w')
EU — / / ! g 1
() Lwdww—w’—i6+ . dww—w’+i6 (155)
where 1
Fo(w) = ——;Im Yo (w) sgn(w — ) (156)

The screened potential U is in general frequency dependent. For a narrow band of width
A, the time scale for a hole to hop from one site to a neighbouring site is determined by 1/A
which is large and in frequency space it means that the largest contribution to the T-matrix
comes from w = 0. Physically, the interaction is essentially instantaneous within the same site
and therefore it is justified to use a static screened interaction. This static approximation will
be used in the present work.

The one- electron spectral functions are obtained from

1 IRe Z;(w))

(157)

with the shorthand notation ¢ = kno. We have assumed in the above expression that the
self-energy is diagonal in the LDA wavefunctions which are used to construct G.

5.2.3 Double counting and the total self-energy

To calculate the total self-energy, we add the T-matrix self-energy to the G W self-energy. How-
ever, this leads to double counting since the second order term in the T-matrix is already
included in the GW self-energy. A straightforward subtraction of the second order term leads
however to wrong analytic properties of the self-energy and consequently gives some negative
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spectral weight. To solve this double-counting problem, we proceed as follows. We divide the

bare Coulomb interaction into the short-range screened potential U and a long-range part vy,

((von Barth 1995): '
v=U+vyg (158)

The correlation part of the GW self-energy is schematically given by
Tew = GuRv (159)
where R is the total RPA response function
R=(1-Pv)lP (160)

and P is the RPA polarization function. Using the above division of the Coulomb potential we
obtain

Yew = GURwvp + GupRU + GupRvg, + GURU (161)

The last term is then subtracted out to avoid double counting. It has the same analytic structure

as the GW self-energy, but since U is smaller than the bare v, this term is always smaller than

the GW self-energy for all frequencies. This guarantees that the resulting self-energy has the

correct analytic properties as in the GWA. Numerically this term turns out to be very small.
Thus, according to the above scheme the total correlated self-energy becomes:

E%‘VVT - ECGVV + 2'(1:1 - GURU (162)
where ¥f is given by
=%t 4+ %" (163)
with £¢ and £7 given by equations ( 148) and ( 149) respectively.

5.2.4 Numerical procedure

Since the T-matrix describes scattering between localized holes or particles, it is suitable to work
with basis functions which are also localized such as the linear muffin-tin orbitals (LMTO). In
the atomic sphere approximation, the LMTO basis functions are of the form (central cell)

Xzt k) = 0k () + Y ¢ (v) h%rr pi(k) (164)
RL

#%., is a solution to the Schrédinger equation in atomic sphere R at an energy in the center of
the L-band region and ¢%,, is the corresponding energy derivative. h%:, p; is a constant matrix
depending on the crystal structure as well as the potential. The Bloch states are expanded in
the LMTO basis.

Yino () = 3 o (£, ) b (kno) (165)
RL

Inserting v¥x,, in equation ( 145), we obtain

occ

Koo (rn,rar',r'w) == >0 >0 5 S )

knk'n' RiL; RyLa R3L3 RaLs
! !
Xg{l Ly (r’l’ k) X(IT{; Lo (r1’ k) X(I’iaL;; (r,23 kI)XUR4*L4 (r27 kl)

le L (kno)bksz (kRU)bR3L3 (k’n’g'.) ’;2414 (klnlal)

W = Ekno — Ek'n'o’ — 10

+ unoccupied term ' (166)
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So far the above expression is exact. The largest contribution to K arises from the onsite terms,
i.e. within the same unit cell. Furthermore, since U is short-range, the largest contribution to
the T-matrix also arises from the onsite terms. For practical purpose, we then neglect the k
dependence of x so that

Koo (r1,ralt'1, 025 w) =

> o' 1)95 (1) Koo (aB]78; w) ¢ (X'2)p§ *(r2) (167)
afvyé
where
o by (kno)bl(kno)b,(k'n'c’)bi(k'n'c")
Koo (afiyd; w) = - 3 ———rld =
knk'n' W — €kno — Ek'n'o’ — ¢
+unoccupied term (168)

We have used a short-hand notation a« = RL
Using this expression for K in equation (139) and taking matrix element with respect to
¢%,1,(r1) ¥&,1,(r2) and go‘,’z'sLa (r3) <p‘,’2'4b4(r4) we obtain a matrix equation for T

Toor (af|vé; w) = U(aB|vd)

+ Y UlaBlny) Koo (vIAp; w) Toor (Ap|y8; w) (169)
n,Ap

which can be easily solved by inversion.

Ulapin) = [ did2ea(1)ps@0(1 = 2010 (2) (170)

We note that although U depends on the spin through the basis, it has no physical spin depen-
dence.

Having obtained T, it is straightforward to calculate the self-energy. From equations ( 153)
and equations ( 154), the matrix element of the self-energy in a Bloch state ¥y, is given by

Im X4 (kn;w > p) =
occe
> )" balkno)bh(kno)by(k'n'c’)bj(k'n'o")

k'n'o’ af,yd

X Im Ty, (af|vd; w+ ewnor) O(w + exinror — 2p) (171)

Im ¢ (kn;w < p) =
unocc
- Z Z be (kno)bj (kno)by (k'n'c’)bj (k'n'c’)
k'n'a’ af,vé

X Im Ty (aB|Yd; w4 ewnigr) O(—w — exrnror + 2) (172)

The real part of ¥ is obtained from equation ( 155). It is straightforward to derive the corre-
sponding expressions for the exchange part.
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5.2.5 Application to Ni with a model screened interaction

As a first application, we use the T-matrix theory to calculate the self-energy of ferromagnetic
Ni. In the case of Ni, the T-matrix should describe repeated scattering of two 3d holes on the
same site, corresponding to the atomic 3d® configuration. The mechanism for the origin of the
6 eV satellite is discussed in the previous section on Ni.
A model potential of the form
/ erfc(alr — r'|)

is used to calculate the T-matrix. For the T-matrix self-energy, the position of the peaks in
Im ¥ is rather insensitive to the screening parameter. However, the intensity varies with «
and consequently the satellite position, which is determined by Re X, is modified accordingly.
Thus, if we were allowed to adjust the screening parameter ¢, the position of the satellite could
be shifted arbitrarily. It is therefore crucial to determine the screened interaction U from a
parameter-free scheme. According to constrained LDA calculations [42] Ugq ~ 5.5 eV [98].
Consequently in our calculations we choose o = 1.2 which is equivalent to Ugg ~ 5.5 eV.

The calculated spectral functions are displayed in figure 13 and compared with the GW
spectra. The main peak =~ 3 eV below the Fermi level is the quasiparticle peak. Two satellite
structures originating from the T-matrix self-energy, absent in the GWA, can be observed below
the main peak and just above the Fermi level. The position of the satellite below the Fermi level
is, however, somewhat too low. This is likely due to the difficulties in determining the correct
screened interaction in the T-matrix and the neglect of particle-hole interaction in the present
scheme.

A new interesting feature is the presence of a peak structure just above the Fermi energy
which arises from particle-particle scattering. At first sight, these scattering processes are ex-
pected to be insignificant, since the number of unoccupied states is small which leads to a small
T-matrix for positive energies. However, our results point to the importance of matrix element
and bandstructure effects, usually neglected in the Hubbard model. As may be seen by an
examination of equation ( 153) there is a sum over occupied states which amplifies the small
contribution from the T-matrix. It may be possible to measure the satellite structure above
the Fermi level in an angular resolved inverse photoemission experiment by choosing certain
k-vectors, where the quasiparticle peak is well separated from the satellite.

There is a significant difference between the majority and minority self-energy as reflected
in the spectral function in figure 13. The probability of creating a hole in the majority channel
is larger than in the minority channel, since the former is fully occupied. The virtual hole can
mainly be created in the minority channel due to the presence of 3d unoccupied states just above
the Fermi level. This implies that the majority 3d self-energy will be larger than the minority
one which reduces the exchange splitting and the bandwidth, improving the GW result. It is
found that the T-matrix self-energy reduces the exchange splitting by =~ 0.3 eV [96, 97] for states
at the bottom of the 3d band and thus also improving the GW bandwidth. But contrary to
model calculations [69, 70], the T-matrix has a significantly smaller effect on the bandwidth.

6 Self-consistency and total energies

6.1 Self-consistency

The current practice of performing GW calculations is to choose a non-interacting Hamiltonian
(usually the LDA) and to construct the Green function Gy from the eigenstates of the Hamil-
tonian and to calculate the response function. These are then used to calculate the self-energy
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which is taken as the final result. This procedure is non-self-consistent since the interacting
Green function G obtained from the Dyson equation G = Gy + GyXoG is not necessarily the
same as Gg. To achieve self-consistency, the interacting Green function should be used to form
a new polarization function P = —iGG, a new screened interaction W, and a new self-energy
3. This process is repeated until G obtained from the Dyson equation is the same as G used to
calculate the self-energy. Self-consistency guarantees that the final result is independent of the
starting Green function Go. Moreover, a self-consistent GW scheme ensures conservation of par-
ticle number and energy. This is a consequence of a general theorem due to Baym and Kadanoff
(14] and Baym [15] who proved that approximations for ¥ are conserving if ¥ is obtained as a
functional derivative of an energy functional ® with respect to G :

40 [G]
v =_—12 174
5C (174)
Conservation of particle number means that the continuity equation
—0n(r,t) = V:j(r,1) (175)

is satisfied when n and j is obtained from the self-consistent Green function. Furthermore
1 u
N = —tr/ dwIm G(w) (176)
m -0

gives the correct total number of particles. Conservation of energy means that the energy change
when an external potential is applied to the system is equal to the work done by the system
against the external potential when calculated using the self-consistent G.

The first self-consistent calculation GW calculation was probably by [29] for a model quasi-
one dimensional semiconducting wire. The relevance of this model to real solids is, however,
unclear. Self-consistent calculations for the electron gas were performed recently by von Barth
and Holm [106] and by Shirley [91]. The calculations were done for two cases: in the first case the
screened interaction W is fixed at the RPA level, W = W), (calculated using the non-interacting
Go) and only the Green function is allowed to vary to self-consistency and in the other case both
G and W are allowed to vary (full self-consistency case) [54]. The results of these studies are

e The band width is increased from its non-self-consistent value, worsening the agreement
with experiment (figure 14).

e The weight of the quasiparticles is increased, reducing the weight in the plasmon satellite.
e The quasiparticles are slightly narrowed, increasing their life-time.

o The plasmon satellite is broadened and shifted towards the Fermi level (figure 15). In the
full self-consistent case, the plasmon satellite almost disappears (figure 16).

The main effects of self-consistency are mainly due to allowing the quasiparticle weight Z to
vary. The increase in band width is disturbing and can be understood as follows. We consider
the first case with fixed W = Wy for simplicity. First we note that the GW result for the band
width after one iteration is close to the free electron one. This means that there is almost a
complete cancellation between exchange and correlation. After one iteration the quasiparticle
weight is reduced to typically 0.7 and the rest of the weight goes to the plasmon satellite. The
new Im 3, calculated from G obtained from the first iteration has its weight reduced at low
energy and increased at high energy compared to the non-self-consistent result (figure 17). This
is due to the sum-rule [106]

/oo dw|ImE° (k,w) | =Y /oo dw|ImW (q,w) | (177)
—00 q 0
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which shows that the left hand side is a constant depending only on the prechosen Wy but
independent of k and self-consistency. For a state at the Fermi level, self-consistency has little
effects since Im ¥ has almost equal weights for the hole (w < u) and the particle part (w > u)
which cancel each other when calculating Re 3., as can be seen in equation (66) and as illustrated
in figure 18. But for the state at the bottom of the valence band, Im ¥ has most of its weight
in the hole part (see e.g. figure 6) so that the shifting of the weight in Im ¥ to higher energy
causes Re Y. to be less positive than its non-self-consistent value. A similar effect is found for
the exchange part which becomes less negative but because the bare Coulomb interaction has no
frequency dependence, the renormalization factor has a smaller effect on X* so that the reduction
in 3% is less than the reduction in 3¢. The net effect is then an increase in the band width.
The shifting of the weight in Im¥ to higher energy has immediate consequences of increasing
the life-time and the renormalization weight Z (through a decrease in OReX./0w|) of of the
quasiparticles and of broadening the plasmon satellite, compared to the results of one iteration.

When W is allowed to vary (full self-consistency) the band width becomes even more widened
and the plasmon satellite becomes broad and featureless, in contradiction to experiment. The
quasiparticle weight is increased further [54]. These can be traced back to the disappearance of
a well-defined plasmon excitation in W. The reason for this is that the quantity P = —iGG no
longer has a physical meaning of a response function, rather it is an auxiliary quantity needed
to construct W. Indeed, it does not satisfy the usual f— sum rule. The equation e(q,wp) =0
determining the plasmon energy is not satisfied any more since the Green function now always
has weight around w = w,. This has the effect of transferring the weight in Im ¥ even further to
higher energy with the consequences discussed in the previous paragraph.

A self-consistent calculation for the electron gas within the cumulant expansion has been
performed by [53]. The result for the quasiparticle energy is similar to the self-consistent GWA
since the quasiparticle energy in the cumulant expansion is essentially determined by that of
the GWA as discussed in the cumulant expansion section. The satellite part is little affected by

self-consistency.

6.2 Total energies

So far, the GWA has been applied mainly to calculate single-particle excitation spectra, but
it is also possible to calculate the total energy [54, 35]. Holm and von Barth [54] calculated
the total energy using the self-consistent Green function and self-energy in the Galitskii-Migdal
formulation [38]: '

E= —-—/dsr lim lim [zﬁ + ho(r)] G(rt,r't') (178)

tottr—r | 0

where hg is the kinetic energy operator plus a local external potential. The total energy turns out
to be very accurate in comparison with the quantum Monte Carlo (QMC) results of Ceperley
and Alder [25]. For r; = 2 and 4 QMC gives 0.004 and -0.155 Rydberg respectively while
self-consistent GW gives 0.005 and -0.156 Rydberg. This is rather surprising since the GWA
represents only the first term in the self-energy expansion. The reason for the accurate results
is not fully understood. Applications to other more realistic systems are necessary to show
if the results are of general nature. It is probably related to the fact that the self-consistent
GW scheme is energy conserving and it is partly explained by consideration of the so called
Luttinger-Ward energy functional [74]:

(6] = Tr {In([G] - G5) + (GG} - @[G] (179)

which is variational with respect to G and it is stationary when G is equal to the self-consistent
G which obeys the Dyson equation:
19

el =0 when G = Gy + GoXG ' (180)
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= E — uN is the grand canonical potential whose stationary value corresponds to the energy
(minus pN) obtained from the Galitskii-Migdal formula and @ is an energy functional consisting
of irreducible energy diagrams. It is not clear, however, why the first order energy diagram
(giving the GW self-energy upon taking functional derivative with respect to G) appears to
represent a very good energy functional. Furthermore, the chemical potential calculated from
p = OE/ON is in agreement with the value obtained from p = k%./2 + $(kF,0). The particle
density n = 23, [*  dwA(k,w) yields n = k}/(3w?) , i.e. particle number is conserved, as
proven by Baym. It can also be shown that with a fixed W = W, particle number is also
conserved [54]. The conclusion is that fully self-consistent GW calculations for quasiparticle
energies should be avoided. It is more fruitful to construct vertex corrections (beyond GW) or
to perform partially self-consistent GW calculations where the choice of G and W is physically
motivated. For instance, one can fix W at the RPA level and modify G by using quasiparticle
energies but keeping the renormalization factor equal to one. Or one could choose a single-
particle Hamiltonian such that the GW quasiparticle energies are consistent with the single-
particle eigenvalues.

Recently, Almbladh and Hindgren [51] discovered that the GW total energies of the electron
gas calculated using the Luttinger-Ward formalism [74] are in very good agreement with the
QMC results of Ceperley and Alder and the self-consistent results of Holm and von Barth. Due
to the variational nature of the Luttinger-Ward functional, the Green function need not be the
self-consistent one. A generalization of the Luttinger-Ward formalism by treating both G and W
as independent parameters has also been developed [2]. Using the non-interacting G = Gy and
the plasmon-pole approximation for W gives almost as good results [51] as the self-consistent
results of Holm and von Barth [54] or the QMC results of Ceperley and Alder [25]. These results
are very encouraging and applications to real inhomogeneous systems are now in progress to test
the validity of the scheme.

7 Computational method

The calculation of the self-energy involves the calculations of the following quantities:

1. A self-consistent bandstructure which is the input to the self-energy calculation. In prin-
ciple we may use any non-interacting Hamiltonian but we use the LDA in practice.

2. The bare Coulomb matrix v.
3. The polarization function P
4. The response function R and the screened Coulomb matrix W.

5. The self-energy X.

7.1 Basis functions

To construct a minimal basis, let us consider the polarization P. Due to the symmetry of P
with respect to a lattice translation T,

P(r+T,r' + T,w) = P(r,r',w), (181)
it follows that P may be expanded as follows:

P(r,r',w)=>" By, (r)Pij(k,w) By (r') (182)
kij
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where By, are any basis functions satisfying Bloch’s theorem and they are normalized to unity
in the unit cell with volume §2. All other quantities depending on two space variables such as
G, W, and X can be expanded in a similar fashion. The polarization matrix P;; is given by

Pjk,w) = /dar/d3r' By, (r)P(r, r',w)Bkj(r')

-3 /d%/ @' By (r + T)P(r + T,r' + T',w)By;(x' + T')
T ’% ¢ 1 ’

— Z /d37'/ 437 e“ik'(T_T’)Bf(.(r)P(r, v+ T —T,w)Bk.(r')
TT % Q t J

~ N /ﬂ &r /Q &' By (r)P(r,x',w) By, (r') (183)
Thus the calculation of P for the crystal is reduced to a unit cell. ;From Eq. (76) we then get

S?j(q’ w) = Z Z Z <qu¢kn|¢k+q,n’><¢k+q,n’|1/)kanj>

k n<un'>u
X8lw = (e qm — Ekn)] (184)

In the above expression, the wave function 1y, is normalized to unity in the unit cell. The
matrix elements are given by

(¢k+qn'|¢'knBQJ> = /Qd?’r ”bl*(+qn'¢knBCU (185)

The problem is to choose a minimal number of basis functions needed to describe the response
function. It is clear from the above expression that that the basis functions must span the space
formed by products of the wave functions.

If the wave functions are expanded in plane waves, as in pseudopotential theory, then the
basis functions will be products of plane waves which are also plane waves, in which case

zpli(k + G) -
Bkj:ep[Z(\/Jrﬁ)r]

One simply needs to have a large enough G vector in order to have a complete basis. The ad-
vantages of plane-wave basis are that matrix elements can be easily calculated and the Coulomb
matrix is simple since it is diagonal, vg (k) = 4méq g /k + G|?. Other advantages are good
control over convergence and programming ease. There are, however, serious drawbacks:

, S = Sgqr

1. It is not feasible to do all electron calculations. In many cases, it is essential to include
core electrons. For example, the exchange of a 3d valence state with the 3s — 3p core states
in the late 3d metals is overestimated by the LDA by as much as 1 eV which would lead
to an error of the same order in the pseudopotential method.

2. The size of the response matrix becomes prohibitively large for narrow band systems due
to a large number of plane waves.

Moreover, the plane waves have no direct physical interpretation.

To overcome these drawbacks, we use the LMTO method which allows us to treat any system.
The LMTO method uses a minimal number of basis functions and we carry over the concept
of minimal basis in bandstructures to the dielectric matrix €. Instead of a planewave basis, we
use a ”"product basis” which consists of products of LMTO’s. As will be clear later, the product
basis constitutes a minimal basis for ¢ within the LMTO formalism. A method for inverting
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the dielectric matrix using localized Wannier orbitals instead of planewaves has also been used
in the context of local field and excitonic effects in the optical spectrum of covalent crystals
[44, 45).
~ In the LMTO method within the atomic sphere approximation (ASA), the basis functions
are given by ]

XRLv(Y) = $rLu(r) + Y bR (t)hr L RLY (186)

R'L'V

The orbital ¢ is a solution to the Schrodinger equation for a given energy ¢, and ¢ is the energy
derivative at €,. The label R denotes atom type, L = Im denotes angular momentum, and v
denotes the principal quantum number when there are more than one orbital per L channel [9].
Therefore a product of wave functions consists of products of the orbitals ¢ and é [10]:

ORLVBRL'ws PRLyORLW, PRLLDRL (187)

This means that these product orbitals form a complete set of basis functions for the polarization

function and also for the response function and the self-energy as discussed below. ;From Eq.
(60) we have
R =P+ PvP + PvPvP +... (188)

Writing P = 3, |¢) P;;(j|, the second term can be written

PuP = [i)Pij{jlvlk) Pu(l| (189)
i7,kl
Similar expressions can be written down for the other terms and we can therefore write R =

>.ij [0} Rij(j|, i.e. P and R span the same space.
The self-energy of a given state 9y, in the GW A schematically has the form

Ekn,w) = <Y, |GW|Yy, >
= <P, Yoy, > + < Pk YlvRo|YYy, > (190)

The two 19 come from the G. We see that ¥ is sandwiched by products of two wave functions -
and it is therefore sufficient to have v expanded in the product orbitals. Thus, the product
orbitals in Eq. ( 187) form a complete basis for a GW calculation.

We reduce the number of product orbitals in three steps:

1. We neglect terms containing & since they are small ((;5 is typically 10% of ¢). This reduces
the number of product functions by a factor of 3. In some cases, it may be necessary to
include ¢.

2. If we are only interested in valence states, then there are no products between conduction
states. Therefore, in sp systems, products of ¢4¢4 can be neglected and similarly in d
systems, products of ¢;¢; may be neglected.

3. The remaining product orbitals turn out to have a large number of linear dependencies,
typically 30 — 50%. These linear dependencies can be eliminated systematically, which is
described below.

A product orbital is defined by

bi(r) = ¢R.(D)OR L (T)
YR (MR (MYL(E)yL (F) , (191)

Il
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where i = (R, Lv, L'V'). Due to the ASA, this function is only non-zero inside a sphere centered
on atom R. Thus, there are no products between-orbitals centered on different spheres. For a
periodic system we need a Bloch basis and perform a Bloch sum

b (r) =3 X Top, (r =R -T)¢g,, (r—R—-T) (192)
T

The k dependence is in some sense artificial because the function has no overlap with neigh-
bouring spheres, similar to core states. After leaving out unnecessary products (step 2), we
optimize the basis by eliminating linear dependencies (step 3). This is done by orthogonalizing
the overlap matrix

Oij =< bilbj > (193)

Oz=ez (194)

and neglecting eigenvectors z with eigenvalues € < tolerance. The resulting orthonormal basis
is a linear combination of the product functions:

B; = ijz]'i, (195)
J .

and typically we have ~ 70 — 100 functions per atom with spdf orbitals. The above procedure
ensures that we have the smallest number of basis functions. Further approximations may be
introduced to reduce the basis.

In Table 1 we show a completeness test for the basis. The slight discrepancy for high lying
states is due to the neglect of d) in the product basis which become more important for the broad
high lying conduction states, and also because the optimization procedure puts less weight on
those products which have smaller overlap. This is not crucial for two reasons: the matrix
elements become smaller for the higher states, and in relation to GW calculations, there is a
factor of 1/w which makes the higher states less important.

As applications of the product basis, we have calculated as examples the energy loss spectra
of Ni (Fig. 2), Si (Fig. 3). and NiO (Fig. 8).

7.2 Special directions

When calculating matrix elements using the product basis, we encounter angular integrals of
the. form

/ dQ YL, YL, YL YL, ' - (196)

Analytic evaluation of these integrals are computationally expensive. Instead, they are calculated
by using special directions which are analogous to Gaussian quadratures in one dimension. In
general, Gaussian integration over a unit sphere means that we try to find M directions 2; and
weights w; such that

M
d1,0 '
() = —2 0<!<lpas, —1<m<I 197
;—1 wiyr () Vi for 0< 1 <lmas =m> (197)

Gaussian accuracy is achieved when the number of correctly integrated spherical harmonics is
equal to the number of free parameters which is 3M — 2, since the spherical harmonics transform
among themselves under rotation so that one direction can thus be taken to be the z direction
and the sum of the weights is one. In one dimension, Gaussian accuracy is always achieved
and the mesh points are uniquely determined. In two dimensions, it is rarely achieved although
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one usually comes rather close. There are often several sets of directions that yield the same
accuracy. We have found by minimization of

M
) ) d10 2
; | ; wiyL () - Z=| (198)

a set of 62 cubic directions which correctly integrates all spherical harmonics up to and including
[ = 11 plus a few more for the [ = 12 harmonics, a total of 168 functions. Full Gaussian accuracy
would mean 3 x 62 — 2 = 184 functions and the cubic constraint only leads to a 9% less effective
integration formula. The directions and the corresponding weights are

Direction Weight/4n

(1, 0, 0) 0.130 612 244 897 931 /6 (199)
(1, 1, 1)/V/3 0.128 571 428 571 554/8

(0.846 433 804 070 399, 0.740 816 326 530 515 /48

0.497 257 813 599 068, 0.190 484 860 662 438)

plus all possible cubic variations of these (sign changes and permutations). We have also found
a larger set with 114 cubic directions which integrate up to ! = 15. The directions and weights
are

Direction Weight/4n

(1, 0, 0) 0.076 190 476 192 774 /6
1, 1, 0)/v2 0.137 357 478 197 258 /12 (200)
(0.733 519 276 107 007, ' 0.344 086 737 167 612 /48
0.570 839 829 704 020, 0.368 905 625 333 822) _
(0.909 395 474 471 327, 0.442 365 308 442 356 /48
0.385 850 474 128 732, 0.155 303 839 700 451)
Using these directions, any angular function can be integrated easily
[d2 1@ =Y w0 (201)
- _

7.3 Evaluation of the Coulomb Matrix

We consider one atom per unit cell for simplicity. Extension to several atoms is straightforward.
The Coulomb matrix is given by

= & fae o BP0 -

T

where Bq; is normalized to unity in the unit cell. The integrations over the whole space may
be reduced to integrations over a unit cell 2 by using the property

Bqi(r + T) = ¢9T Bgi(r) (203)

and noting that the integration over r' is independent of the origin of r. This gives

vi;(q) = /nd3r/nd33 Bqi(s)Eq(s,r)Bq;(r) (204)
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where

v T
Eq(s,r) = Z —_Tl
T

|s —r

_ i 2 2
_ 4dr e (Q+G)?/4a @+ Gy (5-1)

2% (@+Gy
iqTerfelals —r - TJ)
+ azT:e pP—— (205)

The Ewald method has been used to obtain the above decomposition into summations in the
reciprocal and real space. erfc is the complementary error function equal to (1 — erf), and
« is an arbitrary constant whose value is chosen to give a fast convergence in the number of
reciprocal lattice vectors and the number of neighbours. The essence of the Ewald method is to
add and substract a Gaussian charge distribution which breaks the Coulomb potential from a
point charge into a short and long range part. The short range part is done in real space and
the long range part is done in reciprocal space. The main task is to calculate the potential

Qqi(s) = Ld3r Eq(s,r)Bgq;(r)
5= qui(s)zij (206)

with z given by Eq. ( 194) and

pqi(s) = /Qd3rbq,-(r)Eq(s,r)

= Y pqi(s,G) + Y _pqi(s,T) (207)
G T
where | i (@Gt ‘
Pqi(s, G) = _gwei(q+c).s /ﬂ & e B D T, () (208)
and

fe(als—r—T|)
als—r—T|

pi(s,T) = ae 9T /Q & & b (r) (209)

It is straightforward to calculate pq;(s, G), since it is a Fourier transform of bq;(r). To calculate
pqi(s, T), we use the following expansion formulas

1 e oL
ls—r XL: 20+ 1 L+ yL(8)yL (%) (210)
and ) _
ET—{,%:E%I‘D =25 : 7917, 8)yL (8)yr (F) (211)

L

The coefficients g;(r, s) are determined by numerical integrations using special directions in Eq.
( 199). .
At the central sphere, bq;(r) has no q dependence and is given by Eq. ( 191), so that

pai(s,T) = ac'tT S wi(sm)un(sr) [ dn,vam (212)
L
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where sp =s — T and

wi(sp) = —T ® a2 [ 1< (r, s) § bi(r) (213)
KT = 9T Jy Y Rl
We note that the sum over [ is cut off by I; and l; in the product function b. Finally,
(@) = [ d*sB(s)0qs(s) (214)
which is easily done with special directions in Eq. ( 199).

7.4 Evaluation of the polarization P

Calculations of P are the most time consuming due to a large number of matrix elements, a
summation-over the Brillouin zone, which is not restricted to the irreducible zone, and a sum
over occupied and unoccupied states as may be seen from the following expression:

Pij(qw) = Z Z Z <qu¢knI¢k+q,n'><¢k+q,n'|¢kn3qj)

k nlpun'>p

o 1 3 1
W = €k g +eg, ti0 w+ Ek+qmn ~ Ekn ~ 1)
(215)

For real frequencies, we calculate S° in Eq. ( 76). The & function is replaced by a Gaussian

_ 2
5(z) = Z—(Z/0) (216)
o\m
The self-energy is not sensitive to the choice of o.
The matrix elements reduce into integrals of four orbitals
/ &®r QRLyv BRLyv, PRLavsPRLavs = / dr 720 iy vy © Rlgu © Risvs P Rlava
X /dQ Yo, YL YrLsyr, (217)

The angular integral is calculated by using special directions in Eq. ( 199).
To obtain the real part of P we calculate the Hilbert transform in Eq. ( 61) using the
anti-symmetry of S:

Re P(w) = /Ooodw'SO(w'){ ! ! } (218)

w-—w w4

Although the integrand diverges when ' = w, the integral is well-defined because it is a principal
value integral. In practice, S° is expanded in Taylor series around w within an interval w — h
and w + h.

For imaginary frequency, we calculate P directly from Eq. ( 215) by setting w — iw:

Pi(qiw) = YD > {Bqitkal¥kiqn) Ykiqm ¥keBas)
k nun'>p
—2(5k+q,n’ — €kn)
X3 2
w”+ (€k+q,n’ - Ekn)

(219)
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Thus P(r,r’,iw) is real along the imaginary axis although the matrix representation P;; may be
complex due to the matrix elements.

The Brillouin zone integration is performed using a simple sampling method. It is also
possible to use a more accurate tetrahedron method but the replacement of the ¢ function by a
Gaussian is not possible anymore, resulting in a significantly more complicated programming.

Once we have obtain P, the response function R and the screened Coulomb interaction W
can be calculated straightforwardly.

7.5 Evaluation of the self-energy %
Taking the matrix element of the bare exchange in a Bloch state 1q, we get from Eq. ( 78)
Sgn =2 2 2 (Yan¥i_qu!Bis) vii (&) (Bylvy _qu¥an) (220)
k n'<u ij ,

obtained by expanding the Coulomb potential like in Eq. ( 182). ;From Eq. ( 77) the correlated
part of I'm X is given by

( Zk Zn'Sp. Eij (¢qn¢k_q’n'|Bki> Dij(kv w— Ek—q,n’)

X <Bk]l¢k-—q,n’¢qn> 0(0) - Ek_q’nl) fO’l' w g "

Tqn(w) = (221)

Ek Zn’)p, Zz] <¢qn¢k_q,n’ |Bkl> Dl](k') 6k—q,n’ - OJ)

X (Bkjl'l,bk_q’n,d)qn) 0(Ek__q’n, - w) for w>p

\

The real part of ¢ is obtained from the Hilbert transform (principal value integral) in Eq.
( 66). As in the case of the polarization, care must be taken when ' = w by expanding I in
Taylor series around w.

The quasiparticle energy can now be calculated as follows:

Eqn = EQn'*‘AEqn(Eqn)
aAan(Eqn)

- (222)

= &qn + Azqn(Eqn) + (Eqn - Eqn)

where
AXgn(w) = (¥qn|Re T(w) — Vacl¥gn) (223)

The self-energy correction AY is obtained from first order perturbation theory from Eq. ( 39)
and the Kohn-Sham equation:

(Ho + £)¥ = B (224)

(Hy+V*)¢p =¢y (225)

where Hp is the kinetic energy plus the Hartree potential. The self-energy correction to eqn is
given by

AEqn = Eqn'—Eqn
anAZ(]n(EQn) (226)
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where

——aAEq"(e“")] B <1 (227)

Zan = [l B Ow

is the quasiparticle weight. ,
The frequency integration of the self-energy may also be performed along the imaginary axis
[41] plus contributions from the poles of the Green function (Fig. 4). ;From Eq. ( 82) we have

Sgn@) = 20D D (Yan¥k_qulBii) (Bi;l¥k_quban)

k n'<p ij
[ i
27 J_o w+tw - Ek—qun ~ 0
(228)
+ Z Z Z(‘/’qnfbk_q,nrlBki) <Bkj|¢k_q’n/"/)qn>
k n'>u iy
. oo WE (k, o'
xi/ du' ; b)) - (229)
27 /oo wtw —ex_qnt i

We consider the integration along the imaginary axis with o’ — iw"”, w" real, and along the path
C (Fig. 1):

L g il
27 J—oo W+ w - Ek—_q,n’ + 16

o0 g’ . 1 1
- - [ { et s
0 4 w+w'’ — Ek_q’n, w —w"’ - Ek—q,n' .

L / dw' Wik, ')
2 Jo w+w — 3 + 46

1 w = Ek—-q,n’
m(w—eg_qu)? +w"™

[ o]
- / du" W (K, iw")
0

+ Wik, £(w — e _q )] 01w — e _q )] O[F(w — )] |
X O£ (e _qn — ] (230)
The first term is the contribution along the imaginary axis and the second from the poles of G.

The integrand in the first term is very peaked around w’' = 0 when w — Ek—qn’ is small. To
handel this problem, we add and substract the following term

,2l w — 8k—q,n’
T (w— €k—q,n')2 + w'?

1 e —olw
A dw Wz] (k, 0)6

s

az(w—sk ,)?
— -q.n —_
O Ek—q,nl)e ; erfcla(w Ek-q,n')] (231)

When this term is substracted from the integrand in the first term, the resulting integrand is
smooth and a Gaussian quadrature may be used.

The GWA has been applied to many systems. Here we show some results for Ni (Fig. 5)
and NiO (Fig. 7). The self-energy of Ni at the I'-point is shown in Fig. 6. The imporatnce of
the starting Hamiltonian in GW calculations is illustrated in Fig. 9. '
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APPENDIX A

jFrom the spectral representation of W, in Eq (67) we have

0 D(w
w0 = [ af [
(0) —o —w! —26 + dw —-w' +z<5

- _ ) D(W') ’
= 2 [T (232)
using the fact that D(w) is odd.
_ _ b WelW)
We(0) = 27 /_oo o W — 18

1 [® 1
= — dw'
27r/_°o ww'—ié

0 D(w") Lo D(w")
d n" / d n }
% {./_oo ww’—w”—i(5+ 0 ww’—w”+i5

_ ® D(w”)
- /0 dw w" —1id
= W) © (233)
APPENDIX B
SH(B) = 5 / dw G(E + w)W(w) (234)

The space variables have been dropped out for clarity. Using the spectral representations of G
and W€ in Eqs. ( 24) and ( 67) we get

2B) = o [ ao {[" au Awr)

EF4+w—w —16
wl)
+/ dle-i—w w1+z(5}
/oodw D(w){ r 1 } (235)
0 2 2 w—wy+in wHwy—1in

Performing the contour integration in w yields

D(wy)
/ dw1/ dwE+wg—w1—25

A(w1)D(w2)
+ / dah./ duw = wy — wy + 16 (236)

The spectral function of ¥¢ in Eq. ( 66) is then
m 00
I'(E) = -—sgn(E - u)/ dw; /0 dwo A(w1)D(we)d(E + wa — wr)
o oo
+sgn(E — ) / dw; /0 dwa A(w1)D(w2)6(—F + wa + wi)
"
~sgn(B— ) | dund(u — E — wn)A(E + w) Dlwn)

+sgn(E — ) /0 ” dwnb(~p + E — wp) A(E — wp)D(wp) (237)
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Putting back the space variables and using 4 in Eq. ( 75) we obtain
L(r,r',E) = -—sgn(E—p)Y 0k~ e:)i(r)y} (') D(r,x';e; — E)b(e; — E)
i

+sgn(E — p) ZO(ei — w)Yi(r)y; (¢ )D(r,x'; E - &;)0(E — €;)
(238)

Finally,
Zi(p, T/’i(r)‘/ff(rl)D(r»r’,ﬁi - E)O(E; - E) for £ < w
I(r,r',E) = - (239)
Yisu ¥ (r)Yi(r')D(r,v',E - €,)0(E —¢;) for E>p

References

(1] Almbladh C-O and Hedin L 1983 Handbook on Synchrotron Radiation 1 686 ed. E. E. Koch
(North-Holland)

[2] Almbladh C-O, von Barth U, and van Leeuwen R 1999, Int. J. Mod. Phys. B 13 535
3] Andersen O K 1975 Phys. Rev. B 12 3060 |
[4] Anisimov V I, Zaanen J, and Andersen O K 1991 Phys. Rev. B 44 943

[5] Anisimov V I, Solovyev I V, Korotin M A, Czyzyk M T, and Sawatzky G A 1993 Phys.
Rev. B 48 16929

[6] Anisimov V I, Aryasetiawan F, and Lichtenstein A I 1997 J. Phys.: Condens. Matter 9
767-808 '

[7] Arai M and Fujiwara T 1995 Phys. Rev. B 51 1477-89

[8] Aryasetiawan F 1992a Phys. Rev. B 46 13051-64

[9] Aryasetiawan F and Gunnarsson O 1994a Phys. Rev.B 49 7219
[10] Aryasetiawan F and Gunnarsson O 1994b Phys. Rev. B 49 16214-22
[11] Aryasetiawan F and Gunnarsson O 1995 Phys. Rev. Lett. T4 3221-24
[12] Aryasetiawan F and Karlsson K 1996 Phys. Rev. B 54 5353-7
[13] Aryasetiawan F, Hedin L, and Karlsson K 1996 Phys. Rev. Lett. 77 2268-71
[14] Baym G and Kadanoff L P 1961 Phys. Rev. 124 287
[15] Baym G 1962 Phys. Rev. 127 1391
[16] Becke A D 1988 Phys. Rev. A 38 3098
[17) Becke A D 1992 J. Chem. Phys. 96 2155
(18] Becke A D 1996 J. Chem. Phys. 104 1040-6
[19] Bergersen B, Kus F W, and Blomberg C 1973 Can. J. Phys. 51 102-110
[20] Berglund C N and Spicer W E 1964 Phys. Rev 136 A 1030

— 483 —



#wE/ -

[21] Bobbert P A and van Haeringen W 1994 Phys. Rev. B 49 10326-31

[22] Bylander D M and Kleinman L 1995a Phys. Rev. Lett. 74 3660

[23] Bylander D M and Kleinman L 1995b Phys. Rev. B 52 14566

[24] Calandra C and Manghi F 1992 Phys. Rev. B 45 5819

[25] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566

[26] Cowan R D 1967 Phys. Rev. 163 54

27] Daling R and van Haeringen W 1989 Phys. Rev. B 40 11659-65

28] Daling R, Unger P, Fulde P, and van Haeringen W 1991 Phys. Rev. B 43 1851-4
29] de Groot H J, Bobbert P A, and van Haeringen W 1995 Phys. Rev. B 52 11000 k
30] Deisz J J, Eguiluz A, and Hanke W 1993 Phys. Rev. Lett. 71 2793-96

[
[
[
[
[31] Deisz J J and Eguiluz A 1997 Phys. Rev. B 55 9195-9
[32] Del Sole R, Reining L, and Codby R W 1994 Phys. Rev. B 49 8024-8
(33] Faddeev L D 1963 Sov. Phys. JETP 12 275

(34] Fan H Y 1945 Phys. Rev 68 43

[

35] Farid B, Godby R W, and Needs R J 1990 20th International Conference on the Physics
of Semiconductors editors Anastassakis E M and Joannopoulos J D, Vol. 3 1759-62 (World
Scientific, Singapore) ' :

[36] Fetter A L and Walecka J D 1971 Quantum Theory of Many-Particle Systems (McGraw-
Hill)

[37] Frota H O and Mahan G D 1992 Phys. Rev. B 45 6243

[38] Galitskii V M and Migdal A B 1958 Sov. Phys. JETP 7 96

[39] Galitskii V M 1958 Sov. Phys. JETP 7 104

[40] Georges A, Kotliar G, Krauth W and Rozenberg M J 1996 Rev. Mod. Phys. 68 13-125
[41] Godby R W, Schliiter M, and Sham L J 1988 Phys. Rev. B 37 10159-75

[42] Gunnarsson O, Andersen O K, Jepsen O, and Zaanen J 1989 Phys. Rev. B 39 1708
[43] Gunnarsson O, Meden V, and Schénhammer K 1994 Phys. Rev. B 50 10462

[44] Hanke W and Sham L J 1975 Phys. Rev. B 12 4501-11

[45] Hanke W and Sham L J 1988 Phys. Rev. B 38 13361-70

[46] Hedin L 1965a Phys. Rev. 139 A796

[47] Hedin L and Lundqvist S 1969 Solid State Physics vol. 23, eds. H. Ehrenreich, F. Seitz, and
D. Turnbull (Academic, New York).

[48] Hedin L, Lundqvist B I, and Lundqvist S 1970 J. Res. Natl. Bur. Stand. Sect. A T4A 417

— 484 —



FegA5a] WUEFEOFR (20004EE), (F01)

[49] Hedin L 1980 Physica Scripta 21 477-80

[50] Hedin L 1999 J. Phys.: Condens. Matter 11 R489-R528
[51] Hindgren M 1997 (PhD thesis, University of Lund)
[52] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[53] Holm B and Aryasetiawan F 1997 Phys. Rev. B 56, 12825

[54] Holm B and von Barth U 1998 Phys. Rev. B 57, 2108

[55] Hybertsen M S and Louie S G 1986 Phys. Rev. B 34 5390-413

[56] Igarashi J 1983 J. Phys. Soc. Jpn. 52 2827

[57] Igarashi J 1985 J. Phys. Soc. Jpn. 54 260

[58] Igarashi J, Unger P, Hirai K, and Fulde P 1994 Phys. Rev. B 49 16181

[59] Inkson J C 1984 Many-body Theory of Solids (Plenum Press, New York, 1984)
[60] Kanamori J 1963 Prog. Theor. Phys. 30 275

[61] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133

[62] Kotani T 1995 Phys. Rev. Lett. 74 2989

[63] Kotani T and Akai H 1996 Phys. Rev. B 54 16502

[64] Landau L D 1956 Zh. Eksperimen. i Teor. Fiz. 30 1058

[65] Landau L D 1957 Zh. Eksperimen. i Teor. Fiz. 32 59

[66] Langreth D C 1970 Phys. Rev. Bl 471 _

[67] Langreth D C and Mehl M J 1983 Phys. Rev. B 28 1809

[68] Lichtenstein A I, Zaanen J, and Anisimov V 11995 Phys. Rev. B 52 R5467
(69] Liebsch A 1979 Phys. Rev. Lett. 43 1431-4

[70] Liebsch A 1981 Phys. Rev. B 23 5203-12

[71] Lindgren I 1971 Int. J. Quantum Chem. 5 411

[72] Lundqvist B I 1967a Phys. Kondens. Mater. 6 193

[73] Lundqvist B I 1967b Phys. Kondens. Mater. 6 206

[74] Luttinger J M and Ward J C 1960 Phys. Rev 118 1417-27

[75] Mahan G D 1967a Phys. Rev.153 882

[76] Mahan G D 1967b Phys. Rev. 163 612

[77) Mahan G D and Sernelius B E 1989 Phys. Rev. Lett. 62 2718

[78] Mahan G D 1990 Many-particle Physics (Plenum Press, New York)

[79] Mahan G D 1994 Comments Cond. Mat. Phys. 16 333

— 485 —



g/ —

[80] Manghi F, Calandra C and Ossicini S 1994 Phys. Rev. Lett. 73 3129-32
[81] Mayer H and Thomas H 1957 Z. Physik 147 419

[82] Northrup J E, Hybertsen M S, and Louie S G 1987 Phys. Rev. Lett. 59 819
[83] Northrup J E, Hybertsen M S, and Louie S G 1989 Phys. Rev. B 39 8198
[84] Noziéres P and de Dominicis C J 1969 Phys. Rev. 178 1097

[85] Onida G, Reining L, Godby R W, Del Sole R and Andreoni W 1995 Phys. Rev. Lett. 75
818-21

[86] Penn D R 1979 Phys. Rev. Lett. 42 921-4

[87] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048

[88] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865-8
[89] Puff H 1961 Phys. Stat. Sol. 1 704

[90] Rice T M 1965 Ann. Phys. 31 100

[91] Shirley E L 1996 Phys. Rev. B 54 7758-64

]

[92] Smith N V 1978 in Photoemission in Solids I, eds. Cardona M and Ley L (Springer-Verlag,
Berlin, Heidelberg)

[93] Solovyev I V, Dederichs P H, and Anisimov V I (1994) Phys. Rev. B 50 16861-71
[94] Solovyev I, Hamada N, and Terakura K 1996 Phys. Rev. B 53 7158 |
[95] Springer M, Svendsen P S, and von Barth U 1996 Phys. Rev. B 54 17392-401
[96] Springer M, Thesis 1997 (Lund University)

[97] Springer M, Aryasetiawan F, and Karlsson K 1998 Phys. Rev. Lett. 80, 2389
[98] Steiner M M, Albers R C, and Sham L J 1992 Phys. Rev. B 45 13272

[99] Surh M P, Northrup J E, and Louie S G 1988 Phys. Rev. B 38 5976-80

[100] Svane A and Gunnarsson O 1990 Phys. Rev. Lett. 65 1148-51

[101] Svendsen P S and von Barth U 1996 Phys. Rev. B 54 17402-13

[102] Szotek Z, Temmerman W M, and Winter H 1993 Phys. Rev. B 47 4029
[103] Talman J D and Shadwick W F 1976 Phys. Rev. A 14 36

[104] Treglia G, Ducastelle F, and Spanjaard D 1980 Phys. Rev. B 21 3729
Treglia G, Ducastelle F, and Spanjaard D 1980 Phys. Rev. B 21 3729

[105] Verdozzi C, Godby R W, and Holloway S 1995 Phys. Rev. Lett. 74 2327-30
[106] von Barth U and Holm B 1996 Phys. Rev. B 54 8411-9
[107] Ward J C 1950 Phys. Rev. 78 182

[108] Zunger A, Perdew J P, and Oliver G L 1980 Solid State Commun. 34 933

— 486 —



FEE4500 WHEEFEDOFER (200048)) (20 1)

Core l < "pknchore > '2 Zi ICi|2 error

3s 1568114 158113 .000001
3p .066833 066832 .000001
3p 209174 209172 .000002
3p .168184 .168183 .000001

ek/n,(eV) | < '/’knli/’k’n, > 12 Yilal? error

-9.09 .062222 052220 .000002

-2.23 181724 181722 .000002
-2.23 .101124 .101124 .000000
-2.23 167753 167743 000010
-1.22 119586 .119583 .000003
-1.22 .014565 .014537 .000028
24.39 .060638 .060634 .000004
28.19 .013188 .013074 .000114
28.19 .008852 008736 .000116
28.19 .001883 .001738 .000145
42.29 .015563 .015400 .000163
42.29 .018353 .018167 .000186
42.29 .006292 .006040 .000252
73.89 .017300 .016660 .000640
73.89 011847 011409 .000438
73.89 .013877 012911 .000966

Table 1: The completeness test of the optimal product basis for Nickel. A product of two
wavefunctions is expanded in the basis: zlzi‘(nz/)k:n, = > Bic; with k = (000), ¢, = —1.22 eV
(the higest valence state at the I point) and k' = (.5 .5 .5). The basis is complete if | 3; |c;|? =
| < Ykul¥i,y > |2. The number of optimal product basis functions is 101 and 82 with and
without 3s, 3p core states respectively.
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FIGURE CAPTIONS

Figure 1: Bandgaps of a semiconductors and insulators calculated within the LDA and the
GWA, compared with experiment. The data are provided by Dr. Eric Shirley [50].

Figure 2: The loss spectra of Ni with (solid line) and without (dotted line) local field compared
with the experimental spectrum (full circles). Both theoretical spectra are calculated with 4s, 4p,
3d, 4f, and 5g LMTO orbitals, including an empty sphere at (0.5 0.5 0.5)a and core excitations

Figure 3: The loss spectra of Si with (solid line) and without (dotted line) local field compared
with the experimental spectrum (full circles). Both theoretical spectra are calculated with 3s,
3p, 3d, and 4f LMTO orbitals including core excitations [10].

Figure 4: The analytic structure of ¢ = i(GW* for w > Efr (a) and w < Ep (b). Frequency
integration of the self-energy along the real axis from —oo to 0o is equivalent to the integration
along the imaginary axis including the path C.

Figure 5: The bandstructure of Ni along I'X and I'L averaged over the majority and minority
channels. The solid curves are the experiment and the dotted curves are the LDA (Martensson
and Nilsson 1984). The filled circles are the quasiparticle energies in the GWA [8].

Figure 6: Ni self-energy in the GWA. (a) The real and imaginary parts of the correlation part
of the self-energy for the minority spin state I'ys. (b) The real and imaginary parts of the
correlation part of the self-energy for the majority spin state I'y; [8].

Figure 7: NiO bandstructure. (a) Comparison between the LDA (solid line) and the experimental
bandstructure (Shen et al 1990, 1991a,b). (b) Comparison between the LDA (solid line) and the
quasiparticle bandstructure in the GWA [11].

Figure 8: The energy-loss spectra of NiO. The smooth solid curve corresponds to the calculated
spectrum with virtually no gap in the LDA Hamiltonian and the dashed one with ~5 eV gap.
The other curve is the experiment [12]
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Figure 9: The spectral function of NiO at the I" point for a Ni 3d state. The solid line corresponds
to the case where the starting LDA Hamiltonian has virtually no gap and the dashed line to the
case with =5 eV gap. (b) The same as in (a) but magnified 10 times [12]

Figure 10: Diagrammatic expansion for the Green function to second order in the GWA and the
cumulant expansion respectively. The solid line represents the noninteracting Green function
Gy and the wiggly line represents the screened interaction W.

Figure 11: (a) The experimental spectral function for Na (dots). The solid line is a synthetic
spectrum obtained by convoluting the density of states from a bandstructure calculation and
the the experimental core level spectrum. BG is the estimated background contribution. The
data are taken from Steiner, Hochst, and Hifner (1979). (b) The total spectral function of Na
for the occupied states. The solid and dashed line correspond to the cumulant expansion and
GWA respectively [13].

Figure 12: Feynman diagrams for the T-matrix (square): The wiggly and the solid line with
arrow represent the screened interaction U and the Green function G respectively.

Figure 13: Ni spectral functions at the X point for the second band [97].

Figure 14: The quasiparticle dispersions for s = 4 corresponding to full self-consistency (solid
line), partial self-consistency (dashed line), first iteration (dotted line) and the free electron
(dashed-dotted line) [54].

Figure 15: The partially self-consistent spectral function A(k = 0.5kp,w) compared to that of
the first iteration for r; = 4 [106].

Figure 16: The fully self-consistent spectral function A(k = 0.5kp,w) compared to that of the
first iteration for ry = 4 [53].

Figure 17: The spectral function of the partially self-consistent self-energy, I' = |ImX|/7, for
k = kp compared to that of the first iteration [106].

Figure 18: The real part of the partially self-consistent self-energy for k = kr compared to that
of the first iteration [106].
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