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The Complexity of the Hajós Calculus for Planar Graphs

Kazuo Iwama, Kazuhisa Seto and Suguru Tamaki

Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan.
{iwama, seto, tamak}@kuis.kyoto-u.ac.jp

Abstract

The planar Hajós calculus is the Hajós calculus with the restriction that all the graphs that
appear in the construction (including a final graph) must be planar. We prove that the planar
Hajós calculus is polynomially bounded iff the Hajós calculus is polynomially bounded.

1 Introduction

If one could prove that no proof systems are polynomially bounded, it would mean P 6= NP,
which has been giving a natural motivation to the efforts of proving lower bounds against stronger
and stronger proof systems. Thus one of the most eminent open questions in complexity theory
is to prove superpolynomial lower bounds for extended Frege systems, the most powerful proof
systems ever known for propositional formulas. Since extended Frege systems are very general, an
obvious approach to this open question is to seek a reduction to another system which appears more
structured and/or less powerful. Pitassi and Urquhart [24] made an important step to this goal,
namely, they proved that the above open question is equivalent to whether the Hajós calculus [15],
which is a simple, nondeterministic procedure for generating non-3-colorable graphs, is polynomially
bounded. Thus, the famous open question in proof complexity is beautifully linked to the open
question in graph theory; in order to prove superpolynomial lower bounds for the extended Frege
systems, it now suffices to find a “hard example” from the set of non-3-colorable graphs. Thanks
to the long and extensive research history of graph theory and graph algorithms, this is hopefully
easier than finding a hard example from the set of formulas. In this paper, we make another step
toward this direction by showing that it still suffices if Hajós calculus is restricted to within the
class of planar graphs, not only for the final graph but also intermediate ones. More formally:

Our contribution The Hajós calculus consists of three rules (see the next section), each of
which modifies a graph into another. For a given graph G, its construction is a sequence of
graphs G1, G2, . . . , Gm = G such that each Gi is a K4 or follows from its previous graph(s) by
applying one of the rules. Suppose that G is a non-3-colorable planar graph. Since the Hajós
calculus is complete, there must be such a construction if we allow non-planar graphs for Gi’s. Our
new generating system, the planar Hajós calculus, requires all the intermediate graphs to be also
planar. Since each rule of the Hajós calculus can easily violate planarity, this requirement imposes
a strong restriction in applying the rules and therefore the resulting system seems significantly
weaker than the original one. (In fact, even the completeness proof needs much more work than the
original proof.) Nevertheless we prove that the worst-case complexity of the planar Hajós calculus
is polynomially equivalent to that of the general Hajós calculus, i.e., the former is polynomially
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bounded for all non-3-colorable planar graphs if and only if so is the latter for all non-3-colorable
(general) graphs.

Thus, combined with [24], we would be able to claim a superpolynomial lower bound of extended
Frege systems by finding planar non-3-colorable graphs which need superpolynomial steps for its
construction by the planar Hajós calculus. To do so, we could use many graph properties specific
to planar graphs. For example there is always a small separator for a planar graph, which enables
us, for example, to design sub-exponential-time algorithms for many NP-hard problems (including
3-colorability) and to obtain nontrivial size lower bounds for planar circuits [22]. Planar graphs of
course admit planar embedding, which is also useful for designing e.g., linear-time algorithms for
isomorphism testing for planar graphs [17] and PTAS for the planar TSP [13]. Most importantly,
every planar graph is 4-colorable [3, 4], and we have the detailed case-analysis for efficiently coloring
planar graphs. We thus believe that our one-step from the Hajós calculus to the planar Hajós
calculus is not too small. Note that, although it is very unlikely, we could also claim NP = coNP
by proving the planar Hajós calculus is polynomially bounded, by taking these advantages.

Related work We briefly review the history on proving lower bounds for propositional proof sys-
tems. As formalized by Cook and Reckhow [10], there exists a propositional proof system providing
short (polynomial-size) proofs for all tautologies if and only if NP = coNP. In other words, to
prove superpolynomial lower bounds for powerful proof systems is a good evidence for NP 6= coNP.
To do so for the extended Frege systems is an obvious goal, but people had known that is extremely
hard and research interests have naturally shifted into their subsystems. Resolution is one of the
most studied such a proof system. First superpolynomial lower bounds for Resolution were ob-
tained by Tseitin [29] in the special case of regular Resolution and this bound was improved to an
exponential one by Galil [11]. Haken [16] proved the first superpolynomial (actually exponential)
lower bounds for general Resolution. After Haken’s breakthrough, several lower bounds were ob-
tained for stronger proof systems. Ajtai [1] gave superpolynomial lower bounds for bounded-depth
Frege proofs, and Beame et. al. [7] improved the bound to an exponential one. These results lead
exponential lower bounds for the subsystems of the Hajós calculus [24, 18]. There are also several
proof systems for which superpolynomial lower bounds are known, including Polynomial Calculus
[6], Gomory-Chvátal cutting planes [25] and OBDD refutations [21]. It should be noted that hard
instances often come from graphs and their graph-theoretic properties, such as expansion [2] and
high pebbling price [23], play important roles in proving their lower bounds. More backgrounds on
proof complexity can be found in [8, 20, 26, 27, 28, 30].

2 Hajós Calculus

Although the Hajós calculus generates non-k-colorable graphs for general k (≥ 3), we only consider
k = 3 in this paper. The set of initial graphs in the Hajós calculus contains all graphs isomorphic
to complete graph K4. There are three rules for generating new graphs:

1. Vertex/Edge Introduction Rule: Add (any number of) vertices and edges.

2. Join Rule: Let G1 and G2 be disjoint graphs, a and b adjacent vertices in G1, and a′ and
b′ adjacent vertices in G2. Construct a graph G3 from G1 ∪ G2 as follows. First, remove
edges (a, b) and (a′, b′); then add an edge (b, b′); lastly, contract vertices a and a′ into a single
vertex. (See Fig. 1(i))

3. Contraction Rule: Contract two nonadjacent vertices into a single vertex, and remove any
resulting duplicated edges.
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Figure 1: (i)Join Rule (ii)Edge Elimination Rule

Vertex/Edge Introduction Rule implies that if a subgraph of G has a construction, G also has a
construction. Rules 1 and 2 increase vertices and/or edges, but Rule 3 reduces vertices and edges,
thus the construction may not be polynomially bounded or the number of construction steps may
not be bounded by polynomial in |G|. There is another version of the Hajós calculus, denoted
by HC. The system HC has the same set of initial graphs, as well as Rules 1 and 3 of the Hajós
calculus, but Rule 2 is replaced by the following rule:

4. Edge Elimination Rule: Let G1 and G2 be two graphs with common vertex set {a, b, c, . . .}
which are identical except that G1 contains edges (a, b) and (b, c) and not (a, c), whereas G2

contains edges (a, b) and (a, c) and not (b, c). Then from G1 and G2, we can construct a graph
G3 that is identical to G1 but does not contain (b, c) (See Fig. 1(ii)).

Let C and C′ be two graph calculus systems, then C p-simulates C′ if there is a polynomial-time
computable function f so that for all graphs G, if σ is a graph construction of G in C′, then f(σ) is
a graph construction of G in C. C and C′ are p-equivalent if C p-simulates C′ and C′ p-simulates C.

Proposition 1 ([24]). HC is p-equivalent to the Hajós calculus.

3 Planar Hajós Calculus

Now we introduce our new system, the planar Hajós calculus. Suppose that a sequence of graphs
G1, G2, . . . , Gm satisfies the following conditions: (i) All Gi are planar. (ii) Each Gi is K4 or is
constructed from previous graph(s) by one of the three rules of HC. Then we say that Gm is
constructed by planar HC or PHC. Note that Rules 1 and 3 (but not Rule 4) may violate the
planarity of the graph. So, the definition is equivalent to the following: When we introduce a new
edge between vertices a and b of Gi, there must be a planar embedding of Gi such that a and b are
on the same face. When we apply Contraction Rule between vertices a and b of Gi, there must be
a planar embedding of Gi such that for each vertex x being adjacent to a, vertex b is also adjacent
to x or on the same face as x.

In some cases, this planarity restriction is quite annoying. Fig. 2(i) shows a simple example.
Suppose that we wish to remove the chord (u, v) to make a face of size five in some planar graph as
G1. Then what we would do is to construct another planar graph as G2 and apply Edge Elimination
Rule to obtain G3. One should notice, however, that this can be done because we can draw the other
cord (u,w) without violating planarity and that it is no longer obvious if such a chord elimination
is still possible for a face of size four.

To overcome this difficulty, we introduce a new Edge Elimination Rule.

5. Edge Elimination Rule II: Let G1 be a graph with vertices {a, b, . . .} that contains an
edge (a, b), and G2 be the same graph as G1 except that vertices a and b (after removing the
edge between them) are contracted. Then from G1 and G2, we can construct a graph G3 that
is identical to G1 but does not contain (a, b) (See Fig. 2(ii)).
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Figure 2: (i)Removing chords (ii)Edge Elimination Rule II

To make the difference clear, Rule 4 is called Edge Elimination Rule I from now on. Edge
Elimination II obviously keeps non-3-colorability and the following fact shows that it is at least as
powerful as I. See Fig. 1(ii). Let G4 be a graph obtained by contracting an edge (a, c) of G1. Then
we get G3 from G2 and G4 by Edge Elimination II, meaning Rule 4 can be simulated by Rules 5
and 3. (Consequently, notice that Rules 1, 3 and 5 are a new complete system for generating
non-3-colorabe graphs.)

Thus adding Rule 5 to PHC may seem to increase the power of the system, but we can prove
that this is not the case, i.e., Rule 5 can be simulated by PHC in polynomial steps, as shown in
Lemma 3 of section 5. It turns out that the new rule is quite convenient for dealing with faces of
size four, which plays an important role in the rest of the paper.

Obviously PHC is sound, i.e., all graphs generated by PHC are non-3-colorable (planar) graphs.
Let LPHC be the set of such graphs generated by PHC. What we want to prove to attain our goal
is that HC generates all non-3-colorable graphs in polynomial steps if and only if PHC generates all
graphs in LPHC in polynomial steps. Thus LPHC does not necessarily contain all non-3-colorable
planar graphs or PHC is not necessarily complete. In fact there is no obvious extension of the
proof for the HC’s completeness to the proof for the PHC’s completeness. Fortunately, however,
the proof of our main theorem immediately implies the completeness of PHC, which is an important
by-product of this paper.

4 Planarization of a Graphs

Intuitively speaking, our main theorem claims that PHC is as powerful as HC. To prove this, the
natural approach is to develop a simulation of HC by PHC: Suppose that a planar graph G can
be generated by HC by a sequence of (maybe non-planar) graphs G1, G2, . . . , Gm = G. Then what
we do is to define planar graphs H1,H2, . . . ,Hm = G such that each Hi is “similar” to Gi and it
can be generated by PHC from previous Hj ’s (j < k) in polynomial steps. To define the similarity,
we can use the so-called the Crossover Gadget ; [12] showed that for a given (non-planar) drawing
Ĝ of a graph G, we can construct a planar graph H such that G is 3-colorable if and only if H is
3-colorable. (A graph is drawn in the plane in such a way that each vertex v is represented by a
point and each edge (u, v) by a continuous line connecting the two points corresponding to u and
v.)

Definition 1 ([12]). The Crossover Gadget, denoted by 3, is a planar graph given in Fig. 3(i).
Outer vertices a and c (b and d, also) are said to be opposite. One can easily see that opposite
vertices must have the same color in any proper 3-coloring.

Using this gadget, the non-planar drawing of G1 of Fig. 3(ii) is converted to a planar graph G′
1,

where X and Y are Crossover Gadgets. More formally:
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Figure 3: (i)Crossover Gadget (ii)Example of Planarization (iii)Planarization Process

Definition 2. For a given drawing G of a graph, its planarization P (G) is a planar graph con-
structed by the following procedure: (i)Each crossing of G is replaced by a 3 (see Fig. 3(iii)(a)–(b)).
(ii)Let u, x1, y1, . . . , xk, yk, v be vertices corresponding to edge (u, v) in G, where xi and yi are pairs
of opposite vertices of each introduced 3’s, and consider pairs of vertices (u, x1), (y1, x2), . . . , (yk, v).
Draw an edge for exactly one of these k + 1 pairs and contract all the others. (See Fig. 3(iii)(c)).

The structure as shown in Fig. 3(iii)(c) is called an extended edge (or E-edge for short) and is
also illustrated as in Fig. 3(iii)(d), where dotted lines show contractions and •’s show Crossover
Gadgets. Fig. 3(ii) shows such a representation of P (G1).

5 Basic Tools of PHC
In this section we will prove a key lemma (Lemma 1). Suppose that there is a sequence G1, G2, . . . , Gm

of planar graphs such that (i)G1 is any (non-3-colorable, often omitted) planar graph (called an
axiom) (ii)For each 2 ≤ i ≤ m, Gi is K4 or can be derived from previous graphs by PHC in
polynomial steps. Then we write G1

∗⇒ Gm. We also write G1, G2
∗⇒ Gm if we need two axioms.

Lemma 1 (Redrawing). Suppose G1 and G2 are two drawings of the same (not necessarily
planar) graph. Then P (G1)

∗⇒ P (G2) in poly(|G1|) + |G2|) steps.

The following lemmas provide convenient tools to prove G1
∗⇒ G2 and to prove Lemma 1.

Lemma 2 (Triangle Elimination). Let G1 be a planar graph having a vertex v with degree at
most two, and G2 be the (obviously planar) graph obtained by removing v and its outgoing edges
from G1. Then G1

∗⇒ G2 in polynomial steps.

Proof. If v’s degree is zero, all we have to do is to merge it to a nearby vertex. Suppose that v’s
degree is one. Then v has only one edge, (u, v), and if u is adjacent to another vertex w, then we
can contract v and w. Otherwise, contract u and v with u′ and v′ such that an edge exists between
them (If no such u′ and v′ exist, then the graph would be 3-colorable).

So, we can restrict ourselves to the case that v is of degree two. See Fig. 4(i). Let a and b be the
two vertices adjacent to v and there may or may not be an edge between a and b. We add vertices
and edges as G3 and G4, and get G5 by Edge Elimination I. Now we are going to remove triangle
a, v′, v′′ (vertices v′, v′′ and the three edges). This is the main part of this lemma and therefore we
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Figure 4: (i)Triangle Elimination (ii)Equality Introduction (iii)Edge Elimination II

call this procedure Triangle Elimination. If a is a part of another triangle a, c′, c′′ as shown in G6,
then we just contract v′ and c′ and v′′ and c′′.

Otherwise, we look for a triangle near a (say, e, d′, d′′ in G7) which is guaranteed to exist
somewhere since the underlying graph is a non-3-colorable, planar graph [14]. Then we continue to
change the graph into as G8 and G9 by Vertex/Edge Introduction then G10 by Edge Elimination I,
and G11 by Contraction (of vertices g and h), which allows us to introduce one extra edge (a, a′)
to the triangle. By repeating the same procedure, we can get another extra edge (a′, a′′) as in G12.

Now we can contract a′ and f , a′′ and e, v′ and d′, and v′′ and d′′. Extension to the general
case is straightforward. ¤

Lemma 3 (Simulation of Edge Elimination II). Edge Elimination II can be simulated by
PHC in polynomial steps.

Proof. For the simulation, we first need a tool, what we call Equality Introduction (see Fig. 4(ii)).
Consider an arbitrary vertex, say, a, as in G5. Our goal is to split a into two vertices a and a′

and to put two triangles with a shared edge between them as G8. The edges from a are arbitrarily
distributed to a and a′ whenever the resulting graph is a planar graph. If the number of such edges
from a′ (or from a) is one, see G1 ∼ G4. From G1 to G2, a simple Vertex/Edge Introduction is
enough, G3 can be constructed from K4, and G4 is due to Edge Elimination I from G2 and G3. If
there are two edges from a′, see G5 ∼ G8 (The case that there are three or more edges from a′ is
similar and omitted). Repeat the above procedure twice to get G6 and contract a′ and a′′ and c
and c′ to get G7. Finally G8 can be obtained by contracting d and d′.

Now the simulation of Edge Elimination II goes like Fig. 4(iii). From G1 to G4 is by Equality
Introduction, G2 to G5 by Vertex/Edge Introduction, G6 (and also G7 = G6) by Edge Elimination I.
G8 is obtained by Edge Elimination I and finally we get G3 by Triangle Elimination. ¤

Lemma 4 (Crossover Construction). Crossover Gadget G1 as shown in Fig. 5 can be con-
structed by PHC.

Proof. First we get X(2) by Equality Introduction to K4. Then G3, G4, G6, G8, G9 are obtained
from X(2) by (after contracting c and f for G3, G6 and G9) Vertex/Edge Introduction. For
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Figure 6: (i)Crossover Introduction (ii)Crossover Elimination

example, G3 has a subgraph obtained by contracting c and f of X(2). Note that labels a to g are
used to show corresponding vertices. All the remaining graphs are obtained by Edge Elimination II
which can now be used by Lemma 3. For example, we get G2 from G3 and G4 since G3 is a graph
obtained by contracting e and f of G4 (edge (e, f) of G4 is given as a bold line in the figure and
similarly for the others). ¤

Lemma 5 (Crossover Introduction). As Equality Introduction, a Crossover Gadget can be
added. See Fig. 6(i).

Proof. From G1 to G4, we just use Vertex/Edge Introduction (the added part is a Crossover
Gadget whose two opposite vertices are merged). G3 is by Crossover Construction that is possible
by Lemma 4. Use just Vertex/Edge Introduction to make G5 similar to the whole underlying graph.
Finally G2 is obtained by Edge Elimination II. ¤

Lemma 6 (Crossover Elimination). Let a, b, c and d be four outer vertices of a Crossover
Gadget and b and d be opposite. Moreover c is free, i.e., c is not connected to any vertices except
those in the Crossover Gadget. Then this Crossover Gadget can be removed, i.e., b and d are merged
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into a single vertex, a also remains, but all the other vertices and edges of the Crossover Gadget
can be removed in polynomial steps. Namely, G1 is changed to G2 in Fig. 6(ii).

Proof. Contract vertices a and f (and three others similarly) to get G3, and remove triangles to
get G4. Contract b and d (this is possible since c has no edges other than the three edges of the
gadget). Two Triangle Eliminations to get G6. As a different direction from the original graph,
merge e and g (and three others) to get G7, and contract c to h, b to a and d to a to get G8. G9

is obtained by applying two Contractions, i and j and k and l, G10 is by Triangle Elimination.
Finally use Edge Elimination II from G6 and G10 to G2. ¤

Now we are ready to prove Lemma 1.

Proof of Lemma 1. Let G1 and G2 be two drawings of the same graph G. We are going to show
that P (G1)

∗⇒ P (G2) can be done (in polynomial steps) by the following algorithm. For exposition,
we use the example in Fig. 7(i) (recall that a Crossover Gadget is represented by •). Note that
vertices of the same label in P (G1) and P (G2) correspond to the same vertex of G.

Step 1 P (G2) is just added to P (G1) (by Vertex/Edge Introduction).

Step 2 Connect each pair of two vertices of the same label by using Crossover Gadgets as shown
in Fig. 7(i). Let this new graph be G3. Note that we may need two or more Crossover Gadgets
to connect a single pair of vertices to maintain newly created crossings but it is easily seen that
we can bound the total number of those Crossovers by a polynomial in |P (G1)| + |P (G2)|. Each
vertex label in P (G1) is changed from ` to `′ (a to a′, b to b′, etc., as in the Figure).

Step 3 We now delete all the edges of P (G1) one by one: Suppose that we want to delete edge
(b′, c′). Then all we have to do is to create a graph which is exactly the same as G3 except that
vertices b′ and c′ are contracted (and then Edge Elimination II can be used to remove the edge). To
do so, consider the cycle consisting of E-edge (b, c), edge (b′, c′), and Crossover Gadgets connecting
b and b′, and c and c′ (Fig. 7(ii)(a)). Note that the cycle is “twisted” and one can easily see that
at most one twist is enough for each cycle (The following procedure becomes easier if there is no
twist).

Now see Fig. 7(ii)(b). Our goal is to construct G3 with contracted b′ and c′. We start with a
planar graph in Fig. 7(ii)(d) consisting of a single Crossover Gadget (let its outer vertices be e, f, g
and h, e and g and f and h are opposite) such that e and f are connected by a single edge and
g and h are contracted. Obviously this graph is non-3-colorable, and it can be generated by PHC
in finite steps. (See Fig. 8. G1 is just by Crossover Construction. G2 is obtained from G1 by two
contractions between b and c and d and c. G3 is obtained from G1 by contracting c and d and
adding an edge (a, b). Note that labels a to d of G1 are used to show corresponding vertices. Finally
we get G4, which is exactly the same graph in Fig. 7(ii)(d), from G2 and G3 by Edge Elimination II
since G2 and G3 are the same graph if the bold (a, c) in G3 is contracted.) We then insert two
Crossover Gadgets at vertices e and f and get Fig. 7(ii)(e), which is exactly the same as (b). Now
we add vertices and edges to make it the same as G3 excepting the contracted b′ and c′. Let this
new graph be G′

3 and apply Edge Elimination II to delete the edge (b, c) from G3 as in Fig. 7(ii)(c).
Repeat this procedure to remove all the edges of P (G1) part. Thus we obtain the graph as in

Fig. 7(iii)(a).
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Step 4 Remove all the Crossover Gadgets excepting those within P (G2) to get Fig. 7(iii)(b).
Recall that when we remove the Crossover Gadgets, one by one, we need to find a Crossover
Gadget such that at least one of its outer vertices is free. To see this is always possible until all the
Crossover Gadgets disappear, see the cycle as in Fig. 7(iv)(a). Note that the cycle is twisted and
we can regard that it consists of two cycles, C1 and C2, each including an edge (e or e′). Suppose
that edge e′ is removed at step 3. Then the cycle C2 is “cut”, as shown in Fig. 7(iv)(b). Thus
Crossover Gadgets X1 and X2 have free outer vertices and can be removed. Then X3 has a free
vertex and is removed. Then X4 can be removed and the second cycle C1 is also cut and Crossover
Gadgets included this cycle can also be removed similarly.

This complete the proof for P (G1)
∗⇒ P (G2). It is not hard to see that the procedure needs

only polynomial steps. ¤
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6 Main Theorem

We are now ready to prove our main theorem.

Theorem 1. PHC is polynomially bounded if and only if so is HC.

Proof. We first prove the if-part. Suppose that HC is polynomially bounded for any (non-3-
colorable) graph. Then it is obviously polynomially bounded for any (non-3-colorable) planar graph
G. Hence there is a sequence of (not necessarily planar) graphs

G1, G2, . . . , Gm = G

such that each Gi is (i) K4 or (ii) for some j < i, Gi is generated from Gj by Rule 1 (Vertex/Edge
Introduction) or Rule 3 (Contraction) of HC or (iii) for some j, k < i, Gi is generated from Gj

and Gk by Rule 4 (Edge Elimination I) of HC, all in time polynomial in |G|. For this sequence of
graphs, we prove that there exists a sequence of drawings

H1, H2, . . . ,Hm,H

such that:

(i) Hi is a (maybe non-planar) drawing of Gi and H is an arbitrary planar drawing of G.

(ii) For each 1 ≤ i ≤ m, K4
∗⇒ P (Hi) or for some j < i, P (Hj)

∗⇒ P (Hi) or for some j, k < i,
P (Hj), P (Hk)

∗⇒ P (Hi), all in polynomial steps. Here, “polynomial” means polynomial
in |P (Hj)| + |P (Hk)|, which also means polynomial in |G| since |P (Hi)| is bounded by a
polynomial in |Gi| for all i and |Gi| is bounded by a polynomial in |G| by assumption.

(iii) P (Hm) ∗⇒ H in polynomial (the same as above) steps.

Now we shall prove that for each Gi and G, there exists the corresponding Hi and H that
satisfy these three conditions by induction, which obviously means that any non-3-colorable planar
graph (= G) can be generated by PHC in a polynomial number of steps. If i = 1, then G1 must be
a K4. Then we can select H1 as the planar drawing of K4, and obviously K4

∗⇒ P (H1) in 0 steps.
For Gi (i ≥ 2), there are several cases:

Case 1 Gi is a K4. Completely the same as above.

Case 2 Gi is obtained from Gj (j < i) by Vertex/Edge Introduction. By induction hypothesis
Hj is a proper drawing of Gi. To add an vertex, just add one in anywhere Hj to obtain Hi, which
is obviously a proper drawing of Gi and satisfies the three conditions. If an edge is added between
v1 and v2 of Gj , then we draw an edge between the corresponding vertices of Hi, which is also a
proper drawing of Gi. For P (Hi) we may need to add Crossover Gadgets along the added edge.
The number of such Crossover Gadgets is at most the number of already existing (E-)edges and
thus a polynomial number of steps suffice for P (Hj)

∗⇒ P (Hi).

Case 3 Gi is obtained from Gj (j < i) by contracting two vertices, v1 and v2. To obtain Hi, we just
“drag” v′1 to v′2, where v′1 and v′2 correspond to v1 and v2 of Gj , respectively. For P (Hj)

∗⇒ P (Hi),
see Fig. 9(i). Again we drag v′i into the face v′2 is on in P (Hj), where we may need to add (at most
a polynomial number of) Crossover Gadgets as shown in Fig. 9(i). After that the two vertices are
contracted in a single step. Thus the whole P (Hj)

∗⇒ P (Hi) needs polynomial steps.
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Case 4 Gi is obtained from Gj and Gk (j, k < i) by Edge Elimination I. Let v1, v2 and v3 be
important vertices such that edge (v1, v2) exists both in Gj and Gk, edge (v2, v3) only in Gj , edge
(v1, v3) only in Gk. All the other parts of Gj and Gk are the same. Let G′

j (G′
k, respectively) be the

graph obtained from Gj (Gk, respectively) by removing the above two edges (v1, v2) and (v2, v3)
((v1, v2) and (v1, v3), respectively). By definition, G′

j and G′
k are the same graph and have the

same drawing Ḡ′
j and Ḡ′

k. This uniqueness of the drawing is important when we handle P (H ′
j) and

P (H ′
k) later, and for such a unique drawing, we can use for instance the following method. The

vertices are placed on a circle in the clockwise order of v1, v2, v3, . . . , vn, and each edge is drawn as
a straight line (See Fig. 9(ii)).

Now we put the removed two edges back to each of Ḡ′
j and Ḡ′

k, obtaining H ′
j and H ′

k, where
(v1, v2) and (v2, v3) are drawn as straight lines, but (v1, v3) is drawn as going around the outside of
v2 without any crossings. Their planarization P (H ′

j) and P (H ′
k) are given in Fig. 9(ii). Apparently

Hj and H ′
j are drawings of the same graph Gj and so are Hk and H ′

k. Hence, by Lemma 1,
P (Hj)

∗⇒ P (H ′
j) and P (Hk)

∗⇒ P (H ′
k), both in polynomial steps. Because of the unique drawing,

P (H ′
j) and P (H ′

k) are exactly the same graph excepting edge (v2, v3) in P (H ′
j) and (v2, v3) in

P (H ′
k), and so we can apply Edge Elimination I to get the graph P (Hi). Because of the drawing

rule above mentioned, we can determine Hi from P (Hi) uniquely, which is obviously a drawing of
Gi.

Case 5 Deriving of H from P (Hm). Recall that H is a planar drawing of G and Hm is a (possibly
non-planar) drawing of Gm, but since Gm and G are the same graph, H and Hm are drawing of
the same graph. Thus we can use Lemma 1, i.e., P (Hm) ∗⇒ H in polynomial steps. This completes
the proof of the if-part.

The proof of the only-if part is easier but rather technical. Suppose that PHC is polynomially
bounded. Let G be any (possibly non-planar) non-3-colorable graph and we denote its reasonable
(without too many crossings) drawing also by G. Then the size of P (G) is bounded by a polynomial
and by assumption it can be generated by PHC in polynomial steps. In order to show that HC
is polynomially bounded, it now suffices to show that G can be derived from P (G) by HC in
polynomial steps. Note that this is nothing other than a sequence of Crossover Eliminations. See
Fig. 10(i): G1 is a Crossover Gadget we want to remove. G3 is obtained by Contractions of a and c,
b and d and pairs of vertices labeled by s, t, v, w (recall we do not have to preserve planarity). G4

is by Triangle Elimination (we need a care as mentioned below). G5 and G7 are by Contractions of
b, d and a, c, and s and b, d, respectively. G6 and G8 are both by sequences of triangle Eliminations.
Finally, G2 is by Edge Elimination II.

Recall that the previous proof for Triangle Elimination needed the fact that any non-3-colorable
planar graph has a triangle as a subgraph. In the above derivation, we cannot use this property
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Figure 10: Crossover Elimination and Triangle Elimination

since the graph may no longer be planar. So, in the following, we redesign the procedure for
Triangle Elimination by assuming that the graph includes a chord-less cycle of odd length. (Any
non-3-colorable graph has such a cycle since otherwise the graph is bipartite.) See Fig. 10(ii). By
using the same procedure as before, we can make a triangle cde and a “shaft” abc which connects
the triangle and the odd cycle. Our goal is to remove this triangle and shaft. Recall that we can
change the length of shaft arbitrarily.

We have three basic operation: (i)Chord of size three(3-chord). As shown in Fig. 10(ii), we
can replace the triangle and shaft by a chord which connects two cycle vertices of distance two
(as in G2). This can be done by, for instance, contracting b and b′, c and c′, d and d′, and e and
b′. (ii)Inner triangle. As shown in G3, we can replace the triangle and chord by a inner triangle
consisting of one cycle edge + two chords by a procedure similar to (i). (iii)Chord Shift. See
Fig. 10(iii). Suppose that the triangle and shaft is replaced by chord ab (G1). Then we also apply
3-Chord to the original graph and get G2. G3 and G4 are obtained by Vertex/Edge Introduction
from G1 and G2 respectively. Then Edge Elimination I from G3 and G4, we can get G5 where the
one endpoint of the original chord in G1 is “shifted” two positions on the cycle.

Now the triangle and shaft can be removed as follows: If the cycle is a triangle then we are
done as before. If the cycle is of size five, then see Fig. 10(iv). By 3-chord, we can make G1 and
G2, followed by Edge Elimination I. Suppose that the cycle is of size seven or more. See Fig. 10(v).
G1 is obtained by Inner Triangle, where two chords connect vertices of distance three and distance
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four, and G2 by 3-Chord + Edge Addition. G3 is by Edge Elimination I and G4 by Chord Shift.
Notice that in G3 the chord connects two vertices whose lower-half distance is odd and this is also
true in G4. Repeating Chord Shift, we can reach, from the original graph, G5 where the chord
connects two cycle vertices of distance three. G6 is obtained by 3-Chord and finally G7 is obtained
by Edge Elimination I.

Thus Triangle Elimination is still possible for non-planar non-3-colorable graphs, completing
the proof of the only-if part. ¤

If we allow arbitrary steps for generation, the above proof claims that if a planar non-3-colorable
graph G is generated by HC, then so is by PHC. Since the former is complete, we have the following
theorem:

Theorem 2. PHC is complete.

7 PHC for Bounded-Degree Graphs

Thus, in order to prove (or to disprove, resp.) superpolynomial lower bounds for extended Frege,
it suffices to find a non-3-colorable planar graphs for which PHC needs superpolynomial steps (or
to prove no such graphs exist, resp.). We can go even further toward this direction by considering
degree-bounded planar graphs and the degree-bounded PHC, PHC(d), that is the PHC with the
restriction that all the graphs that appear in the construction must have maximum degree at most
d. It is well known that all degree-3 (all vertices have degree at most three) planar graphs are
3-colorable except for K4 [9] and 3-colorability for degree-4 planar graphs is in turn NP-hard [12].
Therefore it would be nice if to consider only degree-4 graphs is enough, or if we could prove that
PHC is polynomially bounded if and only if so is PHC(4). Unfortunately this seems hard because
PHC(4) is not complete.

Proposition 2. There are an infinite number of degree-4, planar, non-3-colorable graphs which
cannot be constructed by PHC(4).

Proof. Consider 4-regular critical planar graphs that are non-3-colorable (“critical” means any
proper subgraph is 3-colorable). Due to Koester[19], this class includes infinitely many graphs. (See
Fig. 11(i) for an example.) Let G be such a graph and we now prove G cannot be generated by
PHC(4). Suppose for contradiction that G is generated by PHC(4) and let r0 be the rule applied in
the last step to obtain G, i.e., K4 → · · · → Gn−1 →

r0

G. There are three possibilities for r0 but none

of them is actually possible: (i) r0 is not Edge Introduction since if so, Gn−1 would be a proper
subgraph of G and hence 3-colorable. (ii) r0 is not Edge Elimination, since if so, Gn−1 would be
a graph such that one edge is added to G, meaning Gn−1 has degree-5 vertices. (iii) Therefore r0

must be Contraction. Let v1 and v2 in Gn−1 be contracted into v in G as shown in Fig. 11(ii).
Then one can see that the sum of the degrees of v1 and v2 must be four. (Otherwise, if it is more
than four as shown in Fig. 11(ii), then the degree of some ui must be five or more.) Thus one
of them, say v1, has degree at most two, which means v1 (and its edges) can be deleted without
changing colorability of Gn−1. Obviously this vertex-deleted graph is a proper subgraph of G and
should have been 3-colorable, a contradiction. ¤

Why this incompleteness of PHC(4) is an obstacle for our goal, or why it makes hard to prove
that PHC is polynomially bounded if and only if so is PHC(4)? For the only-if part, we need to
show that PHC(4) can generate degree-4, planar, non-3-colorable graphs G in polynomial steps
assuming that PHC is polynomially bounded. If PHC(4) would be complete, we have merely to
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do so for every such G. In reality, since PHC(4) is not complete, what we have to prove is “for
every such G, PHC(4) does generate it in polynomial steps or G is not in LPHC(4).” The latter is
apparently much harder than the former. (Note that the graphs used for proving Proposition 2 are
only examples; the whole class may be much larger [5]. Relaxation of degree restriction might help;
we can in fact prove that PHC(6) is polynomially bounded for degree-4 graphs if and only if PHC
is polynomially bounded, using a similar simulation as in Sec. 5, but it is not known if PHC(6)
itself, i.e., for degree-6 graphs, is polynomially bounded.)

8 Concluding Remarks

Recall that our final goal is to find a hard example for PHC. Note that if the generation system is
more deterministic, or application of each rule is more restricted, then it is usually better to prove
lower bounds. In this sense, we should seek even more restricted graph calculus whose complexity is
p-equivalent to that of PHC. As mentioned above, degree restriction is one of the good candidates.
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