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Department of Physics! Faculty of Sciences! Hokkaido University! Sapporo 060! Japan

Abstract

We reformulate the genaral relativistic version given by S.Tanimura of Feynman's

consideration. Velocity and momentum of a point particle are assumed to be transformed as

(contravariant and covariant) vectors under the point transformation in quantum mechanical

sense. Such an assumption restricts strongly the equation of motion allowed by the basic

commutation relations. This equation is equivalent to Hamilton-type one including scalar,

vector and gravitational fields covariantly.
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1. Purpose Since F.J.Dyson [1] reconstructed the Feynman's proof of Lorentz force

and the homogeneous Maxwell equations, some papers have been published on quantum

mechanical equations of motion of a point particle, in which some generalizations have been

done by taking into consideration the Lorentz covariance, the spin or the non-abelian internal

degree of freedom [2,4]. In the Tanimura's paper [3], he tried to extend the Feynman's

proof to the general relativistic case. In his formulation, however, the point transformation

properties of relevant quantities are not clear; in particular, the force FP. defined in Ref.[3]

is not transformed as a vector.

The aim of the present paper is to reformulate the general relativistic version given

by Tanimura [3], and to give the 'covariant' equation of motion (in quantum mechanical

sense) for a point particle with its mass m under the point transformation of curvilinear

coordinates

(1)

Here, a particle is moving in N-dimensional space-time with coordinates qp.(r),p. =
1,2, ..., Nj r is a parameter, the meaning of which is discussed in Ref. [3]. It should be noted

that the transformation property of velocity (or momentum) under the point transformation

(1) has to be modified so as to behave as a "quantum" vector, and that in such a sense one can

give the equation of motion for a point particle with the" quantum" covariance, consistently

with the basic commutation relations. We point out that the covariance requirement in an

extended sense restricts strongly a form of the equation of motion, which is shown to be .

equivalent to Hamilton-type equation of motion including scalar, vector and gravitational

fields acting on a point particle.

2. Definition of relevant quantities and the basic assumptions

commutation relations

First we assume the

(2.1)

where gCXf3 (q) is the "metric" of the space-time. The transformation property of qCX under

(1) is taken to be written as

(2.2)

Here, < A, B > means (AB + BA)/2. We call the quantity with the above trnsformation
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property the quantum (contravariant) vector. Next, we define the momentum PP as

gpO' is the inverse to gaP. We obtain

[ a ] [ a '-Y] '-I:. o'-Y '-1:. Co'q ,Pp = m < 9p-y, q ,q >= 1-/I,9P-y9 = 1,/I,U p.

As easily confirmed, Pp. behaves as a "quantum" (covariant) vector; due to

I -y 6 'th 13 NqP bt .gILa = e pe O'9-y6 WI e i':= q''''' we 0 ain

For a tensor r O'l O'n we havePl Pm'

which is form-invariant (or covariant) under the point transformation (1);

(2.3a)

(2.3b)

(2.4)

(2.5)

For the quantity W ap , defined by

we obtain

therefore, [q'Y, Fap (q)] = 0 with

(3.1a)

(3.1b)

(3.1c)

Fap is a function only of qa l s. By employing the transformation property of qp given by

(2.2), we can confirm the tensor' propertyof FO'P;

(3.2)

Simil~rly, from Jacobi identity and the transformation property ofpp (?.4) , one
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obtains

(3.3a)

(3.3b)

which mean that (Pp,Pv] is a function only of qa's and [Pa,Pp] is transformed as a tensor.

Further, by using (2.3a) , one obtains

(3.4)

From Jacobi identity for three pp's, one obtains Bianchi identity for Fp>.;

Thus we see that there exists the quantity Ap(q), satisfying Fap - oaAp(q) 

opAa(q). Using this Ap(q), we define 7rp as follows;

7rp := pp +Ap(q). (3.6a)

Then we can find the following properties of 7rp'S;

[7rp,7r..,.] = ihFp..,. - ih(opA..,.(q) - o..,.Ap(q» = 0, (3.6b)

(3.6c)

7rp is assumed to behave as a "quantum" vector; then the two equations (3.6b) and (3.6c)

are form-invariant, since

[ la 113 ] '-t. vo'a '-t. "aq ,7r = Zne p vq = Zno 13,

(3.7a)

(3.7b)

where integrability condition

is used in (3.7a).

o v 0 v--e - --eoq'P p - oqlP p,
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With the use of the covariant derivative \lp expressed in terms of

Riemann-Christoffel symbol rpj' := !getP(8pgpj' + 8j'gp/3 - 8pgpj')' one obtains

(3.8a)

(3.8b)

It should be noted that, according to our quantization procedure, the vector field AJL(q) has

no sources such as the magnetic monopole in the sense of (3.5).

4. Form of the force From

d [et ] 1 [etp ] [et dpJL]
0= -d q 'PJL = - < 9 'PP >'PJL + q '-d 'T m T

one obtains

[ et dpJL ] in etpF in 8 etp
q '-d = --g . PJL - - < p.g ,Pp>·

T m m

The classical form of the absolute derivative of Pp. which behaves as a vector is

dpp. 1 r>' lip
-d - - p.lIg P>.Pp·

T m

(4.1)

(4.2)

The last term of (4.1) comes from the quantum-mechanical term c.orresponding to the second

term of (4.2). If we can find such a quantity that reduces (4.2) in the classical limit and

that behaves as a quantum vector, we may call it the"quantum" absolute derivative, (w. )Q.

Then the equation of motion of a point particle is written as

(4.3a)

where Fp. is called the force and transformed as

(4.3b)

under the transformtion (1).
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From (4.1),the form of FIJ is expressed as

FIJ = ~ < FJJPgPA,PA > +GIJ(q),
m

(4.4)

(4.6)

where GIJ is a vector depending only on qP's and its property will be investigated later. The

quantum vector property of the first term in r.h.s. of (4.4) is easily confirmed;

< gAPFpp ,P>. >~ < ea AePIJgapFpp, < eV)..,pv.»

=< ePIJgVPFpp,pv >

=< ePIJ' < gVPFpp,pv » .

After some inspection, we see that one possible form of (~)Q is given as

where ra := r~p = g-18a g/2, g:= det(gJJv).

Due to 8IJg ap = -r~vgVP - r~vgav, the quantum absolute derivative reduces to the classical

one, (~.2). Ulld(~I' t.ll<l integra.hility conditioll (3.7c) olle call prove directly,

8pJJ 8pIJ I V (8Pll )
( dr )Q ~ (( dr )Q) =< e IJ' dr Q >,

the derivation of which is given in Appendix.

Using the commutation relations, one can prove the rotation-free property of GIJ;

(4.7a)

because

(4.7b)

5. Final remarks and conclusion (i) By taking into consideration the point transfor

mation property of relevant quantities in quantum-mechanical sense, we gave the equation
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of motion of a point particle expressed as

(5.1 )

where the quantities in both sides are transformed as quantum vectors under the transfor

mation (1). Various expressions equivalent to (4.5) are of course possible. The vector field

Ap(q) satisfies (3.5), so that Ap(q) has no source such as magnetic monopole.

(ii) It seems worthy to notice that, by using the covariant ~inetic energy term

(5.2a)

we obtain

(5.2b)

therefore,

Setting 1.h.s. to be equal to the force (4.4), one obtains

dpp. 1
dr = in [pp.,]( + V(q)],

where V (q) is a scalar function, satisfying

(5.2c)

(5.3a)

(5.3b)

Thus we see the equation of motion (4.3a) determined in accordance with the basic commu

taion relation (2.1) as well as the (quantum) transformation is equal to Hamilton equa

tion of motion, where the r-development is assumed to be determined by Hamiltonian

H =]( +V(q). Note that

(5.4)

(iii) In Tanimura's formulation of the general relativistic case [3], transformation

property ofrelevant quantities are obscure, and further we are apt to think that the derived
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equation of motion for a point particle may be rather general in the framework of quan

tum theory and not necessary to have a conncetion with Lagrangian or Hamiltonian. Our

conclusion is, however, that the extended quantum transformation property under the point

transformation gives a strong condition to the equaion of motion allowed in the quantum

mechanical framwork, and this equation of motion (S.l) reduces to the Hamilton-trpe equa

ton (S.3a).

The authors would like to express their thanks to Dr.N.M.Chepilko (Institute for

Physics, Kiev), Dr.K-I.Sato(Science University of Tokyo, Oshyamanbe, Hokkaido) and also

the members of the group of the Elementary Particle Physics in Hokkaido University.
. 0

Appendi:D--- Proof of the 'vector' property of (*)Q

We consider the transformation property of each term in

under ql' --+ q'l' = q'l'(q). At first, we obtain

Next, as to the second term in r.h.s. of (A.I), we obtain

(A.2)

As to the last term in r.h.s. of (A.I), with the use of f~ = f -ye-Y0' + o-ye-Y0', we obtain

-;,,2 {I a'. ~ ( I IO'(3) 18'. ;O'p I I 1 f3 1 f3
2m 2 I' P fag + 4 I'(g fO'fp) - ell l' [2 0llop(fagO' ) + 4011 (gO' fO'fp)]}

",2 . 1 1
= 2m 011' { - 4'0-ye-y 0' • 0>. e>' f3 • g'O'P + 20>. (e>' pO-ye-Y 0' • g'O'p)}.
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Summing (A.2), (A.3) and (AA), we obtain

( 8P~)I II (8P~) n,2 1{ ~ (~a II p A laP)
dr Q- < e~, dr Q > = 2m 4 -2UA Up lie ~ . e a e 139

- 2{h(opePa . ~glaP . e\3) +8pePa . ofl'g'aP . 8AeA13 (A.5)

+ 28~o>.(opePa . g'aP • e>'p) - 8~(ePQ' .9'0'13 .o>.e>'p)}j

the first term in the curly bracket of (A.5) is

and the remaining 4 terms in the curly bracket of (A.5) is

thus (A.6a)+(A.6b)=0, because

o~(8vella) - 8~(8I1ell~) = 011 (e>'1£ 8>. ella) - 811 (e>'Q'o>.ell p.)

=811(0~ell(X _8~ell~)

= 0, [due to (3.7c)J.

Therefore we see

Reference

[l]F.J.Dyson, Phy.Today 42(1989),32; Am.J.Phys. 58(1990),209.

[2]C.R.Lee, Phys.Letter A148(1990),146.

[3]S.Tanimura, Ann.Pfys. 220(1992),229.

[4]S.K.Soni, J.Phys. A25(1992),L837.

[5]C.Chou, Phys.Letter B323(1994),147.

- 381-

. (A.6a)

(A.6b)

(A.6c)

(A.7)


