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JUNKO SHIDAvVARA
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and
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ABSTRACT

A complete classification of dynamics of a population of a inhibitory pulse-coupled
oscillators is presented. The model is based on the work of Mirollo and Strogatz,
but our model has an inhibitory coupling between oscillators which makes a sharp
contrast with the dynamics of the above authors' model. The main result is that
for a large class of initial conditions, the population approaches a periodic state in
which all the oscillators keep finite si,ze of phase difference (we call it "phase locking
solution" here). For the remaining class of initial data except for nongeneric ones, it
evolves to a periodic state with a cluster or a synchronous state depending on a size
of cluster. The criterion for the classification is explicitly given and can be judged
easily only by the initial condition.

Figure 1: Functional form of f (<p)

This work was motivated by the study
of Mirollo and Strogatz1 on synchronization
of biological oscillators typically displayed
by the flashing of fireflies in perfect unison.
Their model consists of a population of iden­
tical integrate-and-fire oscillators. The cou­
pling between oscillators is all to all and pul­
satile: when a given oscillator fires, it pulls
the others up by a fixed amount, or brings
them to the firing threshold, whichever is
less. They showed that for almost all initial
conditions, the population evolves to a syn­
chronous state. The main issue of this paper

f(CP)
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*The complete version ofthis paper will be appeared in "World Scientific Series In Applicable Analysis"
volume 4, DYNAMICAL SYSTEMS AND APPLICATIONS.
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Figure 2: Firing map
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is to study the dynamics of a population of oscillators when they interact in an inhibitory
way, namely, when a given oscillator fires, it pulls the others down by a fixed amount.
This type of coupling becomes important especially in models of neural oscillators2

In contrast to activation case, phase lock­
ing states become dominant for inhibitory
case instead of synchronization. In fact
generically there are three basins of attrac­
tions; phase locking, phase locking with clus­
ter, and synchronization. The precise mean­
ing of each state will become clear at the
end of this section. A complete classification
of initial data according to their asymptotic
states is done by simple criterions depend­
ing only on initial condition. yYe consider a
population of N + 1 oscillators and each os­
cillator ·is characterized by a state variables
x which is assumed to increase monotoni­
cally toward a threshold x = 1. vVhen x

reaches the threshold, the oscillator fires and
x jumps back instantly to zero, after which
the cycle repeats. Hereafter we assume that
x depends only on a phase variable </> E [0,1]
and evolves according to x = /( </», where
/ : [0,1] --+ [0,1] is a smooth function satis­
fying f' > 0, /" < 0, /(0) = 0, and /(1) = 1
(see Fig. 1).

The phase variable </> is such that d</>/dt =
l./T, where T is the cycle period. The cou­
pling between oscillators is defined as fol­
lows. If Xi fires, then Xj(</»(j i- i) is pulled
down instantaneously by the amount lEI, or
to zero, whichever is more, i.e., Xj( </> + 0) =
max(O, xj{ </» + €) "Ij i- i. Note that € is
always a negative number. Absorption oc­
curs when an oscillator is pulled down be­
low zero level. Namely, when Xi fires, an
oscillator X j(j i- i) is absorbed by Xi if
max(O, Xj( </» + €) = 0 holds. We assume that the absorbed oscillators behave in the
same way as Xi thereafter. We call such a group of oscillators a cluster.· If a cluster of k
oscillators fires, it pulls all the other oscillators down by Ik€l. When all the oscillators act
as one, we call it synchronization. Since the interaction among oscillators is pulsatile,
and when an oscillator (a cluster) fires, it instantaneously returns to zero phase, it suffices

-797 -



to study the following firing map F to knO\v the asymptotic behavior (see Fig. 2):

E D(O, 1)4>=
[

~1 1C/)2

<PN

[

g(f(l - ¢>N) + €) 1
g(f(¢>l + 1 - ¢>N) + €) '_ f- 1

g(f(<!>N-l + 1 - <!>N) + f) , 9 =

(0.1 )

where D(O, 1) is the ordered space in (0,1), i.e., D(O, 1) = {4> I 0 < ¢>1 < </>2 <
'" < <PN < I}, and 9 is the inverse function of f. It is clear that F preserves order.
Also note that one oscillator always sits at </> = 0, so the firing map F becomes N­
dimensional. F k

( 4» stands for the k-iterations of firing map F, if it can be defined a~d

Fi
k = Fik(~)(i = 1, .. ·,N) denotes the i-th component. <P* = t(¢i,' ",</>k-l) is called a

k-phase locking solution if it is a fixed point of F k
, i.e., F k (~*) = <P*. This notion

can be easily generalized to the case where there are clusters. Our goal is to show the
following theorem.
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Main Theorem

Suppose an initial condition <I> = t( <Dl' rP2"", <DN) E D(O, 1) is given, then the asymp­
totic state is determined by the following diagram.

Yes

(N +1) -
Phase Locking

(Fig. 4)

No

m= Min (k)

s.t. <l>N- <I> k < I-g (-E)

(N+l-m) ­
Phase Locking

(Fig. 5),

m
e =0e

Marginal State

me >0e

Synchronization

(Fig. 6)

Figure 3: classification of asymptotic dynamics
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