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PHASE TRANSITIONS IN TWO-SPECIES ASYMMETRIC DIFFUSIVE LATTICE' GASES

Kwan-tai Leung
Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, R.O.C.

Despite their ubiquity in nature, nonequilibrium phase transitions and critical phenomena
are far less well understood in comparison with their equilibrium counterparts[lJ. A major ob
stacle is that the Gibbs method in equilibrium statistical mechanics no longer applies. Tractable
theoretical models are therefore very valuable in gaining a deeper understanding.

A sensible way to start our exploration is to generalize the equilibrium Ising model to
nonequilibrium situations with steady state transports[21: Using the lattice~gas representation
of the Ising model, we imagine that particles are being driven by some external mechanism
(e.g., 'charged' particles acted on by 'electric' field £). Several questions may be posed as to
the effect of}~ (or of being nonequilibrium): E.g., how are the phase transitions in Ising model
modified? Or, in view of the 'charged particle' picture, does the drive lead to new phenomena
when more than one kind of 'charges' are present? The former kind of questions have been
investigated extensively over the last decade with an accumulation of a wide range of interesting
results[3]. The latter question motivates this study.

Specifically, we consider a two-dimensional (2D) model with two types of particles driven
along mutually orthogonal directions[4], on a square lattice of square geometry L x Lunder

, periodic boundary conditions. To keep things simple, we assume the particles are noninteracting
except being hard cored (thus effectively at infinite temperature). Since. the system is isolated,
the number of particles is conserved and the dynamics is diffusive. The type-1 particle hops
to. its vacant nearest neighbor at a rate p along +y, q« p) along -y, and r along +x and
--=x. The corresponding rates for a type-2 particle are r, r, p and q respectively. So an average
type-1 (or type-2) particle drifts along the +y (or +x) direction. We adopt the Nletropolis
jump rates p = 1/4 = r, q = e-e14 which defines £, and restrict ourselves to equal numbers of
the two types of particles. The parameter space is spanned by £ and the mean particle density
P== Pt = P2. Hole density is denoted by PO = 1 - 2p.

Similar two-species models have been studied before. When the two species are driven in
opposite directions, Schmittmann et al[S] observed the particles lock up in a strip normal to the
drive when P> Pc' But since Pc decreases with system sizes, the existence of the transition in
the large-L limit is in question. To address this, one must first understand the effects ()f finite
system sizes. At first sight, the system behaves almost as ID, being insensitive to the dimension
normal to the drive. Later results[6], however, reveal that the probability of forming an inclined
strip is finite and dependent on Lxi Ly . This implies the presence of highly anisotropic finite
size effects that are hard to quantify. In contrast, while our model with orthogonal drifts
also displays a jamming transition, it is setup to have isotropic finite-size effects. The model
is therefore in a suitable position to address the issue of the survival of the transition. In a
different context, when cast in the language of traffic flow (cf. [7]), our model represents vehicles
moving along crossed streets and traffic jams as the vehicle density reaches a critical value.

In ,addition to the uniform and strip phase found in other models[5, 7], our model shows
another inhomogeneous, 'droplet' phase in between (Fig. 1). The three phases are characterized
by different symmetries. The droplet is localized and it breaks translational invariance along
both directions. It drifts steadily forward as a result of the migration of particles along its
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Figure 1: Typical inhomogeneous jammed phases, L = 128, P=0.076 and 0.074 respectively.
Light (dark) particles drift to the right (top).

symmetry axis (Fig. 2(a)). As p is increased, the system goes through the uniform, droplet and
strip phase in sequence (since the droplet is stable for a very limited range of p, hereafter Pc
is used to label the transition density between homogeneous and inhomogeneous phases). The
nature of the transitions appears to be first order at large £ or L, and continuous at small £ or
L. Although the full phase diagram has not been determined due to problems associated with
strong hysterisis, there are' hints of a tri-critical point separating a branch of first-order phase
boundary from a continuous-order one[S, 4].

The fact that Pc decreases with L (d. Fig. 2(b)) invites aJ;l investigation of the finite-size
effects. For this purpose, we have developed a coarse-grained continuum theory[4]. Since the
numbers of,particles are conserved, the local dynamics obeys a set of continuity equations
into which local hopping rules and exclusion interaction are incorporated (n = 1,2 labels the
species):

where the current density is given by

dpn
-=-V'.Jdt n

(1)

(2)

Here x, yare the unit vectors, and the coarse-grained parameters are determined by the mi
croscopies ones: E = 2(p - q), DII = P + q, D1.' = 2r, and E Ix .and Ely are related to nearest
neighbor correlations (see [4]). A similar equation holds for J 2. The important point to note is
that the terms oc D's describe diffusive process, whereas those oc E's describe drift. .

Before we discuss the solutions of Eq. (1), notice that the two species become degenerate
in the case of £ = 0, and the system is reduced to the Ising model at infinite temperature
which has no phase transition as p is tuned. On the other hand, particles without hard-core
interaction would 'go through' each other and no jam would be possible. These are captured by
Eq. (1) for which the only steady state solutions (Le., dPn/dt = 0) in these limits are uniform
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Figure 2: (a) The forward motion of a droplet is -shown by ¢(t) ex: IL y p(Lx /2, y; t)e i21l'/L Y I,
where P = PI + P2, for L = 256, P = 0,07, E = 50. Speed=l/period. (b) Current density Jl 'it
vs p for E = 50 and a wide range of L. Upper branch: uniform phase, lower branch: strip
phase.
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solutions. Thus, we conclude that spontaneous pattern formation is a y"oint effort of the drive
and hard-core exclusion.

In this article, we will not consider the droplet phase further as it requires solving the full
2D problem. While the uniform phase is trivially described by Pn = const, the one-dimensional
steady-state strip profiles obey

(4)

(3)
1

= PI(1- PI +P2) - -(EIPIP2 +C)
PO
1

P2(1 + PI - P2) - -(EIPIP2 + C)
Po

1 dPI
EO du

1 dP2
--- =

EO du

for the case of PI = P2 == p, where EO = V2E /(D" +D.d = 2V2(p - q)/(2r + p + q), EI =
(E1:r:+EI1l)/E. The u axis is normal to the strip, and C == Jl,it/V2(p-q) is a reduced current
along +u. ,

Numerically we find that the correlation factor El :::::l 1 - 2p = Po for arbitrg,ry &, Land p in
the uniform phase. This prompts us to replace El by po(u) = 1- Pl(U) - P2(U) inEqs. (3) and
(4). Since no adjustable parameter is left, the solution satisfies a simple scaling

(5)

The functions f~'s are determined numerically. Agreements with simulations are impressive[4].
Now we may relate p to the current (cf. Fig. 2(b)) via (ViiL) Jdu Pn(u) = 'p(0, LEo), or by
inversion '

c =J1 . uj..J2(p - q) = g(p, LEO)' (6)

The scaling variable Leo dictates how data for different Land e may be collapsedj it is the
finite-size scaling we seek. Simulation data (cf. Fig. 3) fully support this prediction.
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Figure 3: Finite-size scaling as predicted by Eq. (6). All data have the same L£o = 23.65 but
different combination of (L, &). Solid lines are theoretical results for the two phases.

Finally, defining Pc(L, &) by de/ dpl pc = 00, we find Pc t'V (L£otO
.
82

(1) for large L£o. This
asymptotic behavior implies that the transition takes place at Pc ---+ 0 as L ---+ 00 for any finite
&. Although Pc vanishes asymptotically, the strip width Lpc diverges. This means that the strip
and hence the phase transition remain well-defined in the thermodynamic limit. This situation
is reminiscent of the 1D limited local sandpile model[9]. It would be interesting to exploit the
intriguing connection between these two apparently different nonequilibrium problems.

Acknowledgments: Support from the National Science Council of ROC is gratefully ac
knowledged.

References

[1] See, e.g., R. Kubo, Suppl. Prog. Theo. Phys. 64, 1 (1978)

[2] See, e.g., H. Spohn, Large-Scale Dynamics of Interacting Particles, Texts and Monographs
Phys. (Springer-Vei-Iag, Berlin, 1991)

[3] See, e.g., B. Schmittmann and R.K.P. Zia, in Phase Transitions and Critical Phenomena,
edited by C. Domb and J. L. Lebowitz (Academic, New York, 1995), and references therein

[4] K.-t. Leung, Phys. Rev. Lett. 73, 2386 (1994)

[5] B. Schmittmann, K. Hwang and R.K.P. Zia, Europhys. Lett. 19, 19 (1992)

[6] K. Bassler, B. Schmittmann, and. R.K.P. Zi~, Europphys. Lett. 24, 115 (1993)

[7] O. Biham, A. Middleton, and D. Levine, Phys. Rev. A 46, R6124 (1992)

[8] I. Vilfan, R.K.P. Zia, and B. Schmittmann, Phys. Rev. Lett. 73, 2071 (1994)

[9] L. P. Kadanoff, S. R. Nagel, L. Wu and S.-m. Zhou, Phys. Rev. A 39, 6524 (1989); J. M.
Carlson, J. T. Chayes, E. R. Grannan, and G. H. Swindle, Phys. Rev. A 42, 2467 (1990);
K.-t. Leung, Phys. Rev. E 48, R2331 (1993)

- 609-


