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The coefficient of thermal conductivity (I'i) in thin liquid 4 He is evaluated
explicitly as a function of temperature via temperature-dependent two-dimensional
elementary excitation spectra that are microscopic only in the long-wavelength limit.
Below about 0.8 J(, the coefficient increases exponentially with decreasing tempera­
ture. At temperatures below about 0.3 J(, K(T)"in the thin film case has an T- 5 de­
pendence with extra temperature-dependent terms which originate from three-phonon
processes.

The study of thermal conductivity and first viscosity in superfluid liquid .4He has been an im­
pOl'tant part of condensed matter physics, beginning with Landau and Khalatnikov's work on
the kinetic phenomena in superfluid heliuml ) and followed by others2). Recently Kirkpatrick
and Dorfman3) obtained the transport coefficients of bulk liquid 4He for very low temperatures
(na,\2 ~ 1) and moderately low temperatures (na,\2 ~ 1) on the basis of their kinetic equation
for a dilute superfluid, where n, a and ,\ represent the number density, the s-wave scattering length
and the thermal wavelength,

Concerning the elementary excitation spectrum, it is important to point out that an incorrect
normal dispersion relation was used in the well-known Landau-Khalatnikov studies and other cal­
culations mentioned above, whereas the conect dispersion is anomalous, 'rVe have derived these
anomalous zero-temperature dispersion4) in two and three dimensions, and have successfully ex­
plained the thermal conductivity and first viscosity in thin 5) and bulk liquid 4He6 ) and other trans­
port coefficients7) in both dimensions. In the present paper we give new results for the thermal
conductivity of superfluid helium through the theory of kinetic phenomena developed by Landau
and Khalatnikov l ),8), using the temperature-dependent elementary excitation spectrum that we
have obtained in thin helium films ( this is Ref. 9 hereafter referred to as paper I ). The spectrum
is microscopic only in the long-wavelength limit. We will evaluate the thermal conductivity within
the temperature ranges T ~ 0.31{ and 0.3 J( ~ T ~ 0.8 J( , where the scattering depends on the
nature of interactions between excitations, i.e., phonon-phonon and phonon-roton interactions. The
scatterings which govern the transport processes and kinetic coefficients of thermal conductivity
can be determined by the characteristic time r of scattering.

In this paper we shall treat a thin helium film as two-dimensional (2D) -less than three atomic
layers, namely one statistical layer of 3.6 A - and neglect the substrate effects. In the calculations
of the coefficients we will take the 2D temperature-dependent excitation spectrum [Eq. (4.9) in
paper I ], i.e., phonon and roton spectra,

a a 2 [ a 2 ] 3 aA? 4(Ao +-)p - -p + B - -(Ao + 1) P +-p + ...
4Ao A6 8A~ Ad'

~ + (P - po)2
2m*

where ~, 771,* and Po are the roton parameters.
In considering the scattering of phonons by rotons, we may obtain the two-dimensional differ-

ential cross sectionS) with scattering angle 'ljJ as

d(J =
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(3)

where A is a small constant which depends on the derivatives of the roton parameters5).

The equilibrium distribution function no of excitation satisfies the kinetic equation

an an aH an aH
fit + af' ap - ap' af ::= J(n), (4)

(5)

with vanishing collision integral. We assume that the nonequilibrium distribution function n devi­
ates slightly from no(n ::= no + n1, n1 ~ no). This small deviation can be determined by the first
derivatives of the velocities Vn, Va and the thermodynamic variables, since higher derivatives can
be neglected. With the help of the continuity equation, the equation for conservation of entropy
and the superfluid equation of motion, we can pick out the temperature gradient term in Eq. (4)
as

n' aT ST 8f. '
k T

2 -a cos8[p- - f.-a] ::= J(n1),
B x Pn P

where n' ::= -n(n + 1) and 0 is the angle between jj and '\IT. When there exists a temperature
gradient in superfluid 4He, there is not only the transport of heat but also an irreversible heat flow,
which can be expressed by the coefficient of thermal conduction given as q::= -K,'\lT. We may
replace the collision integral by

n - no
J(n) --+ -~, (6)

t

where T is the characteristic time and depends on the collision integral. For example T3PP signifies
the characteristic collision time for the three-phonon collision integral hpp(n). Substitution of Eq.
(6) into (5) yields

n' _ST aE
n - no ::= ---'\IT· {p- - E-}T (7)

. kaT2 Pn aj)'

and substituting Eq. (7) into the expression for the two-dimensional energy flow, we obtain

- JaE djj
q = oj; E(p)(n - no) (21r)2' (8)

Considering the scattering processes, i.e., three-phonon processes , four-phonon processes,
five-phonon processes and phonon-roton processes, the collision integral becomes

(9)

The 4PP do not change the total number of phonons, and the law of energy conservation holds but
has the characteristic temperature T' in a given direction which is different from the temperature
T in the equilibrium state.

The total number of phonons traveling in a given direction is changed by small-angle 3PP and
5PP. The distribution function depends not only on T' but also on the chemical potential el, and
can be written as

[ ( ' pc) ]-1n = exp a + kaT' - 1 "

Expanding the distribution function as a function of (T' - T), we then obtain

, pc T' - T
8n = n - no ::::: - no(no +1){a - kBT T }.

(10)

(11)

Since 0 is involved in the left-hand side of Eq. (5), a' and T' - T depend on O. To solve Eq. (5)
we take the form

a' =al cos 0, (T t
- T)jT ::= /31 cos 0 (12)
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where a1 and 131 are the constants to be determined from the kinetic equation. Considering the
conservation of phonon numbers in a given direction and conservation of energy, we obtain the
following integrals from Eq. (5) :

j
n' aT ST o€

--cos(}-{p- - e-}pdp
kBT2 ax Pn op

J ~ oT ST oe
-- cos B-·-{p- - e- }ep dp =
kBT2 ox Pn Op

j[J3Pp(n) + Jspp(n) + Jph-r(n)]pdp,

j' Jph-r( n)ep dp.

(13)

(14)

If we evaluate the collision integral' for 3PP and 5Pp1}, we get

(u + 1)2
8 c3 (kBT)3p[no(no + 1)0:1 cosB]

1rpo

x[3!((3)(1 - 40:2) + 2~ (kBT )4!((4) _ 3,5!((5)( kBT )2].
c c C c

(15)

(17)

j Jspp(n)pdp = 21rkBo:'rph. (16)

Considering the probability per unit length that a particle undergoes collision is Nrda, where da
is given in Eq. (3), and making use of Eqs. (11)-(12), we obtain the collision integral

pc . p(f 1 9 Po 2 Po 2]
Jph-r(n)=cosBNrc(0:1-131

k
T)no(no+l)X-2 2[-+32(-) +A(-)+2A ,

~B 8poc 4 m*c m*c

where the roton distribution functionNr is number of rotons per unit area given by

(18)

(21)

The characteristic times Tph-r and TSp p have the same values as those obtained for the zero­
temperature excitation spectrum5}, but for T3PP :

_1_ = (u + 1)2 2!((2)6!~:(6)(kBT)4[3!((3)(1_~) + 20: 4!((4)(kBT) _ 3,5!((5)]. (19)
T3PP 81rpoc4 3!((3)4!~(4) 4c2 c3 c

Substituting Eqs. (15) and (16) into (13) and (14) and integrating over the momentum space,
we obtain On = n - no. Substitution of On = n - no in Eq. (11) and comparison of the ordi­
nary thermal conduction equation gives the coefficient of thermal conductivity for the temperature
variation of the elementary excitation:

c2 4.7920: kBT -1 . -1 -1 -1 a ST ST
= 4 T{[0.186 + 2 3 (-)]Tph_r +Tspp +T3Pp} {[e(l + -22 (2 - -2» --]

1r C C C PnC PnC

kBT, ST 0: kBT 0:
X (16.659)(-)3 - [(26.088)(-) + (141.667)e] _q (_)4} + Tph-r{[c(l + -22(2

c PnC ~- e C

ST
2

» ..:. ST ](7.212)( kBT )3 +[( ST _ c) 4~ _ 3a](25.97)( kBT )4}. (20)
PnC PnC . C PnC C c3 c

If we take temperature-dependent term a to be equal to zero, Eq. (20) reduces exactly to (3.31)
in Ref. 5 as

(T) - 1.803k~T2( 2 _ ST){ 2310/[0.186 _1_ _1_]}Kph - 2 e Tph-r + . + + .
1rC Pn Tph-r T5PP T3PP

We note that in a similar fashion to the above calculations, we can obtain the coefficient of
the first viscosity as

17ph(T) rv 1.5 X104;5' T < 0.9](
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Fig. 2. First-viscosity coefficient due to the
contribution from 3PP in thin helium films.
The solid and dotted lines are obtained from
the zero and temperature-dependent excita­
tion spectra.
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Fig. 1. Thermal conductivity coefficients due
to the contribution from 3PP. The solid and
dotted lines are obtained from the zero and
temperature-dependent excitation spectra in
both dimensions.
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'T}ph(T) - 5.92 x 10 T 1- 0.115i(Z)T + 0. 128i(z)T2' T ~ 0.3]( (23)

To investigate the temperature variation of the coefficient 1'i.(T), the potential and roton pa­
rameters are chosen by analysis of the excitation spectrum4),1O) for the bulk case and the specific
heat datall ) for the thin helium films and are listed in Table 1. The parameters u, a and A in two
dimensions are taken to be 1.812) 1 0.4251) and 1.0 x 1043 1), as used by previous workers for the
bulk case, because these parameters are not known for thin helium films.

Near or just above 0.8 ]( , the 5P P and the scattering between phonon and roton will mainly
contribute to the thermal conduction, and thus neglecting the SP P contribution, Eq. (20) reduces
exactly to Eq. (21). This is exactly the same form that we have obtained for the zero-temperature
excitation spect.rum5). For temperature bel?w about 0.8 ](, only the interactiOl:s between phonons
and rotons are Important, and thus neglectmg the 5FP and 3PP, we can rewnte Eq. (20) as

_ (T) - 1.803(kBT)3{ 2 [1 ~(2 _ ST)] _ ST}1'i.ph - . 2 C + 2 2 Tph-r.
ITC . . C PnC Pn

T < 0.8](. (24)

Comparing Eq. (24) with (5.3) in Ref. 5, we see that this equation includes a temperature­
dependent a: term. Therefore, Eq. (24) will vary with a slightly larger value than Eq. (5.3).
Neglecting T;h~r' Tr:fp. and the temperature-dependent terms within the parantheses of Eq. (20),
which are much smaller than unity for temperatures below about 0.3 J(, this equation becomes

(25)

Note that the thermal conductivity for the zero-temperature spectrum below 0.3 J( [Eq. (5.4) in
Ref. 5] is given by

1'i.ph(T) :::: 1.093 X 1O-1T- 5 , T ~ 0.3 K. (26)

As temperature decreases (~ 0.8 K), Eq. (24) plays a dominant role with an exponential increase
which is due to the characteristic time Tph-r.

At low temperatures below about 0.3 J(, Eqs. (25) and (26) take part in the thermal conduc­
tivity. Figure 1 illustrates the thermal conductivities as a function of temperatures below about
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Table 1. Parameters in thin and bulk liquid helium.

P
2D 2.79 x 10 2A 2

3D 2.18 x 10-2A-3
4.12
8.61

1.02
1.93

m*

0.75mHe
O.153mHe

C(Ao)(m/s)
164.4
238.2

a(A)
3.581

2.76

Vo(]()
8.369
30.58

Eo(K)
7.140
19.03

0.3 ]( in both thin and bulk liquid helium in terms of both excitation spectra. At the moderately
low temperatures below about 0.3 ](, Eq. (25) varies with slightly larger values than Eq. (26).
The coefficient K,ph(T) increases rapidly and diverges as temperature tends to zero.

At very low temperatures the two processes of a finite lifetime of an elementary excitation are
(1) collisions between excitations and l2) spontaneous decay of a phonon into multiple phonons.
As the temperature tends to zero, collisions are not important, but mainly spontaneous decay,
i.e., three-phonon processes will co'ntribute at very low temperatures and very small momenta. In
previous works, Kirkpatrick and Dorfman introduced two isotropic linear collision operators: an
excited particle scatters with a condensed particle to produce two excited particles or vice versa
(L12 ), and two excited particles scatter with each other and produce two new excited particles
(L 22 ). These two processes are exactly three-phonon..and four-phonon processes, respectively. The
collision operator L 12 holds only for small momenta. When the number of particles decreases with
decreasing temperature, there are not enough collisions to keep a local equilibrium and thus this
theory breaks down. This means that Kirkpatrick and Dorfman have not taken into account the
three-phonon processes but only four-phonon processes.. .

Before Kirkpatrick and Dorfman, Ma and Popov obtained the same results, i.e., a damping fac­
tor on the order of q2T- 9 , where q is the wave number of the disturbance in the calculations of the
hydrodynamic eigenvalue describing second-sound propagation. Comparing this result with that of
Kirkpatrick and Dorfman, we find the relation q21]/Pn r'V q 2T-9 and thus have 1] r'V T- 5 , where Pn
is proportional to T 4 . Popov has also obtained a y-5 dependence of 1] through fundamental integral
analysis, which turns out to be mainly the same contribution from 4PP ill Landau-Khalatnikov
theory. All these previous works do not contain 3PP, but only 4PP. Therefore, our results for the
coefficients of thermal conductivity and first viscosity involving the 3PP mechanism are new.

In conclusion, we confirm that the ther.mal conductivities obtained for the zero-temperature
and temperature-dependent excitation spectra have very similar forms, and the behavior of these
coefficients are very much like those of the bulk case. Below about 0.3 ](, the coefficients K,ph(T)
and 1]ph(T) have dependence of T- 5 and T- 1 , respectively, in the thin helium films. All these effects
are due to the 3PP originating from the zero-temperature and temperature-dependent anomalous
excitation spectra at low momenta.
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