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Quantum Chaos*

Motion of energy levels of isolated systems
and quasi-energy spectra of periodically kicked systems

Tetsuyuki Yukawa (KEI*¥)

- The name Quantum Chaos is rather confusing since quantum mechanics is basically
expressed by a set of linear equations while chaos is regarded as typically non-linear phe-
nomena. Under these circumstances one naturally wonder how does quantum chaos exist?
At the moment the answer to this question could be either positive or negative. If the
answer is YES, he need to give a universal and quantitative definition. On the other hand
if the answer is NO, he should be able to describe how does (classical) chaos appear in
such a linear dynamical systems at the classical limit. In this talk I shall take the sec-
ond position. Since there exists no canonical definition yet, by the quantum chaos I mean
?quantum properties of a system whose classical motion is chaotic” whenever it will appear
in the following discussions.

Among various routes to approach quantum chaos we concentrate on the energy spec-
trum assuming that nature of any quantum system can bhe characterized essentially by it.
We shall then consider i) fluctuation property of level distribution for isolated systems, and
ii) nature of quasi-energy spectrum for a system under external periodical perturbation.
Through these studies key problems I would like to solve are; i) how the fluctuation prop-
erty of energy levels can reflect in chaos for isolated systems?,and ii) is there transition in
the quasi-energy spectra from pure point to absolute continuous for periodically perturbed
systems’?. The meaning of these questions will be clarified as the discussion proceeds.

The talk consists of two parts, z.e. on the level fluctuation property of isolated systems
and the spectrum nature of the quasi-energy of periodically perturbed systems. Brief intro-
ductions with some numerical results are attached to each subjects, followed by theoretical
formulations for the motion of spectra. At the end we present discussions concerning what
we have clarified and what we could not show. The plan of the talk is as follows;

I. Level statistics of isolated systems
I-1. Introduction: Relation between chaos and level statistics in the billiard problem.
I-2. Motion of Levels: Dynamical equation of levels through a coupling strength as the
time, and relation to the Calogero-Moser equation.
I-3. Statistical Theory of Levels: Calculation of the joint distribution function and the
transition between the Poisson to the Gauss distribution.
II. Quasi-energy Spectra
II-1. Introduction: Classical and quantum mapping of the periodically kicked rotator.
II-2. Motion of the Quasi-energy: Dynamical equation of quasi-energy with coupling
strength as the time.
II-3. Resonance and Energy Diffusion: Continuous spectra.
ITI. Discussions
III-1. Is there relation between chaos and level fluctuation?
III-2. Is there transition from pure point to absolute continuous in quasi-energy spectra?

* for the talk at the YITP, July 1991
** 1-1 Oho, Tsukuba, Ibaraki
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I. Level Statistics of an Isolated System

- I-1 Introduction The billiard problem
We study the classical motion of a free particle moving in a convex billiard table of the
shape
r(6) = rg[1 + acos(260)],(0 < ¢ < 0.2).

Historically the billiard system is studied through the Birkhoff mapping; plot (£,sin%),
where ¢ is the length along periphery and 1 is the reflection angle, every time the ball hits
the wall. This is the area preserving mapping similar to the Poincare mapping. In order
to measure chaos quantitatively we calculate the Lyapunov exponents defined formally by

L(w) = lim,_ , 40)~oln4d(t)/d(0)}t",

where d(t) is the distance of two neighboring trajectories in the phase space at time t,
and x represents initial point in the phase space. While the Lyapunov exponent measures
the local orbital instability the K-S entropy (L(r)) represents the global instability by
averaging the Lyapunov exponent over the phase space .

Quantized spectra of the billiard system can bhe obtained by solving the Laplace equa-
tion with the hard wall boundary condition;

0= Z cndn [kr(e)]cin(),

where J,(0) is the Bessel function. In practice this equation is solved by expanding in the
Fourier series, and impose the determinant to be zero. The energy of the system is given
by E; = k?. Numerical studies are made by calculating i) the cumulative level number

N(E)= Z 6(E - E;),

and the average level density B
dN(E

for the average properties of the system. Here N(E) is a smoothed function of N(E), .
which can be obtained either by smoothing data or from the semi-classical formula

N(E) = [ dgdpb(E - H(q,p)).

By making use of this function we construct a new level sequence x; = N(E;), so that

p(x) = 1. After extracting the average property by changing the variable from E; to z;,

the following two quantities are customary chosen to represent the fluctuation properties: -
i1) The nearest neighbor level spacing distribution

Py(s)ds ~ Z{H(_.s +ds—3;)-6(s—s;))

for the short range correlation property, where s; = z; - z;_;, and iii) the mean square

deviation L ,
- 1 /@ 9
S =g [ (N(2)-2)da)
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for the long range property.

The random matrix theory fits surprisingly well for level fluctuation properties in
the chaotic limit: the Gaussian orthogonal ensemble(GOE) gives for the nearest-neighbor
spacing

Po(s) ~ (3 exp(~T25)

known as the VVlgner distribution almost exactly, and for the mean-square deviation
T3(L) ~ Linr
— 7r2 [}

which is a slight modification of the Dyson-Mehta Aj statistics.

I-2 Motion of Levels and a relation to the Calogero-Moser equation
We consider a class of isolated systems with the Hamiltonian

H(t)= H(0)+tH,

where the interaction strength t runs on the real axis. The motion of eigenvalues of this
system as t varies can be studied by the equations;

dX dP
7w =P =0

where X and P are Hermite matrices corresponding to H(t) and H’ represented by the
complete set of eigen-functions of H(0). Changing the basis set by the transformation @ :

X =0"1E0,P =0"1Vo,
so that E is diagonal, equations of the motion now become

dE

S +iM,E]=V, - (1)
‘?f’ +i[M, V] =0, | (2)

where M = i(do/dt)0-!. Introducing a Hermitian matrix
G =i[E,V] (3)
the equation of motion for G is given by

dG
& +ilM, G =0. (4)
Off-diagonal parts of eq.(1),which do not involve time derivatives, define the matrix
M:
mn (Em )
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except diagonal components. In order to have finite matrix elements for Mpn(m # n)
eigen-values of the unperturbed Hamiltonian should not be degenerate. Diagonal parts of
eys.(1) and (2):

d
o e Vo, (1d)
(11 nn A 7
Z(Lnl:u.ln - ‘\'Inlx ln.,)-, (Qd)

and eq.(4),

together with eq.(3) constitute a closed set of equations.
I now wish to show that the undetermined elements Af,, will not cause any ambiguities.
By writing
Gmn = 9mn e—i(am-a")’ ‘ (5)

we can always choose ap to cancel My,. For example if we impose day /dt = Mpy , eq.(4)
becomes

d - .
f({l';ln =1 3 (gmtMin ~ Mp9pn)-
I(#m,n)

(note. gnn =0 from eq.(3)) In terms of gmn egs.(2d) and (4) are written as

dVan _ Yni9in
dt Z (Enn E; )’ (6)
dgmn 1 1 ,
- g g n{ - \ } 7
,(E,, M En = E)?  (Em - By )

The set of equations (1d),(6) and (7) is called the generalized Calogero-Moser (GCM)
equation. The original Calogero-Moser(CM) equation can be obtained by making an ansatz

Gmn = gingn — |gn|>6mn

in eq.(4), which reads

J;ldgn = i{Mpnn + Z (_E_IV_JLL‘__){;}
I(n) "

This equation fixes the phase of gn, and we obtain a sct of solutions with |gm| = const..
Thus, we have

dE,
Tdt = Van,
ann - Z |9m| L(/nl“
=9 T
m(#n )(E Em)

where the CM eq. is a special case when |gm|? = g. The CM eq. can also be derived from
the Hamilton equation with the Hamiltonian

HCM ZVn)n'{'g.' Z (Em En)oa

m#n
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while the first two of the GCM equations is obtained from

H(; M= ") Z ‘nn '7 Z (E"‘,jrznlEﬁn)

mn

These Hamiltonian can be interpreted as the sum of the translational energy of a particle
in N-dimensional space with unit mass and the rotational energy with the moment of
inertia (Ep — E5)? for rotation along the axis perpendicular to the (m,n) plane. Other
possible interpretation of this Hamiltonian is the one dimensional N-body Hamiltonian
with centrifugal potentials interacting between m-th and n-th particles with the relative
angular momentum g¢mn.

I-3 Statistical Theory of Levels

The system we are dealing can be regarded as an N-particle system with inverse square
repulsion and relative angular momenta ¢gmn, instead of the N2 free particle system where
we have started. Let us consider the statistical properties of this system. In order to
introduce the statistical ensemble we have to be able to construct statistically independent
sub-systems. We choose the member of the ensemble to be a sequence of N levels. Once
we define the sub-system our next task is to find additive constants of the motion. From
eqs.(2) and (4) , which are written in the Lax form, there are in general infinite number of
constants of the motion when [V, G] # 0. It is consistent with the complete integrability
of our starting equations. It is commonly believed that the statistical treatment is only
possible for those systems which is not completely integrable. In our case we construct
sub-systems confining N-particles in a potential well in order to have constant density as
we have change energy sequence from {E;} to {;} in the last section. This corresponds to
change the equation from dP/dt = 0 to dP/dt = F(X) where F(X) is obtained from an
appropriate potential U(X). In this case constants of the motion are greatly reduced to

Tr(V?)+U(X),and Tr(G").

The Lax equation for G is a consequence of the completeness of the basis function or in

other word U(NN) invariance. Then by constructing sub-systems its invariance should also

be broken. How bad is the hraking will depend on the size of N as well as the initial

conditions. Here, we assume that only Tr(G?2) survives as the good conserved quantity.
The equilibrium distribution is then given by v

dw ~ e=Br=-194T
with 1 1
h= §T7~(V2) +U(X),and ¢ = §Tr(_G2).
The phase volume dI' is defined by
[dX][dP]
(2mh)yV

as the ordinary classical statistical mechanics with an appropriate constraint F on the
type of matrices X and P. A corresponds to one-half of the dimension of phase space. By
changing the variables to {En,0;, Van, gmn} the probability distribution becomes

expl- {zv:n+z gmn o Ey - 5ZU(E) 23 gkl

m;t:n m#n

dl' = 7(X,P)
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dT ~ J({6:;}) [1 dE= [1 d6: [ [ dVan ] dgmn

m>n

for a time reversal invariant system. Here J is the Jacobian depending only on rotation
angles to diagonalize X, while the familiar factor

[ |1Em - Ex|

m>n

is canceled by the Jacobian of transformation from {Vin} to {¢gmn}. Since we are interested
on the level distribution, we carry out integrations over unobserved variables {6;, Vin, gmn).
Then we get the joint distribution function as

P ~ T (e g T

m>n n

where a should be 1 for real symmetric Hamiltonian and 2 for Hermitian (complex) Hamil-
tonian.

Let us consider the distribution function in two limits: i) high temperature low angular
momentum limit (y/3 — oc)

P({En}) — [V (5.

In this case distribution of E, is mutually independent and we have the Poisson distribu-
tion;
Py(3) ~ pe~*,
L)~ L.
ii) low temperature high angular momentum limit(y/3 — 0, N — o0, and Nv/3 — const.)
P({Eu)) ~ T] 1B~ Eal® [[expl-5(En - Ec)? - BU(E,))
m>n n .
with ¢ = Nay/3 and E. is the center of gravity of all levels. If we set U(Ex) to be zero, .
this distribution coincides with the well-known GOE( a =1) or GUE( o =2) .
IT Quasi-Energy Spectra

II-1. Introduction Periodically Kicked Rotator
In order to study the dynamical chaos of Hamiltonian systems the Standard Map

i1 =0+

has been one of the standard tool. This mapping can be obtained from the Hamilton
equation of the Hamiltonian

H =

] —

P2+ {3 6(t-jT)}Acos#
j
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i.e. the periodically kicked rotator with period T', where
I; =TP(jT"), 6; =6(jT"), I = AT?

at time jT- just before the j-th kick. When T ~ 0 , this system is the pendulum. There
exist three types of classical motion,namely 1) regular motion at K < K. : Motion stays
on a torus or bounded by tori, and thus orbits are periodic or quasi-periodic. 2)Chaotic
motion at K' > K.: Disappearance of the KAM tori causes stochastic motion in phase
space. 3)Accelerator mode at K > K,: Each kick adds up coherently at specific initial
conditions. .

As an observable of chaos, we consider the energy diffusion: the time variation of
energy defined by |

E; =(I})

where (...) represents averaging over the initial ensemble. Iterating the standard map we
obtain

J
Ij+l =Iy+ I\'Z sinb;,
=0

and by taking the ensemble average we have
J
(I71) ~ K? 3~ (sin6;sin ).
1,k=0

Corresponding to each type of motions for the regular motion 1) the energy E; varies-
periodically or quasi-periodically . As for the chaotic motion 2) 6; behaves like random
white noise, and thus I; is the random walk in I-direction. In this case E; corresponds to
the mean square fluctuation which is known to increase proportional to j,

1.5,
Ej ~ §I\ =7
Finally for the accelerator mode 3) the sum in I; accumulates coherently, and I; increases
proportional to j, or E; increases proportional to j 2. From these results we can summarize °
that ” appearance of the absorptive energy diffusion is a good signal of chaos”.
We now quantize the kicked rotator. The wave function at time 7~ just before the

j-th kick is written as

¥;(8) =p(6,T) =3 An(j)e™.
The quantum standard map

‘41n(j + 1) = Z lrﬂl,TIA’n(j,)

is generated by the one period evolution operator

Um n= i—m+nJm-n(q)eXp_’§Tm‘2’

¥
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where Jn(q) is the Bessel function and where 7 = hT,q = AT/h. The classical parameter
K is written as the product of 7 and ¢ (' = 7¢). Corresponding to the classical case we
calculate the energy in quantum motion,

Ej = T2(,|P?ly;) = 2 3 A (j).
n

Characteristic features of quantum motion observed in the numerical calculations are
1) limsited diffusion: No absorptive energy diffusion is seen for most of the parameter values
7 and ¢. The wave function in momentum space is localized exponentially:

IATI(])I ~ e*m‘/L,-(j - Oo)a

where the localization length L behaves as ¢”. In this case Ej is hounded asymptotically
by

20r
)

E.

i~ T

. - : - —2a42
for large ¢, i.e. for a fixed K asymptotic value of E; increases as h ** for a > 1 as

h vanishes. Another important quantum phenomena is 2) the resonance which appears
when 7 = 2rM/N for an even integer N, or 7 = 4nM /N for an odd integer N. In this
case E; increases asymptotically proportional to j2 regardless of the value of g.

II-2 Motion of Quasi-energies
By exactly the same manner as the energy eigen-value we consider the motion of the
quasi-energy defined by the eigen-value problem

U(t)¢ — e—z'E(_t)‘p"
where the unitary operator is given by the one period evolution operator of a kicked system:
U(t) = e-ith'e-iho

with interaction strength ¢ running on the real axis. The motion of quasi-energies as ¢
varies can be studied by the equations;

dX .y | _ o dP
g X =P, =0,

where X and P are matrices corresponding to U(#) and A’ represented by a complete set
of eigen-functions of hy independent of . Changing the basis set by the transformation O:

X=0"'"Do,P=0"'Vo,

so that D is diagonal, equations of the motion becomes

9D 1 i{M,D]=-iVD, | (11)
& +iM, V) =0, )

— 680 —



[ 12 BT 5 IR RIRE ]

where M = i(d0/dt)0-! is Hermitian. Introducing a matrix G by

DG = -[D,V] (13)
the equation for G is given by .
45 4iM.Gl=0. (14)

Oft-diagonal parts of eq.(11) define the matrix M:

’\Imn—zlmnD Dn, ~ Do ,(m#n)

except diagonal elements. Diagonal parts of eqs.(11) and (12):

dEn R 74 — _iEn’ 3
dVan =, 1r v
dt ! Z(an‘h{ln - MpiVin), (12d)
{
and eq.(4),
dGmn

»= ?E( Gmll"IIn - JVImlGIn:)’

dt ;

together with eq.(13) constitute a closed set of equations.
Similar to the previous case the undetermined elements M, will not cause any ambi--
guities. By writing
Gmn = Gmn €Xp{—1 (am - an)} (15)

we can always choose a, to cancel My,. For example if we choose day /dt = Mpy, eq.(14)

becomes d
Zm =i Y (GmiMin ~ Mygrn)

I(#m,n)

noting gnn = 0 from eq.(13). In terms of gmn eqe(l"d) and (14) become

dVan cos{3(En - E}))
= 9niYin — R (16)
& 4 z(é;. sin® {}(En - E)))
dgmn 1
=7 gmlgln[ 5 ] (17)
dt 4 l(gn) ( - Ep)) Sm'{%(Em - E})}

Similar to the Calogero-Moser(CM) equation we can obtain a special class of solutions by
making an ansatz

Gmn = gmbn — ]gnlzémn
in eq.(14), which reads

._ldgn — M IglI:2
In qr { nn+l(§)sin?{%(En—E1)]]'
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Fresms
This fixes the phase of gn, and we have a set of solutions with |gm| = const.. Thus we have

dEy, ,

da """

Van 1 2 COS{?(En E))
== |9m‘ lg n| :
1 4 m(X;'::n) sin {S(En - El)}

These equations are obtained from the Hamilton equation with the Hamiltonian

1 ra 1 |Jm|2Un|2
HOP = & ‘/ +
2 Zn: 2 iz sin® (3 En - E)))

while the equations (11d) and (16) can be obtained from

1 ] 1 ]gmnl.)
Hoop=5)_ Vin+ts
2 Z 2 e sin® (J(En - Ey))

The equation for quasi-energies is more complicated than that of energy eigenvalues
because of the periodicity of interactions. In the previous case the interaction bet.ween the
m-th level and the n-th level reduces as (Em — E,)~2, while in the present case sin™ {;(En
E})} can be arbitrary large regardless to the difference of two quasi-energies. In such
a case the range of interaction in ¢mn can be very long and it will not be possible to
divide the system into independent sub-systems for constructing the statistical ensemble.
Nevertheless, when we give a set of initial values,for example

E, = 72, Vin = O,and dmn = ——{1 i(E’"_E")}(ém’n.H + 6",’"_1)

O} ==
“

for the kicked rotator, the equation of motion can be solved in principle for most of the
parameter values of 7 away from resonance. There we expect the dlscwtcness of quasi-
energy spectra is preserved.

I1-3.Resonance
Period -N resonance appears when 7 = 27 M /N for even N, or 7 = 47w M /N for odd N.
In such cases we have

er+N n+N = U‘m,n .

Quantum Mapping for the resonance case can be written as
Am(] + 1) = Z Um—nAn(j)
n

with
A’"(]) - {As+nN(J)},Um n = {C s+(m-n)N, ) (b t=1,. N)

It should be noticed that this mapping has translational invariance, and in this case we
cannot expect localization. Quasi-energy spectrum of this equation is obtained from the
eigen-value equation

e~*b(a) = U(a)b(a),
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where we have defined

U(a) = Z e~ meUp,

with a continuous parameter a = [0,27]. Since quasi-energy € now depends on the contin-
uous parameter a, the spectrum is absolute continuous forming the energy bands.

Let me show that this system exhibits energy diffusion proportional to j2: When the
initial condition is chosen to be

A0) = T [ eulaembaa)ys,
”n

where b,(a) is the eigen-function with the quasi-energy e,(«), the state at time j is given
by

A=Y / Cﬂ(_a)einae‘i‘u(a)jbﬂ(a)g__g_
. 5

Then the energy expectation value in the asymptotic limit is given by
dey(a da
.'~T JV Z/{ ”( )} I ”( )lq +0(])

This expression indicates that the diffusion occurs only when the quasi-energy has contin-
uous spectrumn.

I11.Discussion

ITI-1 Relations between the Level Fluctuation and Chaos

Let me summarize the present status of the theory of level statistics: i) The GOE can
explain surprisingly well the existing data. ii) The GOE is not a unique ensemble, but
rather an ensemble at the "chaotic” limit. iii) With two quantities, TrH'? and Tr[H, H']?,
the statistics of level fluctuations can be well describe in both integrable and chaotic
limits; i.e. the level ststistics makes a smooth transition from the Poisson to the Gauss
distribution. Now the following two problems scem to me essential.

Problem(1): Once we have a Hamiltonian H, we can calculate encrgy eigen-values,
and thus we can take level statistics. However, in order to predict the statistical properties
from our theory we need to know both H and H’.

Resolution: If we can assume the ergodicity, the statistical nature of the Hamiltonian
H = Hy+tH’ will be dominated by that of £ # 0. In this case the theorem says that the
statistical average along t can be replaced by the ensemble average of a certain time, say
t =1, larger than the relaxation time.

Problem( 2): If the two invariants are the order parameters of chaos for the quantized
system, do their classical correspondences,

/ dgdpH'(¢,p)?

and

/ dqdp{H(q,p),H'(¢,p)}"
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are related to the classical order parameter such as the K-S entropy?

Resolution: I do not have any answer for this problem. I would rather like to ask you
the following question. ”If we know a Hamiltonian H = Hy + H', can we estimate the I<-S
entropy without calculating the Lyapunov exponent by the direct integration of equations
of the motion?” If it were possible, it is natural to expect that the I{-S entropy is a function
of above two quantities.

ITI-2. Is there transition from pure point to absolute continuous in quasi-
energy spectra?

When the system has only pure point spectrum, the motion is always periodic or
quasi-periodic, and no energy diffusion is expected. In order to have the time asymmetric
phenomena such as diffusion it is essential to have continuous spectrum. There is a theorem
due to Casati et.al. that for certain class of irrational values a of the parameter 7 = 47a
there exist continuous quasi-energy spectrum.

Problem: Where can we find the absolutely continuous spectra except at the resonance?

Answer(not complete): When a belong to a class of numbers which are well approxi-
mated by the continued fraction such as a Liouville number, we construct a series approx-
imating a by rational numbers;

la — M;/N;| < cN;7°.
The problem we like to answer is whether the energy for a = M/N

EJ = T2 Z(S + 711\!7)2(-’434-11 N(J)'Z
n,s

can still increase as N; increases to approximate an irrational number by the limit of
rationals. Let us write

E; = 12{es(a)j% + e1(a)j + eo(a)).
Here, e>(a) has been given before. In order to know the existence of energy diffusion at

generic values of & we need to estimate the behavior at N — . It is not a simple task
at all, and we do not have answer yet. But, there is a special case where we have the

large N limit: in the semi-classical limit (7 = 5f,¢ = %—ﬂ,N — o) the energy dissipate as
E; = }K?j. In this case we should have

47!' 1 -

( (N) ~0, ancl(N )2eq( N')~‘_I“ ,

i.e. el(-N) is asymptotically proportional to ¢2. Numerical investigation of the behavior
of ez(4) and e;(44) will help to guess the values at generic a.
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