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QualltU111 C~haos*

Motion of energy levels of isolated systeills
and quasi-energy spectra of periodically kicked systenls

Tet.suyuki Yukawa (KEK**)

. The n80nle Q'nantnm ChaMl is rather confusing sincp quanb.lnl nlPchanics is basically
expressed by a s~t of lin~ar equations while chaos is regarded as typically non-linear phe­
n0111ena.Under these circtllnstances one naturally wonder hm.v does quantum chaos exist?
At the nloment the ans\v('r to this qU('stiOll could b~ either positive or negative. If the
answer is YES, he need to give a. universal and quantitative definition. On tlw other hand
if the answer is NO, he should be able to describe how does (classical) chaos appear in
such a linea.r dynamical syst~lllS at. the classical limit. In this talk I shall take the sec­
ond position. Since th~re exists no canonical definition yet, by the quantum chaos I Ill~an

:, quantum properties of a systeill whose classical motion is chaotic" whenever it ,"vill appear
in the following discussions.

Among various routes t.o approacb quantum chaos we concentrate on the energ~r spec­
trunl assuming that nature of any quantUl11 systenl can be characterized essentially by it,.
\Ve shall then consider i) fluctuation property of level distribution for isolated systenls, and
ii) nature of quasi-energy speetnun for a syste111 under external periodical perturbation.
Through these studies key proble111s I would like to solve are; i) how the fluctuat.ion prop­
erty of energy levels can reflect in chaos for isolated systenls? ,and ii) is there transition in
the quasi-energy spectra fr0111 pure point to absolut.e cont.inuous for periodically perturbed
systems? The meaning of t,hese questions will be darified as the discussion proceeds.

The talk consists of two parts~ i. e. on the level fluctuation property of isolated systeills
and the spectrum nature of t.he quasi-energy of periodically perturbed systems. Brief intro­
ductions with some numerical results are attached to each subjects, followed by theoretical
fornlulations for the nl0tion of spectra. At the end we present discussions concerning what
we have clarified and what we could not show. The plan of the talk is as follows;

I. Level statistics of isolated systenls
I-I. Introduction: Relation between chaos and level Rtatistics in the hilliard prohlenl.
1-2. lv'Iotion of L('vds: Dynanlical ('quat.ion of lC'vels t.hrough a. coupling strength as t.he

time, and rdatiol1 to the Calogero-NIoBer equation.
1-3. Statistical Theory of Levels: Calculation of the joint distrihution function and the

transition between the Poisson to the Gauss distribution.
II. Quasi-energy Spectra

II-I. Introduction: Classical and quantuill mapping of the periodically kicked rotator.
11-2. Motion of the Quasi-energy: Dynalnical equation of quasi-energy wit.h coupling

strength as the time.
11-3. Resonance and Energy Diffusion: Continuous spectra.

III. Discussions
III-I. Is there relation between chaos and level fluctuation?
111-2. Is there transition from pure point to absolute continuous in quasi-energy spectra'?

* for the talk at the YITP, July 1991
** 1-1 Oho, Tsukuba, Ibaraki
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and the average level density

I. Level Statistics of an Isolated Systenl

1-1 Introduction The billiard problem
\Ve study the classical motion of a free particle moving in a convex billiard table of the

shape
r(B) = ro[l + a cos(2B)], (0 ~ a ~ 0.2).

Historically the billiard system is studied through the Birkhoff lnapping; plot (f,sin 1/'),
where eis the length along periphery and V' is the reflection angle, every tilne the ball hits
the wall. This is the area preserving 111appil1g silnilar to the Poincare 111apping. In order
to measure chaos quantit.atively we calculate the Lyapunov exponents defined fonna.lly by

L(;r) = limt-.x,d(O)-.oln{d(t)/d(O)}t- 1
,

where d( t) is the distance of two neighboring trajectories in t.he phase space at. til11C t,
and ;r represents initial point in the phase space. \Vhile the Lyapunov exponent measures
the local orhital inst.ahilit.y the K-S entropy (L(;r)) represents the glohal instahilit.y by
averaging t.ll<" Lyapunov C"xpOll<"nt. over tIl<" phase space ;r.

Quantized spectra of thC" billiard system can he obtained by solving the Laplace equa­
tion with the hard wall houndary condition;

o= L Cn I n [k7'(B )]e irtO
,

n

where In(B) is the Bessel function. In practice this equat.ion is solved by expanding in the
Fourier series, and ilnpOSf' the determinant to be zero. The energy of the systen1 is given
by E i = kf. l'\mnerical studies are lnade by calculating i) the cumulative level nUlnber

.N(E) = L B(E - Ed,

(E) = dil(E)
P.. dE'

for the average properties of the SystC"lll. Here .f\l(E) is a smoothed function of N(E), .
which can be obt.aincdcither hy s11100thing data or fr01n thf' sClni-dassical fOr1llula

l\T(E) = Jdqdp8(E - H(q,p».

By making usc of t.his funct.ion we construct. a new level sequence ;l'i = N(Ei ), so t.hat
p(x) = L After extracting the avera.ge property by cha,nging the variable frOlll E i to Xi,

the following two quantit.ies are customary chosen to represent t.11f' fiuctuat.ion properties: .
ii) The nearest neighbor level spacing dist.ribut.ion

for the short ra.nge correlation property, where Si = Xi - Xi-I, and iii) the n1e8on square
deviation
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for the long range property.
The random lnat,rix theory fits surprisingly well for level fluctuation properties in

the chaotic limit: the Gaussian orthogonal ensemble(GOE) gives for the nearest-neighbor
spacing

. 1r8· 1r8 2
Po (8 ) ..... ( 2")exp(- 4 )

known as the \Viguer distribution ahuost exactly, and for the luean-squa.re devia.tion

which is a slight modificat.ion of the Dyson-!v1ehta ~3 statistics.

1-2 Motion of Levels a.nd a relation to the Calogero-Moser equation
\Ve consider a class of isolated systelus wit.h the Hatlliltonian

H(t) = H(O) + tH',

where the int.eract.ion strength t runs on the real axis. The Bl0tion of eigenvalues of this
system a...c;; t. varies can be studied by the equationflj

dX dP
dt = P, (It = 0,

where X and Pare Hernlit.e matrices corresponding to H(t) and H' represented by t.he
complete set of eigen-functions of H(O). Changing the basis set by the t.ransformation 0 :

X = o-IEo,P = O-IVO,

so that E is diagonal, equations of the lllotion now become

~~ +i[M,E] = V,

(Z + i[M, V] = 0,

where M = i(dO / dt)O-I. Introclucing a Hernlitian matrix

G = i[E,V]

the equation of motion for G is given by

dJ; + i[M,G] = 0.

(1)

(2)

(3)

(4) .

Off-diagonal parts of eq.(l),which do not involve time derivatives, define the mat.rix
M:

"A;r • Vmn ( ).
.H:lmn = Z(Em _ En) ,m 1= n
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except diagonal components. In order to have finite matrix clements for AIrnn (111 i= 11.)
eigen-values of the unperturbed Hamiltonian should not he degenerate. Diagonal parts of
eqs.( 1) and (2):

(ld)

(2d)

and eq.(4),

d~~n = i L(Gm/AIln - AIm,G'n)'
I

together with eq.(3) constitute a closed set of equations.
I now wish to show that the undeternlined elements AInn will not cause any anlbiguities.

By writing
G -i(am-an}rnn = 9mn e , (5)

we can always choose an to cancellvlnTl • For exanlple if we inlpose dan/dt = lv-Inn, eq.(4)
becomes

dgmn _" ,,( lI[ lI[' )
~ - '/, L-gmJ1~ In - 1v m,9ln .

l(~m,n)

(note. 9nn = 0 frOlu eq.(3» In terms of 9mn eqs.(2d) and (4) are written as

dVnn = ') L: . 9nl91n
dt - I(;en) (En - E,)3 ,

(6)

(7)d9mn ." 1 1
~ = 1. L- 9m'9In{CE _ E )2 - (E _ E )2)'

'(~m,n) . n I. . m I

The set of equations (ld),(6) and (7) is called the generalized Calogero-Moser (GCM)
equation. The original Calogero-Nloser(CNI) equation can be obtained by nlaking an ansatz

Gmn = g~9n - 19n 12c5mn

in eq.(4), which reads
_ld9n "{lII '"" 19/12 }

9n dt = t N nn+ L- (E . _ E)2 .
I(~n) n ,

This equation fixes the pha..se of 9n, and we obtain a set of solutions with 19m1 = con8t.~

Thus, we· have
dEn lI,&= nn,

dTT I "'I I?~ =.) L gm w gn w

dt - ( ) (En - Em)·3 'm;en .

where the C:M eq. is a special case when Igml2 = g. The ClY! eq. can also be derived from
the Hamilton equation with the Hamiltonian

_ 1" 2 g2 '"" 1
H CM - 2L- Vnn + 2 L- (E -E )2'

n m~n m n
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while the first two of the GC:\.f equations is ohtained fr01n

H - 1"y2 1 '" Igmnl2
GeM - '5 L., TIT! + '5 L., (.E E)2·

- TI - rn rl rn. - n

These Hamiltonian can be interpreteel as the SUll1 of the t.ranslational energy of a particl~

in N-dimensional space wi th uni t l1laSS and the rotational energy wi th the l1l0l1lent of
inertia (Em - En)':!. for rotat,ion along the axis perpendicular to the (m., n) plane. Other
possible interpretation of this Hamiltonian is the one dirnensional N-body Hamiltonian
with centrifugal pot.entials interacting between m-th and n-th partides with the relative
angular momentum gmn.

1-3 Statistical Theory of Levels
The system we are dealing can be rega.rded as an N-pa.rticle systell1 with inverse square

repulsion and relative angular n101nenta gmn, instead of the J.V2 free particle systen1 where
we have started. Let us consider the statistical properties of this systenl. In order to
int.roduce the statistical ensemble we ha,ve to be able to construct. statistically independent
sub-systems. \Ve choose the melnber of the ensemhle to be a sequence of N levels. Once
we define the sub-system our next task is to find additive constants of t.he motion. FrOln
eqs.(2) and (4) , which are written in the Lax form, there are in general infinite nUll1ber of
constants of the motion when [V, G) =/= O. It is consistent with the cOlnplete integrability
of our starting equations. It is c01nn10nly believed that the statistical treatInent is only
possible for those systems which is not cOlnpletely integrable. In our case we construct
sub-systems confining N-particles in a pot.ential well in order to have constant densit~r as
we have change energy sequence fr01n {EiJ to {Til in the la."t section. This corresponds to
change the equa.tion from dPIdt = 0 to dPIdt = F(X) where F(X) is obtained fr01n an
appropria.te potential U(X). In this casC' const.a.nts of the motion a.re grC'at.ly reduced t.o

~Tr(V2) + U(X),and Tr(G7t).

The Lax equation for G is a consequence of the cOlnpleteness of the basis function or in
other word U(1\;") invariance. Then hy constructing sub-systelllS its invariance should also
be broken. How bad is the braking will depend on the size of N as well as the init.ial
conditions. Here, we aSSUll1e that only Tr(G2) survives as the good conserved quantity.

The equilibrium distribution is then given by

dw ....., e-/3h-iqdf

wit.h

h = ~Tr(V2) + U(X),and q = ~Tr(G2).

The phase volUlne elf is defined by

df - :F(X P) [dX][dP]
- , (21r1"t)N

as the ordinary cla.'5sical statistical Inechanics with an appropriate constraint :F on the
type of matrices X and P. ~V corresponds to one-half of the dimension of phase space. By
changing the variables to {En,(}i, Vnn ,9mn} the probability distribution hecOInes

eXP[-~{LV;n+ L (E 9:'E )2}-j3LU(En)-~ L 9~m]
n m:F-n m n n m:F-n
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P({En }) -'> IT e-/~U(En).

n

with
df", J( {Oil) IT (lEn IT d8i IT ell/TlT1 IT dgmn

n n m>n

for a time reversal invariant syste111. Here J is the Jacobian depending only on rotation
angles to diagonalize X, while t.he familiar factor

is canceled bj' the Jacobian of transforination from {Vmn } to {gmn}. Since we are interested
on the level dist.ribut.ion, V"e carry out int,egrat.ions over unobserved variahles {Bi , l;~tn, gmn}.
Then we get the joint distribution functio11 as

where Q' should be 1 for real sY111111etric Han1iltonian and 2 for Hennitian (complex) Hamil­
tonian.

Let us consider t.he dist.ribution function in two limit.s: i) high tf'lnpcrature low angular
In0111entum limit (,/;1 -;. X»

In this case distribution of En is mutually independent and we haVf~ the Poisson distribu­
tion;

Po(.s) '" pe - p.<J ,

~2(L) '" L.

ii) low telnperat,ure high angular Inomentun1 limit.(lI:3 -;. 0, ~V -> 00, and lV, / j3 -;. COnL'lt.)

P({En}),.,. II IEm - EniD' IT exp[-~(En - Ee? -!,U(En»),
m>n n-

with a = J.Vo.,l/3 and Ee is the center of gravity of all levels. If we set U(En) to be zero,
this distribution coincides "'lith t.he well-known GOE( Q' = 1) or GUE( 0' = 2) .

II Quasi-Energy Spectra

II-I. Introduction Periodically Kicked Rotator
In order to study the dynamical chaos of Hamiltonian systen1S the Standard Map

Bj +1 = OJ + 1j+1

has been one of the standard tool. This n1apping can be obtained £1'0111 t.he Hal11ilton
equation of the Hamiltonian

H = ~p2 +{2;: b(t - jT)}AcosB
J
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t. e. the periodically kicked rotator wit.h period T, where

at time jT- just before the j-th kick. vVhen T -- 0 , this syst.eln is the pendulum. There
exist three t)rpes of classical nlotion,namely 1) reg'ular motion at K < I{c : Nlotion stays
on a torus or bounded by tori, and thus orbits are periodic or quasi-periodic. 2) Chaotic
motion at I{ > l<c: Disappearance of the KAM tori causes stochastic 1110tion in phase
space. 3)Accelerator mode at 1{ > l{a: Each kick adds up coherently at specific init.ial
conditions.

As an observable of chaos, we consider the energy diffusion: the tinle variation of
energy defined by

Ej = (I])

where (...) represents averaging over the initial ensemhle. Iterating the standard map we
obtain

J

I j+1 = 10 + I{ L sin6i ,

i=O

and by taking the ensemble average we have

J

(IJ+1) - 1(2 L: (sin6i sin 6k )·

i,k=O

Corresponding to ea.ch type of motions for t,he regular Inot,ion 1) the energy E j varies·
periodically or quasi-periodically. As for the chaotic Illotion 2) 6i behaves like randOln
white noise, and thus I j is the randOlll walk in I-direction. In this case E j corresponds to
the mean square fluctuation which is known to increase proportional to j,

Finally for the accderator mode 3) tlw sunl in I j accumulates coherently, and I j increases
proportional t.o j, or E j increases proportional to j2. FrOln these results we can sUl111narize .
that " appearance of the absorpti've energy diff1l.'~ion is a good signal of chaos" .

vVe now quantize the kicked rotator. The wave function a.t time jT- just before the
j-th kick is written as

1I'j(6) = 1j,(6,jT-) = L:An(j)einO .
n

The quantUln standard map

ArnU + 1) = L Um,nAn(j)
n

is generated by the one period evolution operator
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where Jm(q) is the Bessel function and where T = 1!T,q = )..T/1L The classical paraineter
I( is written as the product of rand q (I( = rq). Corresponding to the classical case we
calculate the f'nergy in quantunl nlotioll,

Ej = T2(1f'jI P2 11f'j) = r 2 I: n2 IAn(j)12
.

n

Characteristic features of quantunl nlotion observed in the nunlerical calculations are
1) limited dijju<lJion: No absorptive energy diffusion is seen for nlost of the parameter values
rand q. The wave function in nlOlnentunl space is localized exponentially:

where the localization length L behaves as qOt. In this case E j is hounded asymptotically
by

for large q, i.e. for a fixed !{ asynlptotic value of Ej increases as 11-
20+2 for 0' > 1 as

11 vanishes. Another inlportant quantum phenomena is 2) the refwnance which appears
when T = 21rAI/JV for an even integer N, or T = 41rlvI/J.V for an odd integer lV. In this
case Ej increases asymptotically proportional to j2 regardless of the value of q.

11-2 Motion of Quasi-energies
By exactly the saIne manner as the energy eigen-value we consider the nlotion of the

quasi-energy defined by the eigen-value problem

U(t)<b = e- iE(l)4>,

where the unitaQr operator is given by the one period evolution operator of a kicked systelll:

U(t) = e- ith' e- iho

with interaction strength t running on the real axis. The Illation of quasi-energies as t
varies can be studied by the equations;

,dX X - 1 _ P dP 0
t dt -, dt = ,

where X a.nd P a.re mat.rkes corresponding t.o U(t) and h' represented hy a complete set
of eigen-functions of ho independent of t. Changing the basis set by the transfornlation 0:

x = o-IDO,P = O-JyO,

so that D is diagonal, equations of the Illotion becomes

dl; + i[M, D] = -iVD,

~+i[M,V)=0,
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where M = i( dO / dt )0- 1 is Hermitia.n. Int.roducing a matrix G by

DG = -[D,V]

the equation for G is given by

(~~ + i[M, G] = O.

Off-diagonal parts of eq.(11) define the Inatrix M:

'1 'T7 D n (' ).:~' mn = 1, ~ mn D D ,m, t- n
m - n

except diagonal elenlents. Diagonal parts ofeqs.(ll) and (12):

dEn _ Tl (D - e-iEn)'
~-tnn, n-

d~;n = i L(v~l-.i\lln - ]l.,1nlVln),
I

and eq.(4),

(13)

(14)

(lId)

(12d)

d~~n = i L(Gmlj\;!ln -lvImIGln ),
I

together with eq.(13) const-it,ute a closed set of equations.
Similar to the previous case the undetermined elements Afnn will not cause any anlbi-­

guities. By writing
G mn = gmn exp{-i(am - an)} (15)

we can always choose an to cancellvlnn . For exanlple if we choose dan/dt = 1\lnn , eq.(14)
beconles

d9mn _' ~ ( M "!o'" )--;rr- - 1. LJ gml In - .i.t'.l.mI9In
I(=t=m,n)

noting 9nn = 0 from eq.(13). In terms of gmn eqs(12d) and (14) beconle

dVnn _ 1 ~ cos{~(En - E l)}
([t - 4 LJ 9nl91n . 3{1(E E)'}'

l(=t=n) SIn '! n - I
(16)

d9mn i ~ [1 1] ( 7)
--;rr-=4 LJ 9m19'n .2{1(E E)}- '?l(E E)' 1I(=t=m,n) sIn ~ n -, sln-{~ m - ,}

Similar to the Calogero-NIoser(CNI) equation we can obtain a special class of solutions by
nlaking an ansatz

in eq.(14), which reads

-1 d9n _ i [' ~ 19,12
]

9n dt - '4 M nn + L- . 2{1(E _ E)} .
l( ) szn 7'j n I=t=n - '

- 681-



This fix~s th~ phase of 9n, and we hav~ a s~t of solut.ions with 19m1 = con,'~t .. Thus we have

dEn ,?& = Vnn,

d1t~n _ 1 '" 2\ 12 COS{1(En - E/)}
(It - 4 L., Igm I 9n . 3 ] .

m(;t:n) 8111 fz (En - Er))

These equat.ions are obtained frOln the Hamilton equation with the Hmniltonian

H - .!. '"V2 +.!. '" \9mI
2
!9nI

2

OP - ? L., 7ln ? L., . 2 1 )
- n -m;t:n S1n {-z(En-E/}

while the equations (lId) and (16) can be obtained from

The equation for qua.c:;i-energies is nlore c01nplicated than that of energy eigenvalues
because of tlw periodicit.y of interactions. In the previous ease the interaetion between the
In-th level and the n-th level reduces as (Em - En)-2, while in t.he present case sin-2{~(En­
Ed} can be arhitrary large regardless to the difference of two quasi-energies. I~ such
a ease the range of int.eraction in 9mn can be very long and it will not be possible to
divide the system into independent sub-systelns for construeting the statist.ical ensemble.
Nevertheless, when we give a set of initial values,for exalnple

for the kicked rotator, the equa:tion of nl0tion can be solved in principle for 1110Stof the
paralneter values of T away fronl resonance. There we expect the discreteness of quasi­
energy spectra is preserved.

II-3.Resonance
Period -N resonance appears when T = 27f'AlflV for even .:.V, or T = 47f'Alf.N for odd N.

In such cases we have
Um+N,rt+N = Um,n.

Quantum Mapping for the resonance case can be written as

Am(j + 1) = L Um-nAn(j)
n

with
An(j) = {As+nN(j)}, U m- n = {Us+(m-n)N,t}, ('''' t = 1, ... , N).

It should be noticed that this mapping has translational invariance, a.nd in this case we
cannot expect localization. Quasi-energy spectrU111 of this equation is obtained £1'0111 the
eigen-value equation

e-iCb(a) =U(a)b(a),

- 682-



where we have defined
U(a.) ::::: I:C-inaun ,

n

with a continuous paramete.r a = [0,27T-]. Since quasi-energy € now depends on the contin­
uous paran1eter a, the spectrulu is absolute continuous forming the energy ban,ds.

Let me show that this sJrstem exhibits energy diffusion proportional to j2: When the
initial condition is chosen to be

where bJL(a) is the eigen-function with the quasi-energy €J1(a), the stat.e at tin1e j is given
by

J ' . (). do.
An(j) = L cp{a)emae-uJAa Jb p(o.)')1r'

J1 -
Then the ene.rgy expectation valu~ in the asyn1ptotic limit is given by

This expression indicates that the diffusion occurs only when the quasi-energy has contin­
uous speetrun1.

III.Discussion

111-1 Relations between the Level Fluctuation and Chaos
Let me sumn1arize the present status of the theory of level statistics: i) The GOE can

explain surprisingly well t.he. exist,ing data. ii) The GOE is not a unique e11sen1b1e, but
rather an ensemble at the :, chaotic" linlit. iii) \Vith two quant.ities, Tr H'2 and Tr[H, H'J2,
the statistics of level fluctuations can be well describe in both integrahle and chaotic
limits; i.e. the level ststistics n1akes a s11100t.h transition from the Poisson to the Gauss
distribut.ion. Now the follmving two proh1c111S s~em to n1C essential.

Probl~m(1): Once w~ hav~ a Hamiltonian H, we can calculate ~nergy C'igcn-values,
and thus we can takC' level statistics. HowC'v~r, in order to predict the statistical propC'rti~s

from our thC'ory we lwC'd to know both H and HI.
R.C'solution: If we- ran a.ssume- t.!w e-rgodic:ity, tIl(' st.atistic-a.l nat.urC' of t.ll(' Hamilt.onian

H = Ho+ tH' will be dominated by tho,t of t t= O. In this case the thcorc111 says that the
statistica.l average along t can be replaced by the ensen1hle average of a certain tilne, say
t = 1, larger thali t.he relaxation tin1e.

Problen1(2): If the two invariants are the order paran1eters of chaos for the quantized
system, do t.l1f'ir classical correspondences,

JdqdpH'(q,p)2

and
j dqdp{H(q,p), H'(q,p)}2
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are related t.o the classical order parametC'r such as the K-5 entropy?
Resolution: I do not have any answer for this problem. I would rather like to ask you

the following question. "If we know a Hainiitonian H = Ho+ H', can we estiinat.e the K-5
entropy without calculating the Lyapunov exponent by the direct integration of equations
of the motion?" If it were possible, it is natural to expect that the K-S entropy is a function
of above two quantities.

111-2. Is there transition frOlll pure point to absolute continuous in quasi­
energy spectra?

When the systein has only pure point spectruIn, the Inotion is always periodic or
quasi-periodic, and no energy diffusion is expected. In order to have the time asymmetric
phenomena such as diffusion it is essential to have continuous spectruin. There is a theoreill
due to Casati et.al. that for certain class of irrational values a of the paranleter r = 47l"Q

there exist continuous quasi-energy spectrum.
Probleln: "Vhere can we find the absolutely continuous spectra except at the resonance'?
Answer(not complete): When Q belong to a class of numbers which are well approxi­

Inated by the continued fract.ion such as a Liouville mllnber, we construct a series approx­
inlating a by rational numbers;

la - Ali/Nil < c1Vi-(J'·

The problem we like to answer is whether the energy for a = 1vl/lv

E j = r 2 I).s + n.NPIAs+nNU)12

n,s

can still increase as i'vi increases to approxirnate an irrational number by the linlit. of
rationals. Let us wri te

E j = r 2{e2(n)j2 + Cl(Q)j + eo(o)}.

Here, e2(a) has been given hefore. In order to know the existence of energ~" diffusion at
generic values of Q we need to estinlate the behavior at l.V --. 00. It is not a sirnple task
at all, and we do not have answer yet. But, there is a special case where we have the
large N liInit: in the selni-classical litnit (r = *' q = If~\f ,IV - 00) the energy dissipate as
E j "7 ! [(2j. In this case we should have . .

( 471" )2 (1). 0 . 1 (471" )2 (1) 1 r.""2..IV e2. N "" ,ane N· CI 1V ...... 2'.l\. ,

i. e. el (-k) is ao;;ymptotically proportional to q2. Nmnerica.l investigation of the behavior
ofe2C*) and el(*) will help to guess the values at generic Q.
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