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US Civil Infrastructure Systems
• Increasingly broad and more complex

• Operate in harsh environment due to meteorological and electrochemical impacts

• Subject to multiple hazards such as earthquake, flood, hurricane, tornado, and tsunami

• Deteriorate rapidly and may be approaching their designed life spans
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https://www.modot.org/chariton-county-us-route-24-
middle-fork-chariton-river-bridges-completed

https://www.wsj.com/articles/cuomo-digs-in-
on-aging-train-tunnel-to-penn-station-telling-
trump-to-fork-over-funding-1539880705

https://www.cbs17.com/news/hundreds-pack-
meeting-about-woodlake-dam-in-moore-county/



Bridges
• Over 600,000 highway bridges in the National Bridge Inventory (NBI)

• 39% have exceeded their design life of 50 years

• 9% are structurally deficient and require significant repair

• National Bridge Inspection Standards require bridges to be inspected every two years to 
ensure that there are no cracks, rusting, or other damage

• Over hundreds of bridges need to be inspected every day 
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Problems of The Current Practice of Bridge Inspection

time-
consuming in 

data collection

difficulty in 
accessing 

elevated bridge 
structures

blocking the 
traffic

dangerous field 
activities

Bias of human 
visual 

inspection
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Bridge Element Inspection
• Make visual inspection more objective

• Promote data-driven asset management

• AASHTO published the 2nd edition of Manual for Bridge 
Element Inspection
• Standardized element definitions
• Element quantity calculations
• Condition state definitions
• Element feasible actions
• Inspection conventions

• Obstacles are present in executing the bridge element 
inspection thoroughly
• Data collection
• Computational tools for evaluating element conditions and

the overall condition of the bridge
7



Robotic Technology for Bridge Inspection
• To address the cost, accessibility, safety, and reliability concerns of the current 

inspection practice

• To move forward to data-driven asset management

• Robotic platforms equipped with sensors

BIRDS – Missouri S&T, Dr. Genda Chen Climbing robot – University of Nevada, 
Reno, Dr. Hung La

8

RABIT autonomous deck 
inspection by Rutgers Univ. -
CIAT



Future Work at the Human-Technology Frontier
• Current practice  – Inspectors visually check the 

bridge conditions at the site

• Future work – cooperative robot-inspector survey of 
bridges

https://studopedia.org/1-87707.html

Dr. Genda Chen, Missouri S&T

• A paradigm shift of bridge 
inspection due to the 
advancement of new 
technologies

9Muhammad Monjurul Karim, Stony Brook



New Challenges Facing Inspector-Robot Collaboration
• Capability of the inspector-robot system is not linear additives of constituents’ 

capabilities.

• Requires solving a series of interdependent problems.

• Focuses of Qin’s group: enable inspector-robot collaboration in bridge inspection by 
developing computational intelligence methods and training systems

10

maximize the utilization and efficiency of 
robots in assisting inspectors to collect 
high-quality data given the operational 
constraints

make inspectors highly confident and 
efficient in operating robots and analyzing 
the big complex image/video data.

create an accurate digital profile of 
every bridge, that can be updated over 
time, to support the data-driven asset 
management



Assistive Intelligence for Inspection Video Data Analysis
• How to assist inspectors in analyzing inspection video data efficiently and effectively

11

Inspection video 
data analysis for 
creating the 
digital profile of 
bridges 



Inspection Video Data Analysis
1. Detect and segment bridge elements from inspection video data and sort them out by 

classes

2. Detect and assess defects on bridge elements to determine the condition of elements

12
excellent good fair poor

1) Barrier
2) Slab
3) Bearing
4) Pier
5) Pier cap
6) Pier wall
7) Rivet
8) Truss
9) Bracket
10) Joint



AI Assisted Inspection Video Data Analysis
• Inspection video data analysis is challenging

• Volume: a standard RGB camera collects 108K images per hour
• Velocity: robotic inspection platforms can collect data in fast speed
• Variety: elements of 600k bridges exhibit large variations in videos and mix with cluttered 

background
• Veracity: data quality is affected by viewpoint changes, occlusion, camera vibration and distortion, 

scale variation, limitation of natural illumination, etc.

• Letting inspectors watch inspection videos for hours and days to locate the desired 
regions of interest is low in efficiency and easily triggers the development of fatigue.

• Develop computational intelligence models to assist inspectors in processing the 
inspection video data.

13
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Related Work
• Bridge element segmentation from videos

• Multiscale Siamese neural network initially trained by one-shot learning and fine-tuned iteratively 
with human-in-the-loop for segmenting a single class of elements (Zhao et al., 2019)

• Convolutional neural networks for locating and extracting regions of interest (ROI) + image 
classification for filtering corrupted ROIs (Yeum et. al., 2019)

• Multiscale convolutional neural networks + the scene classification for reducing false positives 
(Narazaki et al., 2018, 2020)

• Segmenting multiclass structural elements from the video data collected by aerial robotic platforms 
for bridge element inspection is not solved completely

• Multiclass object detection & segmentnation
• Region-based CNN (R-CNN) (Girshick et al., 2014), Fast R-CNN (Girshick et al., 2015), Mask R-CNN (He 

et al., 2017) for multiclass object detection and/or segmentation from static images
• Temporal coherence information to address the issue of inconsistent detection (Kang et al., 2017; 

Zhu et al., 2017a, 2017b), which are computational expensive
• Seq NMS (Han et. al., 2016) uses post-processing and is efficient. But false positives are an issue.

15



Related Work (cont.)
• Transfer learning

• Deep learning does not solve all challenges 
• Address the issue of expensive data annotation by inspectors
• Has been used for structural damage detection (Zhang et al., 2018; Gao and Mosalam 2018; Zhang 

and Chang, 2019; Gopalakrishnan et al. 2018)

• Semi-supervised learning
• Self-training combining a portion of human annotated data and a portion of model annotated data 

(Triguero et al., 2015)
• Performance is not good enough, mainly due to the quality of automatically annotated dada

• Active learning
• Actively select training samples from a pool of unlabeled data and let a human annotator to label 

them for re-training the model
• Determining the most informative samples for active learning is complex (Settles, 2012; Tian et al., 

2020; Beluch et al., 2018; Sener and Savarese, 2017; Morrison et al., 2019; Gal et al. 2017; Yang et 
al., 2017; Siddiqui et al. 2020)

• Simple but effective methods for recommending new data for annotation are greatly desired 16
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Engage Inspectors to Develop Assistive Intelligence

1. Transfer learning for the initial adaption of Mask R-CNN to the new task

2. Temporal coherence analysis that identifies the weakness that current neural network 
can learn from

3. Iterative self-training that engages inspectors to boost the performance
18



Transfer Learning
• A Mask R-CNN for 

segmenting multiclass 
bridge elements from 
inspection video data

• Training this deep learning 
network from the  scratch 
requires a large volume of 
annotated data to achieve 
satisfied prediction 
accuracy

19

• A Mask R-CNN, pre-trained on Microsoft COCO, is transferred in for the task of 
multiclass bridge element detection and segmentation

• A small initial training dataset 𝑇! annotated by inspectors: 40 images containing 482 
labeled objects in 10 classes



Temporal Coherence Analysis
• Identify the weakness of the current network through recovering false negatives, and 

accordingly, recommend additional training data to retrain the network.

• An object in a frame is highly likely present in the neighboring frames within a range of 
spatial displacement with a similar confidence.

• Example:

• Temporal coherence information: objects with high detection scores in preceding 
frames and their spatial locations

• Use temporal coherence information to recover false negatives
20



Temporal Coherence Analysis (cont.)

21

Set of detection 𝑂!"($%&) Set of detection 𝑂!"$ Set of detection 𝑂!

… Frame 𝑖Frame 𝑖 − (𝑞 + 1) Frame 𝑖 − 𝑞

Search the same detection 
‘dot’ within the surrounding 
area in a pair of preceding 
successive frames up to 𝑘
frames from the nearest pair 
to the farthest pair (i.e., 𝑞 =
1, … , 𝑘 − 1) The 𝑗th object is classified as 

‘dot’ with detection score 𝑆!,)
and at the location 𝐶!,) . 

The detection score is lower than 
the upper threshold 𝑡* of 
detection but greater than the 
lower threshold 𝑡+ , thus it may be 
a false negative detection. 

A ‘dot’ is found within 
the distance 
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with detection score 
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Temporal Coherence Analysis (cont.)
• [𝑡5 , 𝑡6) are the threshold range for identifying false negatives. A detection score within 

this range is a possible false negative.

• 𝑘 is the temporal window that defines the range of preceding frames for searching the 
same objects as the false negative.

• ∆𝑑 defines the maximum spatial displacement of objects in any two successive frames

22

𝑓: focal length
𝑠!: size of pixel
min 𝑧, 𝑧" : distance from the camera
to the object along the optical axis



Semi-Supervised Self-Training (S3T) with Human-in-the-Loop

• Self-training & active learning

• Sample a portion of recovered
hard data that have been 
automatically annotated by 
the current network

• Let the inspector re-annotate 
a small portion

• Supplement the existing 
training dataset to retrain 
the network 

• The small dataset labeled by an experienced inspector represents the weakness of the 
current model and, thus, can effectively boost the performance of the network.

23

𝑇!"# = 𝑇! +𝑀! + 𝑆!,%



Semi-Supervised Self-Training (S3T) with Human-in-the-Loop (cont.)

• Skip sampling method, SP(s), which samples a frame and then skips 𝑠 frames because 
consecutive frames of a video are similar. 

• Regulating the portion of model-annotated additional training data, 𝛼. 
• Limitation of the self-training: unsatisfied initial performance of the network causes data mislabeling
• Letting an inspector to review a portion of the sampled data is a regulation
• The experienced inspector guides the network to quickly learn from its weakness
• 𝛼 can be increased as the network’s performance increases

24

𝐼7 = 𝐼8 ∘ 𝐼79(:)

𝐼&: what frames are recovered hard data
𝐼'(('): what frames are chosen according to SP(s) method
𝐼': what hard recovered frames are sampled
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Data
• Captured by the BIRDS in INSPIRE UTC: 20 mph, 

30 fps, 3,840x2,160 pixel

• 10 classes of structural elements

• Dataset, 𝐷: 4,400 images from inspecting a bridge

• Initial training dataset, 𝑇!: 40 images with 382 objects
from the 10 classes with class labels

• Unlabeled dataset, 𝑉, provides additional training data
during S3T: 670 images with 5,916 
objects from the 10 classes without class labels

• Test dataset, 𝑇:, 212 images with 1,872 objects 

26



The Solution Process
• Training and testing were performed using two NVIDIA Tesla V100 GPUs.

• Initial adaption of pre-trained Mask R-CNN by refining Network Head and Mask Branch

• Then, the S3T algorithm took three iterations to complete the refining process.

• Used 4.82 hours in total (3.58 hours for data annotation and 1.24 hours for training) to 
develop the assistive intelligence model.

27

TL S3T
Index of iteration, 𝑙 0 1 2 3
Training dataset (# images), 𝑇! 40 48 85 118
Hard recovered data (# images), 𝑅! 113 79 50
A sampled subset of 𝑅! (# images), 𝑆! 37 33

Manually annotated data (# images), 𝑀! 8 11 7
Automatically annotated data (# images), 𝑆!,% 26 26

The portion of 𝑆! for automatic annotation, 𝛼 0.7 0.8



The Method for Evaluating Object Detection
• The bounding box IoU, IoU;, is defined as:

• If the IoU; is no less than a pre-specified IoU threshold, the prediction is a correct 
detection

• Measure the detection performance using Recall, Precision, and F1-score

28

IoU+ =
𝐴+, ∩ 𝐴+-
𝐴+, ∪ 𝐴+-

𝐴+,: area of the predicted bounding box
𝐴+-: area of the ground truth bounding box

Recall =
# correct predictions
# ground truth objects

Precision =
# correct predictions

# predictions F1 =
2×Precision×Recall
Precision + Recall



Bridge Element Detection Results
• Compute the Recall, Precision, and F1-score using a range of IOU threshold values 

ranging from 0.1 to 0.9 at a step of 0.1. 

• Results at the IoU threshold value 0.5 are in the table below:
• Transfer learning achieved 80.3% Precision, 74.4% Recall, 

and 77.2% F1
• S3T: ↑ 11.5% precision, ↑ 19.4% Recall, and ↑ 15.5% F1,

respectively

• Very high threshold value is not necessary and increases 
false negatives

29

TL S3T

Index of iteration, 𝑙 0 1 2 3

IoU = 0.5

Precision (%) 80.3 81.7 90.7 91.8

Recall (%) 74.4 90.3 90.1 93.6

f1-Score (%) 77.2 85.8 90.4 92.7



The Method for Evaluating Instance Segmentation
• The mask IoU, IoUS, is defined

• If the mask IoU is no less than a pre-specified threshold, the predicted mask is a correct 
prediction.

• Calculate the precision for each class

• Average the class-level precisions to find the mean precision

30

IoU. =
𝐴., ∩ 𝐴.-
𝐴., ∪ 𝐴.-

𝐴+,: area of the predicted segmentation mask
𝐴+-: area of the ground truth mask

𝑃𝑟! =
# correctly predicted segmentation mask of class 𝑖

# predicted segmentation masks of class 𝑖

mP =
∑!-&
&. 𝑃𝑟!
10



Bridge Element Segmentation Results
• Overall, mP over the iterations 

demonstrates an upwarding curve with 
reduced margin, indicating the improved
segmentation performance

• Mask IoU value 0.5 is a commonly 
accepted minimum quality of 
segmentation. At this mask IoU threshold 
value, the developed model achieves 
92% mP.

• The mP curves at threshold values 40%, 
50%, and 60% are close. The curve at 
threshold value 70% clearly drops to a lower position. 

• A very large threshold value tends to reduce the number of true positives and increase 
the number of false negatives.

31



What Can Transfer Learning Help?
• Training the Mask R-CNN from the scratch with a training dataset of 144 images 

• the training process has not been finished after 13.2 hours (600 epochs)
• poor performance (32.3% precision, 18.3% recall, and 23.4% F1)

• Transfer learning with the initial training dataset of 40 images 
• the training process took only 20 minutes 
• reasonable performance (80.3%, 74.4%, and 77.2%)

• Transfer learning allows for efficiently building an initial network for multiclass bridge 
element segmentation from existing deep learning neural networks for other tasks

Method Training time (hr) Precision (%) Recall (%) F1 (%)

Training from scratch 13.2 32.3 18.3 23.4

Transfer learning 0.33 80.3 74.4 77.2

32



Method Comparison
• Direct transfer learning

• uses blind annotation. The model performance will increase at a rapidly increased cost of data 
annotation. But how many to annotate?

• a performance of 89.7% precision, 92.3% recall, and 91.0% f1 took a large amount of tedious human 
annotation efforts (about 24 hours) plus 1.1 hours of training time to achieve.

• Self-training
• After refine the initially transferred using additional annotated 8 images, no further guidance from 

the inspector

33

Method No. manually 
annotated images

Annotation 
time (min)

Training 
time (min)

Inference speed 
(sec/frame)

Precision 
(%)

Recall 
(%)

F1-score 
(%)

Mask R-CNN 22 72 18 0.55 68.0 68.4 68.2

Mask R-CNN 44 143 20 0.55 82.0 79.0 80.5

Mask R-CNN 220 715 33 0.55 85,8 91.8 88.7

Mask R-CNN 440 1,430 66 0.55 89.7 92.3 91.0

Self-training 48 156 72 0.55 88.9 76.7 82.4

Our approach 66 215 72 0.55 91.8 93.6 92.7



Method Comparison (cont.)
• Compared to direct transfer learning, our approach

• reduced the annotation time by 85% and took a comparable amount of time (only 6 more minutes) 
to train the model. 

• achieved a better performance (↑ 2.1% precision, ↑ 1.3% recall, ↑ 0.3% F1)

• Compared to self-training, our approach
• Required additional one hour of data annotation by the inspector
• Achieve a large margin (↑ 2.9% precision, ↑ 16.9% recall, ↑ 10.3% F1)

34

Method No. manually 
annotated images

Annotation 
time (min)

Training 
time (min)

Inference speed 
(sec/frame)

Precision 
(%)

Recall 
(%)

F1-score 
(%)

Mask R-CNN 22 72 18 0.55 68.0 68.4 68.2

Mask R-CNN 44 143 20 0.55 82.0 79.0 80.5

Mask R-CNN 220 715 33 0.55 85,8 91.8 88.7

Mask R-CNN 440 1,430 66 0.55 89.7 92.3 91.0

Self-training 48 156 72 0.55 88.9 76.7 82.4

Our approach 66 215 72 0.55 91.8 93.6 92.7



Impact of Human-in-the-Loop to Self-training
• The S3T method that keeps human-in-the-loop is a combination of self-training and 

active learning.

• The portion of additional training data re-annotated by
experienced inspectors in each iteration may impact the
model development efficiency and the performance of
the resulting final model.

• Experimental studies
• Experiments 1~3 are self-training with human-in-the-loop
• Experiment 4 is conventional self-training

• Including the inspector’s guidance in self-training is critical

• Following the suggested regulation assures the convergence
to satisfied performance in a few iterations

35



Job Efficiency Achieved
• A small-scale example of detecting and segmenting bridge elements from 20 images

• A real-world task would analyze hundreds of thousands of images. 
• As the job size increases, the gap of accuracy is diminishing and can reverse due to 

human factors related issues (e.g., loss of attention, fatigue, etc.)
• The time saving is tremendous, in proportion to the size of the real-world task
• It is not a problem to let inspectors analyze a small portion of images for guiding the 

algorithm development, but not realistic to let inspectors to manually analyze all.

36

Assistive Intelligence Work time (min) Accuracy (%)

without 65 100

with 0.27 93.7

change ↓99.5% ↓6.3%



Generalization Capability of the Proposed Method
• What if we use the neural network that is developed for one bridge to inspect other 

bridges?

• The bridge that has had a network developed for is named bridge C.

• Segment the same ten classes of bridge elements for another two bridges, named 
bridges A and B.
• Bridge A: 76.8% Precision, 73.0% Recall, and 74.8% F1-score
• Bridge B: 61.2% Precision, 60.0% Recall, and 60.6% F1-score

• Comparable to the performance of the initial network for bridge C.

• The network developed in this study has a certain degree of generalization, and it is 
good enough to serve as the initial network for other bridges. 

• Implementing the S3T method developed in this study will adapt the neural network to 
other bridges.

37



Representative Examples
(a) Successful detection and segmentations

(b) False negative detections

38
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Recommendations
1. No deep learning models are directly applicable to any tasks and, therefore, it is 

important to adapt models to different new tasks to achieve satisfied performance. 
Transfer learning, semi-supervised learning, and active learning are examples of 
useful methods that let the algorithms learn features of a new task from a small 
amount of high-quality data of the task, thus adapting to that task.

2. Keeping human-in-the-loop is an important method to leverage human intelligence 
into the artificial intelligence algorithms. This should be achieved through a 
collaborative approach. That is, algorithms provide humans with its performance so 
that humans can figure out the weakness and provide inputs (e.g., additional training 
dataset annotated by humans) to the algorithms for improvement.

3. Model adaptability and the collaboration between artificial intelligence and human 
experts were integrated together as a solution for developing assistive intelligence 
that takes care of time-consuming, boring tasks and let humans focus on knowledge-
intensive tasks. This will be a new style of work for future bridge professionals.

40



Future Work
• Adapting the assistive intelligence model to bridges with additional structural elements 

is the next step to extend this study

• Improving the testing speed to have the real time inference capability

• Contextual information and the spatial correlation among objects could be utilized to 
further improve the segmentation accuracy

• Evaluating the change in cognitive load and other psychological states of inspectors 
assisted by the assistive intelligence in bridge inspection. 

41
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Does Deep Learning Solve All Challenges?
• Deep learning 

• Powerful computational resources + large-scale annotated data 
• Deep learning models such as convolutional Neural Networks (CNN) improve image analysis such as 

object detection and classification

• Heavily rely on intensive, tedious efforts of human to annotate training data

• Large-scale annotated datasets do not cover bridge elements or bridge conditions
• ImageNet: 12.4 millions of labeled training samples
• Microsoft COCO: 10 millions of labeled training samples

• High-quality labeled training data for domain-specific applications is difficult to acquire 

Airplane
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Thank you!

Q&A

ruwen.qin@stonybrook.edu
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