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Formal Analysis and Estimation of Chance in
Datasets Based on Their Properties

Abdel Aziz Taha, Luca Papariello, Alexandros Bampoulidis, Petr Knoth, Mihai Lupu

Abstract—Machine learning research, particularly in genomics, is often based on wide shaped datasets, i.e. datasets having a large
number of features, but a small number of samples. Such configurations raise the possibility of chance influence (the increase of
measured accuracy due to chance correlations) on the learning process and the evaluation results. Prior research underlined the
problem of generalization of models obtained based on such data. In this paper, we investigate the influence of chance on prediction
and show its significant effects on wide shaped datasets. First, we empirically demonstrate how significant the influence of chance in
such datasets is by showing that prediction models trained on thousands of randomly generated datasets can achieve high accuracy.
This is the case even when using cross-validation. We then provide a formal analysis of chance influence and design formal chance
influence estimators based on the dataset parameters, namely its sample size, the number of features, the number of classes and the
class distribution. Finally, we provide an in-depth discussion of the formal analysis including applications of the findings and
recommendations on chance influence mitigation.

Index Terms—High-dimensional data, Chance Correlation, Formal Estimation of chance, Generalization, Sparse Data, Genomics

F

1 INTRODUCTION

DATASETS with a large number of variables, but at
the same time a small number of samples, are being

frequently used in applications of machine learning (ML)
techniques in the medical domain. One example is the
analysis of genomic data, where datasets typically consist
of thousands of genes. One of the main problems with this
type of data is that the results obtained from its analysis
are hardly reproducible. For instance, subsets of features re-
ported by one research group as predictive of some disease
either largely differ from other groups’ results or are not
predictive when applied on other groups’ data [1], [2], [3].

Michiels et. al [4] provide an emblematic example, where
seven studies that claim to predict cancer based on mi-
croarray data have been reanalyzed. They reported that the
results of most of these studies are overoptimistic and five
of them provide prediction methods that are not better than
a random predictor. In particular, they reported instability
in the feature selection in the sense that the features selected
by the algorithms as predictive regarding the underlying
outcomes significantly change depending on the patients
considered in the training sets, such that the feature selec-
tion can be described as unrepeatable. They also reported
that this instability decreases with increasing the number
of samples used for training and evaluation. Hua et. al [5]
emphasized the considerable influence of the ratio between
the number of features and the sample size on the reliability
and reproducibility of results.

Lian et. al [6] observe that much research has been
done on dimensionality reduction to overcome difficulties
stemming from high-dimensional data, like efficiency, curse
of dimensionality, and loss of performance, but less research
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addresses the evaluation of machine learning methods when
applied to high-dimensional data. Kim et. al [7] provide an
analysis showing how unstable feature selection methods
are when applied to high-dimensional data. They also pro-
vide a statistical evaluation measure that incorporates the
stability of selected feature subsets.

The situation of datasets consisting of a large number of
features and a small number of samples is a critical situation
combining both high dimensionality and low number of
instances. This situation creates a kind of data sparsity,
which is directly related to the high dimensionality scenario.
The difficulties related to this situation stem from the curse
of dimensionality [8], [9], [10], [11], [12], which will be
discussed in more detail in the related work.

Such a setting (larger number of features, small number
of instances) is most common in the biomedical domain [13],
[14], [15]. The direct motivation for the research presented in
this paper stems from our key observation while perform-
ing experiments on an RNA genomic dataset containing
microarray gene expressions of 80 patients who died as
a result of neuroblastoma cancer after different survival
times. Our task was to predict the survival time (from
diagnosis until death) based solely on the RNA data, which
consists of about 16,000 features (gene expressions). Using
a simple regression model in a cross-validation setup after
performing a feature selection, we were able to achieve
a prediction accuracy of more than 97%. Since we were
doubtful of this high accuracy given the small number
of samples, we questioned our result and investigated its
origins in the following way. We replaced all the gene data
with random numbers uniformly distributed in [0, 1] and
kept the target (survival time) unchanged. After applying
exactly the same feature selection and regression algorithms
on the random dataset, we were still surprisingly able to
predict the survival time with an accuracy of about 95%.
This empirical observation of the models being trained on
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random data and even so predicting with high accuracy is
a clear signal that there is something going wrong with the
evaluation process (in this case cross-validation) under these
experiment settings.

Combining this observation with abundant literature on
this issue (e.g. [1], [4], [5], [7], [16], [17], [18], [19], [20])
reveals the need to standardize the learning/evaluation pro-
cess when dealing with such extremely shaped datasets to
ensure comparability of results and a clear definition of the
baselines. There is also a strong evidence to directly relate
this generalizability to the influence of chance correlation
and thus to highlight the need for chance estimation meth-
ods and guidelines for avoiding/mitigating this influence to
quantify a clear baseline and comparability.

We define chance influence as an increase in the perfor-
mance of a model stemming from chance correlation in the
underlying data. Our work is based on the assumption that
the amount of information contained in a truly randomly
generated dataset with randomly generated target classes is
extremely low and can be neglected. This assumption can be
justified using the basics of the information theory, namely
the mutual information [21] between the features and the
target—this is indeed zero in the above mentioned setup.
To measure the chance influence in a dataset with particular
dimensions, a model is trained to predict the target class
on a randomly generated dataset of these dimensions by
only exploiting chance correlations. The accuracy achieved
by such model is assumed to be a measure of the chance
influence on a (real) dataset of these dimensions. One of the
main goals of this document is to provide a formal estimator
of the chance influence in a dataset, which we will call φ
(phi).

In this paper, we first empirically demonstrate the enor-
mous impact of chance correlation on training and evalu-
ation of ML algorithms in high-dimensional detests with
low numbers of examples. We show that cross-validation
procedures do not remove the possibility of obtaining
highly overoptimistic results as the chance correlation phe-
nomenon is not related to over-fitting. Our observation is
confirmed by running thousands of simulated experiments
on random datasets of different dimensionality and across
different data types and classification/regression tasks. We
also provide a formal analysis of chance and mathematically
model the relation between chance extent and the properties
of the dataset (i.e. number of features, number of samples,
and number of classes), which results in formal chance
estimators. Finally, we provide a discussion of chance corre-
lation including feature selection under extreme settings and
guidelines to mitigate the influence of chance on prediction
models [22].

2 RELATED WORK AND BACKGROUND

2.1 Curse of Dimensionality
The curse of dimensionality [9], [12] refers to the problems
arising when dealing with high dimensional data, namely
the fact that optimally estimating a function would require
parsing the complete data space and, thus, requiring an
unrealistic amount of computational resources [12]. The
curse of dimensionality has had an impact on many research
fields and has motivated a lot of research that mitigates its

effects. However, the curse of dimensionality has several
aspects, two of which we are describing in this section.

One aspect of the curse of dimensionality is distance
concentration. This is the phenomenon that could occur
in high dimensional data spaces, with which distances be-
tween points become too similar, thereby reducing the util-
ity of the information contained in the data space. Distance
concentration negatively affects tasks that rely on distance
and similarity measures, and considerable research has been
conducted to mitigate its effects in these tasks [9], [23],
[24], [25], [26], [27], [28]. In the context of unsupervised
machine learning, dimensionality reduction methods, such
as Principal Component Analysis (PCA) [29] and Factor
Analysis (FA) [30], are typically used to mitigate the effects
of this phenomenon.

Another aspect of the curse of dimensionality in super-
vised learning is data sparsity: the higher the number of
features, the higher the sample size is required, in order
for the ML model to be generalisable. Similarly to unsu-
pervised learning, data sparsity in supervised learning is
mitigated by dimensionality reduction methods [31], [32],
[33], many of which are typically found in popular software
libraries [34], [35], [36]. Our work analyzes the difficulties
arising from settings that promote data sparsity, namely
when training ML models based on data that combines both
high dimensionality and low number of instances.

2.2 Learning Curves

Learning curves refer to a class of approaches that have been
used to tackle problems with supervised learning related to
the dimensionality of the dataset used, i.e. the ratio between
the number of features and the number of instances.For this,
one commonly employs learning curves to predict how the
classification accuracy would change when the sample size
is increased.

A learning curve is a model that describes the progress
of a learning process, e.g. the accuracy of a ML algorithm as
a function of the number of examples used in the learning
phase. A common method to implement a learning curve is
to fit an inverse power law curve using a small number of
samples [20], i.e.:

e(n) = an−α + b, (1)

where e is the error rate given n training samples, a is
the learning rate, b the Bayes error, and α the decay rate.
The values of these parameters depend on the classification
algorithm and the dataset.

Many approaches follow this principle to predict the
accuracy of an algorithm in a confidence interval around the
learning curve given the number of samples, e.g. Figueroa
et. al [37]. Others estimate the minimum number of samples
required for a classifier to keep the error in a particular
confidence interval, e.g. Mukherjee et. al [20], Dobbin et. al
[19], and Beiletes et al. [38]. The loss function is another way
often used to monitor the learning progress to get feedback
about, among others, the model quality achieved given the
data.

However, all these approaches aim at optimizing the
accuracy by finding the optimal number of samples. But
optimizing the accuracy does not necessarily improve the



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, AUGUST 2019 3

model generalizability, especially if a part of it is the result of
chance correlations. It is even the opposite: We show in this
work that increasing the number of features while keeping
the number of rows constant most likely leads to an increase
in accuracy by chance.

2.3 Bias Caused by Feature Selection
Ambroise et. al [17] thoroughly discusses feature selection
bias performed prior to cross-validation, when such feature
selection is performed on the entire dataset. They state that
in this case the estimation of the prediction error is too
optimistic. This is because the testing is influenced by the
selection bias stemming from the fact that the test set is a
subset of the entire set used for feature selection. As bias
correction, they suggest using a special cross-validation and
bootstrapping method.

Ein-Dor et. al [1] investigated the common problem
of robustness in feature selection procedures in genomics
research, i.e. the problem of the gene subsets identified as
predictive of an outcome being not stable and depending on
the samples included in the training. These subsets of genes
identified using different training samples are not only dif-
ferent, but even the overlap (common genes) is very small.
Furthermore these gene lists are in general significantly less
predictive when applied on external datasets. They reported
that the problem of robustness can be mitigated by using
more samples in the training. The authors provided a formal
method to find the number of samples required to achieve
a particular overlap between gene lists identified based on
different training sets. This model was achieved based on
the assumption that the overlap is a random variable with
a normal distribution. Their results show that thousands of
samples are required to achieve an overlap of more than
50% between the gene lists.

While this research denotes the importance of how the
feature selection is performed to mitigate chance correlation
and Kalousis et al. [39] even propose a measurement of
the stability of feature selection algorithms, they do not
provide methods to estimate and quantify the chance given
the parameters of a dataset, such as the number of features,
the sample size, and the number of classes.

Clark et. al [40] empirically investigated the influence
of chance correlation on partial least square (PLS). They
demonstrated how the chance influence increases with in-
creasing the number of features. Kuligowski et. al [16] inves-
tigated the prediction accuracy in metabolomics using par-
tial least squares discriminant analysis. They reported that
cross-validation after feature selection provides overopti-
mistic results due to chance correlation. The effect of chance
correlation is expressed by means of p-values calculated by
using a permutation test that include the variable selection.
Taha et al. [41] (the precursor to this paper) show that the
influence of chance is considerable in datasets with a large
number of features and it can lead to non-generalisable
models. They show that it depends on the way feature
selection is performed and observe that the influence of
chance decreases when the number of classes increases.

2.4 Critical Research
In recent years, attention has been drawn to the issue of ir-
reproducibility of studies across several areas of science [3],

[42], [43], [44], [45], [46]. Ioannidis [3] has indeed reported
that many published results, most notably biomedical pa-
pers, cannot be reproduced by other researchers. In many
cases, a widely spread misinterpretation of p-values lies at
the heart of this problem. This led a number of authors to
declare a discovery where, in fact, only a random chance
was observed [45], [46]. Colquhoun [45], [46] showed that
the common practice of assessing statistical significance based
on p-values (typically p ≤ 0.05), which is often wrongly
thought of as the probability of the result occurring by
chance, generally leads to false positive rates higher than
5%.

3 NOTATION

We provide definitions of ML processes based on ran-
domly generated datasets, i.e. datasets where the features
(variables) are meaningless with respect to the target class.
Analysing many random datasets with varying parameters
enables us to observe and measure the effect of chance
correlation.
Definition 1. Classification from random: Let D =
{F1, . . . , Fm, F

∗} be a random dataset of the shape
n×(m+1) where F1 to Fm are columns (features) in the
dataset (we will refer to them, in short, as F ) and F ∗ is
the target class column that partitions all n instances into
r classes q1, . . . , qr of sizes Q1, . . . , Qr. The categorical
values of the features and the r classes are generated and
assigned to the target randomly. Classification models
can be trained on this dataset to predict the target classes
F ∗.

Definition 2. Regression from random: Let D be a random
dataset like in Definition 1, except that F ∗ is a numeric
target value. Regression models can be trained on this
random dataset to predict the numeric target value.

Definition 3. Learning from shuffled real dataset: Let DS =
{F1, ..., Fm, F

S} be a dataset whose shape is like the one
described in Definition 1, but containing real data, i.e. F1

to Fm are not randomly generated. DS is modified by
replacing F ∗ with FS , where FS is obtained by ran-
domly shuffling the vector F ∗. As a result, DS becomes
meaningless regarding F ∗.

In this paper, the shape of a nominal dataset is given by
three parameters, namely the number of rows (samples) n,
the number of columns (features m), and the number of
classes r, i.e. the cardinality of a set of unique values in the
F ∗ . The shape n×m× r denotes a dataset consisting of n
rows (each row referring to a data sample),m columns (each
column referring to a feature, target excluded), and r classes,
where each sample belongs to one class. We define ρ = m/n
as the ratio of the number of features and the number of
samples. Furthermore, we use the term wide dataset to denote
a dataset with ρ > 10.

4 CHANCE INFLUENCE ON PREDICTION

In this section, we show that the prediction accuracy of
models trained using wide datasets can be, to a large extent,
influenced by chance. First, we empirically demonstrate
this claim by training a large number of algorithms using



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, AUGUST 2019 4

random datasets and showing their accuracies. Second, we
provide a formal expression that measures the extent of
chance as a function of the dataset parameters (shape), as
well as approximated estimators of chance that can easily
and efficiently be computed. We do our analysis empirically
and theoretically in parallel as follows:

I. In the empirical part, we generate random datasets ac-
cording to Definition 1. We train classification models,
evaluate their performances, and analyze the results in
relation to the dataset parameters, namely its shape and
class distribution.

II. In the theoretical part, we provide a formal analysis of
chance in datasets in the form of formal expression of
chance estimators as a function of the dataset parame-
ters.

4.1 Demonstration of chance impact on prediction

For demonstrating the accuracy obtained by chance, we
generated a group of random datasets (RDCAT) to be used
for the empirical analysis of classification. These are 1,000
datasets generated according to Definition 1. Each dataset
has a sample size varying from 10 to 1000 samples, i.e.
n ∈ [0, 1000]. The number of features in each dataset is also
varying in the same interval, i.e. m ∈ [0, 1000]. The number
of classes r varies from 2 to 9. To achieve class imbalance,
the size Qi of each class qi is selected randomly from 1 to
n− r + 1 under the condition that

∑r
i=1Qi = n.

Using the random datasets of RDCAT, we trained 1,000
classification models. We use Best First Search combined
with an Information Gain evaluator as the feature selection
method and a J48 Tree as the classification algorithm in a
stratified 10-fold cross-validation evaluation process using
the Weka framework1. The predicted classes are evaluated
against the true target classes to find the classification
performance obtained purely by chance. This evaluation is
done using the F-measure, which is a standard (overlap)
metric for evaluating class-imbalanced problems.

Figure 1 shows the accuracies of 1,000 J48 classifica-
tion models (white diamonds), where each of them has
been trained on one dataset from the RDCAT group. The
experiments are sorted first according to the number of
classes r and then according to model accuracy within
each class number. The first interesting observation is the
high model accuracies obtained from learning from random
data. These accuracies are achieved despite applying 10-fold
cross-validation, which is a standard method of evaluation.
Second, the figure shows a strong negative relation between
prediction accuracy and the number of classes r. The more
classes, the lower the achieved accuracy. Third, within each
plot for fixed r there is a strong variation in accuracy. We
will show in the next sections that this variation depends
on the other shape parameters, namely ρ (the ratio between
features and sample numbers) and class imbalance. Fourth,
the impact of these parameters decays with increasing r,
which is reflected by the decrease in variance of the accuracy
measurements with increasing r (cf. Fig. 1).

1. https://www.cs.waikato.ac.nz/ml/weka/

Fig. 1. Classification performance (white diamonds) in terms of F-score
and predicted accuracy (blue circles) for models trained on the 1,000
random datasets of the RDCAT group. Shown is the classification per-
formance for different number of classes r (from 2 to 9). The results are
sorted first according to r and then according to model accuracy within
each class number.

4.2 Formal estimation of chance on classification

Given this empirical observations in Sec.4.1, can we estimate
these scores without performing the actual simulations? The
aim of this section is to formally calculate the influence
of chance on classification models based on the dataset
parameters (dataset shape and class distribution), namely to
estimate the prediction accuracy of a classification model by
chance, i.e. when trained on a randomly generated dataset.

We consider the expected correlation by chance between
the feature values and the target class values. Since we are
talking about a classification task, which means nominal
class values, we consider the probability of match (i.e.
overlap) by chance between class values and feature values
as a measure of correlation.

To this end, consider a dataset according to Definition 1
that consists ofm features and n samples, which are divided
into r classes q1, . . . , qr of size Q1, . . . , Qr , i.e.

∑r
i=1Qi = n.

In order to simplify the computations, we start with rear-
ranging the rows of the dataset D, i.e. both F and F ∗, by
grouping the ones belonging to the same class in F ∗. The
target vector will thus have the following form:

F ∗ = [q1, . . . , q1︸ ︷︷ ︸
Q1

; . . . ; qr, . . . , qr︸ ︷︷ ︸
Qr

]>.

First, consider a single block Qi of a single column of F . We
then define the random variable (RV) Xi

j to take the value
1 if the j-th row in Qi predicts the right class, that is, if it
matches the corresponding element of F ∗, and 0 otherwise.
This is modelled by a Bernoulli trial with success probability
pi = Qi/n, i.e. Xi

j ∼ Ber(pi). Extending the same reasoning
to the whole block Qi, we see that

Xi =

Qi∑
j=1

Xi
j ∼ B(Qi, pi),

where B(·, ·) refers to the Binomial distribution. The RV
Xi gives the number of rows of the sector Qi with the
right category. The total number of rows having the right
category is obtained by putting together all the blocks, i.e.
X =

∑r
i=1X

i, where each element Xi ∼ B(Qi, pi). Note,
however, that X is not simply distributed according to a

https://www.cs.waikato.ac.nz/ml/weka/
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Fig. 2. Q-Q plot showing the predicted accuracy against the actual one
for 1000 RDCAT group datasets. Shown are the results of the exact
formula [Eq. (4)], which reveals a Pearson correlation coefficient of 0.979
(95% CI [0.976, 0.981]) with the experimental results.

Binomial distribution. Its distribution is instead given by
the following convolution of the individual distributions:

p(X = k) = p

( r∑
i=1

Xi = k

)

=
∑

(i1,...,ir)∈Nr
i1+...+ir=k

r∏
j=1

(
Qj
ij

)
p
ij
j (1− pj)Qj−ij , (2)

where pj = Qj/n.
We generalize now the above discussion by considering

all them columns of the dataset. More precisely, we consider
the random variable X to take the value 1 if at least one of
the columns in D correctly predicts at least k entries of F ∗,
and 0 otherwise. Using the fact that p(X = 1) = 1− p(X =
0), together with p(X = 0) = p(X < k)m and Eq. (2),
implies that X ∼ Ber(pk), where

pk = 1−
[ ∑
(i1,...,ir)∈Nr
i1+...+ir<k

r∏
j=1

(
Qj
ij

)
p
ij
j (1− pj)Qj−ij

]m
. (3)

We then define the chance estimator of a classification
model, which is denoted by φ, as the expectation value of
the RV X averaged over the number of instances, i.e. by

φc =
1

n

n∑
k=1

pk , (4)

with pk given by Eq. (3). Here we have used the fact that the
expectation value of X is E[X] = pk. We will use Eq. (4) to
predict the results of all the experiments with the random
datasets.

To validate the performance of the chance estimator [i.e.
Eq. (4)], we applied it on all 1000 datasets of the RDCAT
group and compared them with the actual accuracies of
the corresponding learning models. Figure 1 shows the
predicted accuracies obtained from Eq. (4) and the actual
accuracies as obtained from the experiments. The quality
of our predictions is further confirmed by Figure 2, which

shows the Q-Q plot of the correlation between the actual
and predicted accuracies and reveals a Pearson correlation
coefficient of 0.979 (95% CI [0.976, 0.981]).

Eq. (4) is a summation of elements, each of which is a
summation over all possible partitions of k [see Eq. (3)],
which is rather involved, especially when efficiency is a key
factor. Therefore we introduce estimators that are easier to
calculate, less precise, but often sufficient in the practise.
From Eq. (3), we can see that part of the complexity stems
from the individual probabilities pj , i.e. considering an indi-
vidual success probability for each class qj (class imbalance).
Therefore, our simplification strategy is to replace pj with
one single representative probability. In this case Eq. (3)
reduces to

p̃k = 1−
[ k−1∑
t=0

(
n

t

)
pt(1− p)n−t

]m
, (5)

where p is the single representative property.
Now based on Eq. (5), we define two estimators by

choosing representative probabilities p. The first estimator,
which we denote as the pessimistic estimator φ̆, serves as
a sort of lower bound of the exact estimator in Eq. (4).
The second one, which we denote the optimistic estimator
φ̂, serves instead as an upper bound.

For the pessimistic estimator, we consider p = 1/r as
the representative probability, i.e. we assume that there is
no class imbalance in the dataset. This corresponds to the
case in which Qj = n/r ∀j, which means that pj = 1/r ∀j.
This results in [note that we directly substitute Eq. (5) into
Eq. (4)]:

φ̆ = 1− 1

n

n∑
k=1

[ k−1∑
t=0

(
n

t

)
ptmin(1− pmin)n−t

]m
, (6)

where pmin = 1
r . Since class imbalance is a crucial factor

for determining the influence of chance correlation, the
assumption of zero class imbalance leads to a severe un-
derestimation of chance effects.

For the optimistic estimator, we consider the maximum
probability as a representative probability, i.e. the probabil-
ity corresponding to the class with the largest size, which is
given by p = max(Qj)/n. This results in

φ̂ = 1− 1

n

n∑
k=1

[ k−1∑
t=0

(
n

t

)
ptmax(1− pmax)n−t

]m
, (7)

where pmax = max(Qj)/n. φ̂ overestimates the impact of
chance, as the one that mostly weights the class imbalance.

Figure 3 shows the Q-Q plot of the results of both
the pessimistic [Eq. (6)] and optimistic [Eq. (7)] estimators,
together with the original estimator [i.e. Eq. (3), after plug-
ging it into Eq. (4)]. We see that these two estimators—the
pessimistic shown by orange, down-pointing triangles and
the optimistic represented by green, up-pointing triangles—
envelope the original one.

5 DISCUSSION

In this section, we analyze and discuss the methods pre-
sented in Sec. 4 from different viewpoints to provide con-
crete results and conclusions. The first three sections empir-
ically show the impact of the different factors on the chance
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Fig. 3. Q-Q plot showing the predicted accuracy against the actual
one for the 1000 datasets of the RDCAT datasets. Shown are the
results of the exact formula φc (blue circles) and its upper and lower
bounds (green, up-pointing and orange, down-pointing triangles), i.e.
the optimistic (φ̂), and the pessimistic (φ̆) estimators. φc, φ̂ and φ̆ reveal
Pearson correlation coefficients with the measured accuracy of 0.979
(95% CI [0.976, 0.981]), 0.931 (95% CI [0.922, 0.939]), and 0.753 (95%
CI [0.724, 0.779]), respectively.

in a dataset. Sec. 5.1 demonstrates the impact of the number
of classes r on the extent of chance, Sec. 5.2 investigates
the impact of class size and class imbalance, while Sec. 5.3
reveals the impact of the columns-rows ratio ρ. In Sec. 5.4,
we test the estimators using modified real data instead of
purely synthetic data to rule out the possibility that the per-
formance of the estimators is subject to particular synthetic
distributions. In Sec. 5.5, we motivate extending the analysis
to regression in future work by showing that the accuracy
of regression models trained on random numeric data can
be estimated using the proposed estimators, although they
were designed for classification. In Sec. 5.6, we suggest the
use of the well-known normal approximation to reduce the
computational complexity of the proposed estimators. In
Sec. 5.7, we show how the proposed estimators can be used
to correct for chance. We take a deeper look at the Kappa
measure and show that it cannot correct for the chance
stemming from high dimensionality. In Sec. 5.8, we provide
guidelines to mitigate chance influence in wide datasets
based on the findings of this analysis. Finally, in Sec. 5.9,
we summarize value and impact areas of this analysis.

5.1 Impact of number of classes r

The accuracies of classification models trained on random
datasets with different numbers of classes r is shown in
Fig. 4. Regardless of the other parameters governing the
extent of chance, r defines clear levels of accuracy. In each
level, there is a basis accuracy of 1/r, which is where the
accuracy range starts, and an additional accuracy caused by
the other factors (dimensionality and imbalance). Interest-
ingly, this additional contribution is suppressed by the level
(r), i.e. the accuracy range gets narrower with increasing
r, which means that the more classes there are, the less
additional accuracy occurs. This observation leads to the

Fig. 4. Classification performance in terms of F-score for models trained
on the 1,000 datasets of the RDCAT group. The data points are first
sorted according to r and then according to their score. The number of
classes r varies from 2 to 9. It can be seen that this parameter defines
clear levels of accuracy.

important conclusion that classification models with many
classes are significantly more resilient to chance.

5.2 Impact of class size and class imbalance

In this section, we empirically show that class size and class
imbalance have a considerable impact on the amount of
chance in a dataset. For this, we consider the F-measure for
specific classes rather than the weighted F-measure over all
classes, as was the case in the previous sections. To this end,
we trained models on the random datasets in the RDCAT
group, thereby recording three values for each model: (i)
The F-measure of each class, (ii) the size of the class as a
percentage of the dataset size, and (iii) the number of classes
in the dataset.

Figure 5 shows the the accuracies in terms of F-measure
for the individual classes, where the latter are sorted ac-
cording to their percentage size, i.e. Q/n, where Q is the
class size and n is the number of samples. Each point
corresponds to a class in a dataset. The x-axis shows the size
(in percentage) of the class and the number of classes in the
corresponding dataset. The y-axis shows the F-measure for
that class. The figure clearly shows the large impact of the
class size on the accuracy by chance: classes with a relative
size smaller than 10% have very low accuracies, while
those with larger sizes have significantly higher accuracies
reaching up to nearly 1. This is expected and intuitive, since
a naive classifier that always predicts the significantly larger
class will perform very well.

It is noticeable that the spread of the scores achieved on
classes of intermediate size (see central region in Fig. 5) is
much larger than that obtained on small (left region) and
large (right region) classes. A given, intermediate class size
(i.e. a vertical cut in Fig. 5) gives thus rise to a wide range
of accuracies. For instance, at a fixed class size of 30% there
is a spread of F-scores across a range of more than 0.4. This
variety obviously stems from factors in the data set other
than class size and number of classes.

To investigate where the variation of accuracy for fixed
class size is stemming from, we first sorted the values
according to class size and then to number of classes in the
corresponding dataset. Figure 6 (A) shows the same data as
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Fig. 5. Relation between accuracy and class size. The F-measure of
the individual classes is depicted, rather than the weighted F-measure
over all classes. On the x-axis, experiments are sorted according to their
class size. For each measurement, the total number of classes in the
dataset as well as the size of the observed class (in %) are marked. On
the y-axis, the accuracy of the observed class is displayed in terms of
F-measure.

in Figure 5, only with a different sorting, as just described.
This figure reveals the following aspects:

1) The general tendency to be affected by chance decreases
with increasing number of classes (r). This has been
discussed in Section 5.1.

2) Within a particular number of classes, the accuracies
vary in considerable ranges, which depend on the num-
ber of classes.

3) Datasets with small number of classes seem to be more
affected by the class size than datasets with large num-
ber of classes, which is discussed in more detail in the
next paragraph.

Figure 6 (B) and (C) show details of the first segment of
(A), i.e. 2 classes, and the last segment of (A), i.e. 9 classes,
respectively. While the accuracies in (B) rapidly increase
with increasing class size, they show a slow increase in (C).
However, a careful look at the domain of each of the graphs
explain the observation. The class sizes in (A) reach up to
95%, while the maximum class size in (C) is about 61%.
This is because it is less probable for a class to dominate a
dataset consisting of many classes than one consisting of a
lower number of classes. In other words, for a given class
q to dominate a data set of r classes, there should be r − 1
classes with significantly smaller class size than of q. This
means that the more classes a dataset has, the less probable
that one class dominates the it, which means in turn that the
class imbalance tends to be less probable.

5.3 Impact of the columns-rows ratio ρ
Figure 6 still ignores some elements that govern the varia-
tion in the accuracy for a fixed number of classes. Therefore,
in the remainder of this section, we will exclude the impact
of class size (class imbalance) to be able to observe the
impact of the remaining factors.

To exclude the impact of class imbalance, we generated
a new group of 1, 000 random datasets according to Defini-
tion 1, with the restriction that all datasets have equal class
sizes, i.e. balanced classes. We call this group BALANCED.
We trained classification models based on these datasets and
observed their accuracies in terms of F-measure. Each point
in Figure 7 corresponds to the score of one model, where
the models are sorted first according to ρ (the ratio between
the number of columns m and the number of rows n) and
then according to the number of classes r. The points are
divided into segments, in which the models trained on a
certain number of classes are grouped. Within each segment
one can observe that F-measure values vary and there is a
tendency of increasing F-measure with increasing the ratio
ρ. This variation has clearly nothing to do with class size,
being it equal for all classes. One can also observe that the
influence of ρ on the accuracy decays with increasing r. It is
almost negligible in the last segment, i.e. for r = 9 classes.

It is remarkable that increasing the number of classes (r)
leads to a decreasing influence of both the ratio ρ and also
the class size (Q), as shown in Section 5.2.

5.4 Testing with genomics data
The aim of this section is to ensure that the observations
described as well as the estimators presented in Sec. 4
are not just a bias of the particular distributions used to
generate the random datasets, i.e. the normal and uniform
distributions.

For this, we generated shuffled real datasets (RDREAL)
according to Definition 3 as follows: 200 datasets were
generated by modifying a real microarry gene expressions
with ∼ 16k genes (features) and contains 80 samples from
patients who died as a result of neuroblastoma cancer after
different survival times. The data has been divided into
two classes (long and short event free survival) as a binary
classification task. After that, the binary target class of the
dataset has been shuffled according to Definition 3 such that
the dataset became meaningless regarding the target.

Figure 8 is box and whisker plot that shows the accura-
cies of models trained on the datasets of the group RDREAL.
The figure also shows the predicted accuracy based on the
dataset dimensionality using Eq. (4). The predicted value
deviates from the mean of the actual accuracies by about
5%, which indicates that Eq. (4) extends its applicability and
accuracy to real-world distributions.

5.5 Chance influence on Regression
The aim of this section is first to demonstrate the high
impact of chance correlation on regression models and sec-
ond to motivate extending the formal analysis to regression
in a future work. In particular, we empirically show that
the accuracy (measured as root mean squared error) of
regression models trained on random data (uniform and
Gaussian) can be estimated using the pessimistic chance
estimator, Eq.(6), considering a two class classification.

To this end, we generated two random datasets with
numeric targets. RDUNIF consists of 1000 datasets gener-
ated according to Definition 2, where the number of features
and samples vary from 10 to 1000. The targets are random
numbers. Feature values and target values are drawn from
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Fig. 6. Relation between accuracy and class size while sorting according to number of classes. (A) The setting is as in Fig. 5, except that
measurements are sorted according to number of classes after sorting them according class size. (B) Detailed plot for the first segment, i.e.
two classes. (C) Detailed plot for the last segment, i.e. 9 classes.

Fig. 7. Classification performance in terms of F-score for models trained
on datasets of the BALANCED group. Data points are first sorted
according to ρ (the ratio between the number of columns m and the
number of rows n) and then according to the number of classes r.

Fig. 8. Box and whisker plot showing the accuracy of prediction models
trained on RDREAL. The boxes extend from the lower to upper quartile
values, while the whiskers indicate the data range.

a uniform distribution in the interval [0, 1]. RDGAUSS con-
sists of 1000 datasets, as in RDUNIF, but with target values
drawn from a Gaussian distribution with variance σ = 1
and mean µ = 0. The predicted values are evaluated against
the values of the target using the mean squared error (MSE),
to find the accuracy of the model obtained purely by chance.

Figure 9, yellow and red points show the accuracies
(RMSE values) of regression models, trained on the datasets

of the groups RDUNIF and RDGAUSS respectively. In the
first group (yellow), each point represents the RMSE of a
model trained on one of the 1000 datasets from the RDUNIF
and in the second group (red), each point corresponds
to a model trained on one of the 1000 datasets of the
RNDGAUSS.

A deeper look at Figure 9 shows that the RMSE values
of the RDUNIF have a range, approximately, between 0 and
0.3, while the values of the RDGAUSS group range between
0 and 1. An RMSE of zero means a perfect fit, it corresponds
to models providing a perfect prediction. In the case of the
present experiment, these are the models that are mostly
affected by chance. On the other side, the values of about
0.3 (yellow) and 1.0 (red) represent the models with least
accuracy, which in our case corresponds to the ones that
are least affected by chance. But where do these values (i.e.
about 0.3 and 1) stem from? To answer this question, let
us consider the distributions of the target values in each
group and the definition of the RMSE. The target values
in RDUNIF group have a uniform distribution in [0, 1].
A uniform distribution in [a, b] has a standard deviation
σ =

√
(b− a)/12. In our case we get

√
1/12 ≈ 0.289.

When the prediction algorithm performs pure randomly,
the RMSE between the uniformly distributed values and
the predictions is also uniformly distributed and has an
expectation value equal to the standard deviation of the
values. The same holds for the RDGAUSS group, but with
an expectation value of 1, because the target values are
distributed normally with σ = 1 as it was configured in
the data generation.

Now, let us come back to the aim of this section. Given a
random dataset with real target according to Definition 2 of
the shape m × n, we want to test whether we can estimate
the accuracy of regression models trained on this dataset
in terms of its dimensions m and n using the pessimistic
chance estimator for classification, presented in Section 4.2
(Eq.(6)). The basic idea is to transfer the chance estimation
method for classification to the regression task in the two
steps:

I. Considering the chance estimate of classification with
two classes (i.e. a classification of dimensionality m ×
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Fig. 9. Actual root-mean-square error (RMSE) values for regression
experiments on the RDUNIF (yellow squares) and RDGAUSS (red
diamonds) datasets together with the predicted RMSE values by the
estimator Eq. (10) (blue plus and cross symbols). Actual and predicted
values reveal a Pearson correlation coefficient of 0.92 and 0.913 for the
two groups respectively.

n× 2) and equal class sizes, i.e. by substituting p = 1/2
in Eq. (6). This results in

φ̆ = 1− 1

n

n∑
k=1

[ k−1∑
t=0

(
n

t

)
1

2n

]m
. (8)

II. Normalizing this estimate to fit in the range of RMSE
as described above. First, since RMSE is a distance
measure that increases with decreasing model accuracy,
in contrast to Eq.(6) that is proportional to the accuracy,
the normalization should perform a reversion. Second,
the normalization should bring the range of Eq.(6),
which is [1/2, 1], to the range of RMSE described above,
i.e. [0, σ].

Putting I. and II. together, the normalization that con-
verts φ̆ (pessimistic estimate for classification) to ρ (estimate
for regression accuracy measured by RMSE), is given by:

ρ = 2σ(1− φ̆). (9)

which directly leads to

ρ = 2σ
1

n

n∑
k=1

[ k−1∑
t=0

(
n

t

)
1

2n

]m
(10)

Figure 9 shows the RMSE values of the regression mod-
els of the groups RDUNIF and RDGAUSS, together with the
values predicted using Eq. (10) (blue points). The overall
Pearson correlation coefficient between the experimental
RMSE values and their predictions is about 0.92. This
motivate to formally extend the analysis in Sec. 4.2 to the
regression task in a future work.

5.6 Normal Approximation

The estimators in Equations (5), (6), and (7) are functions
of the binomial distribution, which can be approximated
by a normal distribution N (µ, σ) with mean µ = np and
variance σ = np(1 − p), given that n is large enough in
relation to p and (1 − p). In general, the sample size is
considered large enough if: np & 10 and n(1 − p) & 10,
which is often the case for real-life datasets. This means that

the equations above can be approximated by replacing the
binomial part as follows(

n

x

)
px(1− p)n−x → 1√

2σπ
e−

(x−µ)2

2σ2 (11)

where p is the representative single probability, µ = np and
σ = np(1 − p). This form of the estimators is significantly
simpler in terms of calculation time.

5.7 Correction for chance

Evaluation metrics that correct for chance are not new
in this field. For instance, the Cohen’s Kappa metric [47]
calculates the agreement between two raters, thereby taking
into consideration the expected agreement by chance:

Kappa =
A0 −Ae
1−Ae

(12)

where A0 is the measured agreement between two raters
and Ae is the hypothetical probability of chance agreement.
For a classification with n objects and r classes,Ae is defined
as:

Ae =
1

n2

r∑
i=1

N1iN2i, (13)

where Nji the number of objects predicted by rater j as
belonging to class i. As an example, assume we have n
objects, where half of them belong to class A and the other
half to class B. A naive classifier that assigns all objects
to class A would have an accuracy of 0.5, but the Kappa
measure will be 0 because the expected true guessing (0.5
for two classes) is subtracted from the score.

Equation (13) shows that Kappa considers only the num-
ber of the classes and the class distribution to estimate the
chance, which means that other factors, in particular the
number of features in the dataset, is not considered. In
other words, Kappa calculates the hypothetical probability
of chance based only on the object-class distribution. To
demonstrate this fact, we evaluated the classification per-
formance on the datasets of the RDCAT group also using
the Kappa measure and plotted them beside the F-measure
in Figure 10. It is clear how the F-measure values have
been shifted down by the Kappa measure, but these values
are still not zero. The remaining classification performance,
which has not been corrected by it, stems from the factor not
considered by Kappa: the shape of the dataset, i.e. the ratio
ρ.

We propose in this work estimators that go beyond the
well-known Cohen’s Kappa metric by considering elements
of a dataset that are not taken into account by the latter,
namely its number of samples and features. This is an im-
portant refinement for datasets that have significantly more
features than samples. Along the lines of this metric, we
propose to subtract the accuracy by chance (estimator value)
from the accuracy measure. Assume S to be the performance
score of a model measured using some evaluation metric
that does consider for chance correction, like accuracy or
F-measure. Then, the corrected score Sc would be

Sc = S − φ.
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Fig. 10. Cohen’s Kappa (purple circles) and F-measure (white dia-
monds) as evaluation of prediction models trained on the RDCAT
datasets. The kappa measure corrects the values for chance by shifting
them towards zero, but does not correct the accuracy increase by
chance stemming from ρ.

Note that in order to use φ for score correction, the original
score should be normalized to the range [0, 1], if it is not al-
ready in this range. Also note that the Sc could be negative,
which denotes the case of ”worse than random” (analog to
the negative correlation).

S and Sc can be used to describe the model confidence in
the best and worst case, respectively, effectively describing
an accuracy range based on the observed score and the
dataset parameters.

5.8 Guidelines for chance mitigation and interpretation
of model accuracy
Based on the formal analysis of chance as well as the obser-
vations and empirical results, we provide general guidelines
for mitigation of chance influence and right interpretation
of evaluation metrics to avoid misleading high accuracies
when the data is likely to contain considerable amount of
chance.

1) Estimate the chance: Consider the dimensions of the
dataset at experiment design to estimate the extent of
chance in the dataset using the proposed estimators to
decide which data to use and how many instances you
need to achieve the required level of confidence.

2) Report the chance values: We encourage researchers
not only to estimate the impact of chance, but also to
consider it when interpreting their results, and report it
in their works.

3) Consider correction for chance: If the data is imbal-
anced but low dimensional, use Kappa measure to
evaluate the model. If the data is high dimensional,
Kappa is not sufficient to correct for chance. In this
case use the proposed chance estimators to correct for
chance as described in Section 5.7

4) Increase the number of classes: Section 5.1 shows
the strong influence of the number of classes on
chance extent. The more classes in the target, the
less chance in the data. Where possible, try to re-
aggregate/prepossess your data such that it has as
much classes as possible.

5) Encode numeric target to multi-class: For the same rea-
son in 4) it is recommended, where possible, to encode
numerical target to multi-class target by using kind

of interval coding. This obviously means converting a
regression to a classification task.

5.9 Impact of the proposed analysis

The formal analysis and the chance estimators provide a
foundation to quantify the value of a dataset as well as the
confidence of models created based on it. We believe that
the proposed work is relevant in the following aspects.
• Actual accuracy as opposed to model ranking. We

believe it is very valuable to know the extent of real
accuracy in order to know how much to rely on the
obtained results (e.g. in the medical sector). In other
words, the proposed methods aim to go beyond al-
gorithms comparison and consider the performance
of a specific algorithm—regardless of its rank among
other algorithms—to determine its reliability. This is of
obvious help in case of scientific publications, when dis-
cerning the validity of claims based on results obtained
with a given dataset, or in fields such as the medical
one, where decisions can have serious consequences. In
contrast to existing measures that correct for chance,
like the Kappa measure (cf. Sec. 5.7), our proposed
chance estimators go beyond class distribution and con-
sider also the shape of the dataset in terms of number
of features and number of instances.

• Generalisation. A key opportunity for the application
of our results is in situations where researchers (and
practitioners) build models achieving high performance
and they need to truthfully interpret these results, so
that they do not over-generalise what they have found.
Also, our results support the recent attention that has
been given to the irreproducibility problem affecting
different areas of science (see e.g. Sec. 2.3 “Critical
Research” and references therein). In this context, our
estimators can be also used to verify the reliability of
published research results. This can be achieved by
applying the chance estimators on the parameters of the
dataset based on which results have been concluded.

• Experimental design. In the experimental design
phase, our proposed chance estimators can help to un-
derstand and estimate how many instances are needed
to reach a certain degree of confidence in the results.

• Data valuation. In the context of databases and data
markets, an active research field deals with the chal-
lenging question of assigning (monetary) value to
datasets. This depends on several factors like size, time-
liness, and completeness, to name a few. The proposed
chance estimators provide another formal property for
data value assessment, namely the extent of chance in a
dataset.

CONCLUSION

We empirically showed that experiments conducted on
wide datasets can frequently be susceptible to a significant
impact of chance influence. If ignored, chance can be a key
factor leading to spuriously accurate but not generalisable
models. We proposed estimators quantifying the extent of
chance in a categorical dataset based on its parameters,
namely (i) the dimensions, i.e. number of features and
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samples, (ii) the number of classes, and (iii) the class dis-
tribution. The results of our experiments indicate high ac-
curacy of these estimators, with the most accurate estimator
reaching a Pearson correlation coefficient of 0.979 (95% CI
[0.976, 0.981]).

We presented guidelines for mitigating the influence of
chance by researchers working with wide datasets. These
guidelines ask researchers to estimate chance, consider it
when interpreting their results, and report it in their works.
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