
Open Research Online
The Open University’s repository of research publications
and other research outputs

Colouring problems for symmetric configurations with
block size 3
Journal Item
How to cite:

Erskine, Grahame; Griggs, Terry and Širáň, Jozef (2021). Colouring problems for symmetric configurations
with block size 3. Journal of Combinatorial Designs, 29(6) pp. 397–423.

For guidance on citations see FAQs.

c© 2021 Grahame Erskine; 2021 Terry Griggs; 2021 Jozef Širáň

https://creativecommons.org/licenses/by/4.0/

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1002/jcd.21773

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/392256766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/doi:10.1002/jcd.21773
http://oro.open.ac.uk/policies.html


J Combin Des. 2021;29:397–423. wileyonlinelibrary.com/journal/jcd | 397

Received: 13 April 2020 | Revised: 22 November 2020 | Accepted: 15 February 2021

DOI: 10.1002/jcd.21773

RE S EARCH ART I C L E

Colouring problems for symmetric
configurations with block size 3

Grahame Erskine1 | Terry Griggs1 | Jozef Širáň1,2

1School of Mathematics and Statistics,
Open University, Milton Keynes, UK
2Department of Mathematics and
Descriptive Geometry, Slovak University
of Technology, Bratislava, Slovakia

Correspondence
Grahame Erskine, School of
Mathematics and Statistics, Open
University, Walton Hall, Milton Keynes
MK7 6AA, UK.
Email: grahame.erskine@open.ac.uk

Funding information

Agentúra na Podporu Výskumu a Vývoja,
Grant/Award Numbers: 15‐0220,
17‐0428; Vedecká Grantová Agentúra
MŠVVaŠ SR a SAV,
Grant/Award Numbers: 1/0142/17,
1/0238/19

Abstract

The study of symmetric configurations v3 with block size

3 has a long and rich history. In this paper we consider

two colouring problems which arise naturally in the

study of these structures. The first of these is weak col-

ouring, in which no block is monochromatic; the second

is strong colouring, in which every block is multi-

chromatic. The former has been studied before in relation

to blocking sets. Results are proved on the possible sizes

of blocking sets and we begin the investigation of strong

colourings. We also show that the known 213 and 223

configurations without a blocking set are unique and

make a complete enumeration of all nonisomorphic 203
configurations. We discuss the concept of connectivity in

relation to symmetric configurations and complete the

determination of the spectrum of 2‐connected symmetric

configurations without a blocking set. A number of open

problems are presented.
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1 | INTRODUCTION

In this paper we will be concerned with symmetric configurations with block size 3 and, more
particularly, two colouring problems which arise naturally from their study. First we recall the
definitions. A configuration v b( , )r k is a finite incidence structure with v points and b blocks,
with the property that there exist positive integers k and r such that

(i) each block contains exactly k points;
(ii) each point is contained in exactly r blocks; and
(iii) any pair of distinct points is contained in at most one block.

A configuration is said to be decomposable or disconnected if it is the union of two config-
urations on distinct point sets. We are primarily interested in indecomposable (connected)
configurations, and so unless otherwise noted, this is assumed throughout the paper.

If v b= (and hence necessarily r k= ), the configuration is called symmetric and is usually
denoted by vk. We are interested in the case where k = 3. Such configurations include a
number of well‐known mathematical structures. The unique 73 configuration is the Fano plane,
the unique 83 configuration is the affine plane AG (2, 3) with any point and all the blocks
containing it deleted, the Pappus configuration is one of three 93 configurations and the De-
sargues configuration is one of ten 103 configurations. Symmetric configurations have a long
and rich history. It was Kantor in 1881 [17] who first enumerated the 93 and 103 configurations
and in 1887, Martinetti [19] showed that there are exactly 31 configurations 113.

It is natural to associate two graphs with a symmetric configuration v3. The first is the Levi
graph or point‐block incidence graph, obtained by considering the v points and v blocks of a
configuration as vertices, and including an edge from a point to every block containing it. It
follows that the Levi graph is a cubic (3‐regular) bipartite graph of girth at least six. The second
graph is the associated graph, obtained by considering only the points as vertices and joining
two points by an edge if and only if they appear together in some block. Thus the associated
graph is regular of valency 6 and order v.

We note that symmetric configurations with block size 3 have also been studied in the
context of 3‐regular, 3‐uniform hypergraphs. In this scenario the points of the configuration are
identified with the vertices in the hypergraph and the blocks with the hyperedges; the condition
that no pair of distinct vertices should be in more than one hyperedge is usually referred to as a
linearity condition in hypergraph terminology.

By a colouring of a symmetric configuration v3, we mean a mapping from the set of points to
a set of colours. In such a mapping, if no block is monochromatic we have a weak colouring and
if every block is multichromatic or rainbow we have a strong colouring. The minimum number
of colours required to obtain a weak (resp., strong) colouring will be called the weak (resp.,
strong) chromatic number and denoted by χw (resp., χs). It is immediate from the definition that
the strong chromatic number χs of a configuration is equal to the chromatic number of its
associated graph.

Weak colourings have been studied before in relation to so‐called blocking sets and in
Section 2.1 we begin the study of the sizes of these. In Section 2.2 we bring together various
results concerning symmetric configurations without a blocking set which appears throughout
the literature, some of which do not seem to be readily available. Section 2.3 is concerned with
the connectivity of configurations and we complete the spectrum of 2‐connected symmetric
configurations without a blocking set. Our results on enumeration appear in Section 2.4.
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In particular we extend known results by enumerating all symmetric configurations 203 together
with their properties, and prove that the known 213 and 223 configurations without a blocking set
are the unique configurations of those orders with that property. Section 3 is concerned with strong
colourings. To the best of our knowledge, both this topic and the sizes of blocking sets in Section 2.1
appear to have been neglected and the results are new. Finally in Section 4 we bring together some
of the open problems raised by the work in this paper.

2 | WEAK COLOURINGS

We begin with the following result which is a special case of Theorem 8 of [9].

Theorem 2.1 (Bollobás and Harris). For every symmetric configuration v3, either
χ = 2w or 3.

A blocking set in a symmetric configuration is a subset of the set of points which has the
property that every block contains both a point of the blocking set and a point of its comple-
ment. From this definition it is immediate that the complement of a blocking set is also a
blocking set, and that the existence of a blocking set in a configuration is equivalent to χ = 2w .
Empirical evidence indicates that almost all symmetric configurations v3 contain a blocking set.
Indeed, Table 2 shows that of the 122,239,000,083 connected configurations with ≤v 20, only 6
fail to have a blocking set.

For any ≥v 8, a configuration with a blocking set is very easy to construct. For v even, the
set of blocks generated by the block {0, 1, 3} under the mapping ↦i i v+ 1(mod ) has a
blocking set consisting of all the odd numbers (and hence, another consisting of all the even
numbers). For v odd and ≥v 11, construct the symmetric configuration v( − 1)3 as above and
replace the blocks {0, 1, 3} and {4, 5, 7} with the blocks c{1, 3, }, c{4, 7, } and c{0, 5, }, where c is
a new point. The set of odd numbers is still a blocking set. The Fano plane does not have a
blocking set, but all three 93 configurations do.

The above extension operation can be summarised and generalised as follows.

• Choose two nonintersecting blocks a a a{ , , }1 2 3 and b b b{ , , }1 2 3 such that the points a1 and b1
are not in a common block.

• Remove these blocks, introduce a new point c and add three new blocks c a a{ , , }2 3 , c b b{ , , }2 3

and c a b{ , , }1 1 .

This construction goes back to Martinetti [19]; see also [8].

2.1 | Sizes of blocking sets

Perhaps surprisingly, the cardinalities of blocking sets of those configurations v3 for which
χ = 2w do not seem to have been studied. Let Q be such a blocking set and let ∣ ∣q Q= . It is
immediate that ⌈ ∕ ⌉ ≤ ≤ ⌊ ∕ ⌋v q v3 2 3 . We have the following result.

Theorem 2.2. Let v3 be a symmetric configuration with a blocking set Q of cardinality q
where ⌈ ∕ ⌉ ≤ ⌊ ∕ ⌋v q v3 < 2 . Then v3 also has a blocking set Q of cardinality q + 1.
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Proof. Let A, of cardinality α, be the set of blocks of the configuration which Q

intersects in one point and B, of cardinality β, be the set of blocks which Q intersects in
two points. Then α β v+ = and α β q+ 2 = 3 . Thus since ⌊ ∕ ⌋q v β q v v q< 2 , = 3 − < − .
Each block in B contains two points in Q and one point not in Q. Hence there exists a
point ∉x Q which is in no block of B, and so must be contained in three blocks of A. The
set ∪Q Q x= { } is also a blocking set. □

Bearing in mind that if Q is a blocking set for a configuration v3 then so is ⧹V Q, it follows
that the range of cardinalities of blocking sets of a configuration is continuous, and that
configurations can be categorised by the minimum cardinality of a blocking set; a blocking set
of this minimum cardinality will be called a minimal blocking set. Configurations which have a
blocking set of cardinality q for all ⌈ ∕ ⌉ ≤ ≤ ⌊ ∕ ⌋q v q v: 3 2 3 are relatively easy to construct.

Theorem 2.3. Let ≥v 9. Then there exists a configuration v3 having a blocking set of
cardinality q for all ⌈ ∕ ⌉ ≤ ≤ ⌊ ∕ ⌋q v q v: 3 2 3 .

Proof. In view of Theorem 2.2, it is sufficient to construct a symmetric configuration
with a blocking set of cardinality ⌈ ∕ ⌉v 3 . Suppose first that ≡ ≥v v0 (mod 3), 9. Let
v s= 3 . Let the points of the configuration be ≤ ≤V a b c i s= { , , : 0 − 1}i i i . Let the blocks
be the sets a b c{ , , }i i i+1 , a b c{ , , }i i i+1 , a b c{ , , }i i i+1 , ≤ ≤i s0 − 1, subscript arithmetic
modulo s. The set ≤ ≤Q a i s= { : 0 − 1}i is a blocking set.

Now suppose that ≡ ≥v v1 (mod 3), 10. Construct a configuration v( − 1)3 as above.
Introduce a new point∞0 and use Martinetti's extension operation, replacing the blocks
a b c{ , , }0 0 1 and a b c{ , , }1 1 2 by blocks ∞ b b{ , , }0 0 1 , ∞ a c{ , , }0 0 1 and ∞ a c{ , , }0 1 2 . The set
∪Q b{ }1 is a blocking set.
Finally, suppose that ≡ ≥v v2 (mod 3), 11. Construct a configuration v( − 1)3 as

above. Introduce a further new point∞1 and again use the extension operation, replacing
the blocks a b c{ , , }0 1 0 and a b c{ , , }1 2 1 by blocks ∞ b b{ , , }1 1 2 , ∞ a c{ , , }1 0 0 and ∞ a c{ , , }1 1 1 .
The set ∪Q b{ }1 is again a blocking set. □

We note that the condition ≥v 9 in the above theorem is necessary; the unique 73 configuration
has no blocking set at all, and the unique 83 configuration has a minimal blocking set of cardinality
4. Since Theorem 2.3 shows that a configuration v3 with a minimal blocking set as small as possible
exists for all ≥v 9, it is natural to ask what the range of possible sizes of minimal blocking sets might
be. At the minimum end of the range, we are able to prove the following results.

Theorem 2.4.

(a) There exists a configuration v3 with a minimal blocking set of size ⌈ ⌉ + 1
v

3
for all ≥v 8.

(b) There exists a configuration v3 with a minimal blocking set of size ⌈ ⌉ + 2
v

3
for v = 12

and all ≥v 15.

Proof. We deal first with part (a). First observe that from Table 1, there exists such a
configuration v3 for ≤ ≤v8 16. Let  be the set of all blocks of the configuration 83 as
given in the appendix, that is, 012, 034, 056, 135, 147, 246, 257, 367. This has a minimal
blocking set of size 4. Let  be the set of blocks of a configuration s(3 )3 as given in
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Theorem 2.3; that is, the points are the set ≤ ≤V a b c i s= { , , : 0 − 1}i i i and the blocks
are the sets a b c{ , , }i i i+1 , a b c{ , , }i i i+1 , ≤ ≤a b c i s{ , , }, 0 − 1i i i+1 , subscript arithmetic
modulo s. Replace the block {0, 1, 2} by a{ , 1, 2}0 and the block a b c{ , , }0 0 1 by b c{0, , }0 1 to
form sets and , respectively. The set ∪  is a connected configuration s(3 + 8)3. We
need to show that this has a minimal blocking set of size 4.

Considering the set , a blocking set Q must contain at least four points of the set
≤ ≤a i i{ , : 0 7}0 and further, in the special case that both ∈a Q, 00 it must contain at least

TABLE 1 Sizes of minimum blocking sets of connected configurations

Points Connected Minimal blocking sets

v configurations Size Number

7 1 None 1

8 1 4 1

9 3 3 2

4 1

10 10 4 8

5 2

11 31 4 25

5 6

12 229 4 45

5 182

6 2

13 2036 None 1

5 2020

6 15

14 21,398 5 16,884

6 4514

7 0

15 245,341 5 24,550

6 220,720

7 21

16 3,004,877 6 2,992,125

7 12,750

8 2

17 38,904,486 6 25,065,267

7 13,839,209

8 10
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five points. Otherwise, then by replacing the point a0 by the point 0 to return to the set, the
configuration 83 would have a blocking set of size 3. Now consider the set . In the above
special case,Q must contain at least s − 1 elements of the set ⧹V a{ }0 and in all other cases, at
least s elements. So Q has at least s + 4 elements; to show that a minimal blocking set has
exactly s + 4 elements we may take a blocking set ≤ ≤Q b i s= {1, 4, 5, 6, : 0 − 1}i .

We next deal with configurations s(3 + 9)3, ≥s 3. The procedure is precisely the same as
the above case, except that we use the configuration 93 as given in the appendix, that is, 012,
034, 056, 135, 147, 248, 267, 368, 578 which also has a minimal blocking set of size 4. In this
case we take a blocking set ≤ ≤Q b i s= {1, 4, 5, 6, : 0 − 1}i .

Finally for configurations s(3 + 10)3 we use one of the two configurations 103 as given in
the appendix with a minimal blocking set of size 5, namely, 012, 034, 056, 135, 178, 247, 268,
379, 469, 589. Again the procedure is as in the above two cases and we can take a blocking set

≤ ≤Q b i s= {1, 4, 5, 6, 7, : 0 − 1}i .
Now we deal with part (b). From Table 1, there exists such a configuration for
∈v {12, 15, 16, 17}. The configuration on the set v generated by the block {0, 1, 3} under the

mapping ↦i i v+ 1 (mod ) has a blocking set of size ⌈ ⌉ + 2
v

3
for ∈v {18, 21, 22, 23, 24};

see Theorem 2.5. The case where v = 19 is of particular interest since ⌈ ⌉ ⌊ ⌋+ 2 =
v v

3 2
, the

maximum size of a minimal blocking set. Of the 7,597,039,898 connected configurations 193,
see [12] and Table 2, only seven have a minimal blocking set of size 9 and these are given
below.

TABLE 2 Numbers of configurations v3

v a b c d e f g h i

7 1 1 1 1 1 1 1 1 0

8 1 1 1 1 1 1 1 0 0

9 3 3 3 2 1 1 1 0 0

10 10 10 10 2 1 1 1 0 0

11 31 25 25 1 1 0 0 0 0

12 229 95 95 4 3 1 1 0 0

13 2036 366 365 2 2 1 1 1 0

14 21,399 1433 1432 3 3 1 1 0 1

15 245,342 5802 5799 5 4 1 1 0 1

16 3,004,881 24,105 24,092 6 4 2 2 0 4

17 38,904,499 102,479 102,413 2 2 0 0 0 13

18 530,452,205 445,577 445,363 9 5 1 1 0 47

19 7,597,040,188 1,979,772 1,979,048 3 3 1 1 4 290

20 114,069,332,027 8,981,097 8,978,373 9 5 2 2 0 2413

Notes: a is the number of configurations v3; b is the number of self‐dual configurations; c is the number of self‐polar
configurations; d is the number of point‐transitive configurations; e is the number of cyclic configurations; f is the number of
flag‐transitive configurations; g is the number of weakly flag‐transitive configurations; h is the number of connected blocking
set‐free configurations; i is the number of disconnected configurations.
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012 034 056 137 189 25a 28b 3cd 46e 4cf 5gh 6gi 79h 7dg

8ei 9ef abc afh bdi

012 034 056 137 145 236 258 469 7ab 7cd 8ae 8cf 9ag 9ch

bdi beg dfh efi ghi

012 034 056 137 158 239 2ab 46c 47d 5ef 6eg 78h 8fi 9af

9ei acd bcg bdh ghi

012 034 056 137 158 239 2ab 47c 4de 5fg 68f 6hi 7dh 8ei

9ag 9bi acf beh cdg

012 034 056 137 148 239 24a 5bc 5de 6bd 6cf 78g 79h 8ah

9ag bef cei dfi ghi

012 034 056 137 158 239 2ab 457 46c 6de 78f 8gh 9ai 9bg

acd bdh cei efh fgi

012 034 056 137 145 236 257 468 79a 89b 8ac 9de adf bcg

beh cfi dhi egi fgh

The most interesting of these is possibly the first one which is point‐transitive; one of
only three such configurations 193, again see [12] and Table 2. Its Levi graph is arc‐
regular and has automorphism group of order 114. It is the unique symmetric graph of
order 38 and is graph F038A in the Foster census [13]. The configuration is cyclic and is
isomorphic to the configuration generated by the block {0, 1, 8} under the mapping
↦i i + 1 (mod 19). An example of a symmetric configuration on 20 points having a

minimal blocking set of size 9 is as follows.

012 034 056 135 146 237 245 678 79a 8bc 8de 9bf 9dg abh adi

cej cfh egi fgj hij

So we may assume that ≥v 25. We follow closely the argument above. Let  and ′
be the sets of all blocks of the configuration 83 as given in the appendix on point sets
{0, 1, …, 7} and {0′, 1′, …, 7′}, respectively. Let  be as in part (a). Replace the block
{0, 1, 2} by a{ , 1, 2}0 , the block {0′, 1′, 2′} by b{ , 1′, 2′}0 and the blocks a b c{ , , }0 0 1 and
a b c{ , , }1 0 0 by b c{0, , }0 1 and a c{ , 0′, }1 0 to form sets , ′ and , respectively.

As in part (a), by considering the sets and ′ , a blocking setQ must contain at least
four points of each of the sets ≤ ≤a i i{ , : 0 7}0 and ≤ ≤b i i{ , ′: 0 7}0 ; and if both

∈a Q, 00 at least five points of the former set and if both ∈b Q, 0′0 at least five points of
the latter set. Now by considering the set ,Q must contain at least s − 2 elements of the
set ⧹V a b{ , }0 0 if ⊂a b Q{ , 0, , 0′}0 0 ; s − 1 elements if either ∈a Q, 00 or ∈b Q, 0′0 but not
both; and s elements otherwise. In other words,Q must contain at least s + 8 elements in
total. To show that a minimal blocking set has exactly s + 8 elements, take

≤ ≤Q c i s= {1, 4, 5, 6, 1′, 4′, 5′, 6′, : 0 − 1}i . This deals with symmetric configurations
≥s s(3 + 16) , 33 .

To deal with symmetric configurations s(3 + 17)3, ≥s 3, the procedure is precisely the
same except that for the set  we use the configuration 93 as given in the appendix. A
minimal blocking set of size s + 8 is again ≤ ≤Q c i s= {1, 4, 5, 6, 1′, 4′, 5′, 6′, : 0 − 1}i .
Finally for configurations s(3 + 18)3, ≥s 3, we also replace the set ′ with the
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configuration 93 on point set {0′, 1′, …, 8′}. Again a minimal blocking set of size s + 8 is
≤ ≤Q c i s= {1, 4, 5, 6, 1′, 4′, 5′, 6′, : 0 − 1}i . □

At the maximum end of the range, the situation appears to be much more difficult.
Table 1 shows minimal blocking set sizes for symmetric configurations with ≤v 17. Of the
42,178,413 such configurations, only 60 have a minimal blocking set of size ⌊ ⌋v

2
; the 27

examples for ≤v 14 are shown in the appendix. At v = 16, it is noteworthy that only two of
the very large number of configurations fail to have a blocking set of size 7; these are shown
below.

012 034 156 078 59a 9bc 3de 57f 4bd 26b ace 8ef 479 13a 28c 6df
012 034 567 589 0ab cde 6cf 136 78d 2ad 9ef 49b 37c 5bf 28e 14a

The first of these is one of the two flag‐transitive configurations on 16 points; see [6] and
Table 2. Indeed its Levi graph is the Dyck graph, which is well known and is the unique arc‐
transitive cubic graph on 32 vertices. The Dyck graph is graph F032A in the Foster census [13].
Although this graph has a number of known constructions, it seems that none of these can be
generalised to produce further examples of configurations without small blocking sets. Un-
fortunately therefore, we cannot provide a construction for an infinite class of symmetric
configurations v3 having a minimal blocking set of maximum cardinality, and this remains a
significant open problem.

However, we are able to construct symmetric configurations whose minimal blocking sets
have a size as far away as we please from both the minimum or maximum possible cardin-
alities, as the following theorem and corollary show.

Theorem 2.5. Let ≥v 8 and let Cv be the cyclic configuration on v points generated by
the block {0, 1, 3} under the mapping ↦i i v+ 1 (mod ). Then the size of a minimal
blocking set in Cv is

≡

≡

≡

m v
v

ε ε

v

v

v

( ) = 2
5

+ , where =

0 if 0 (mod 5),

1 if 1 (mod 5),

2 if 2, 3, 4 (mod 5).

⎢
⎣⎢

⎥
⎦⎥

⎧
⎨⎪
⎩⎪

The proof of Theorem 2.5 is much simplified by transforming the problem into an
equivalent problem concerning the existence of binary words. A binary word b of length n is a
sequence b b b, , …, n0 1 −1 where each ∈b {0, 1}i . We shall be concerned with circular binary
words, where the digit b0 is considered to follow bn−1; informally, the word “wraps round” with
period n. A subword of lengthm is a sequence b b b, , …,i i i m+1 + −1 where the subscripts are taken
mod n; in other words, the subword starts at position i and wraps round if necessary. The
weight w b( ) of a word b is simply the number of 1s in b. A sequence of k consecutive 1s in a
circular binary word with 0s at either end is called a run of length k; similarly for a sequence of
0s surrounded by 1s.

To make the connection with blocking sets, we let Cv be a cyclic configuration as in the
statement of the theorem, and identify the point setV ofCv with the elements v{0, 1, …, − 1} of
the cyclic group v . To each subset ⊆S V we identify a binary word S b b bb( ) = , , …, v0 1 −1

where b = 1i if ∈i S and b = 0i otherwise. Since each block of Cv has the form
m m m{ , + 1, + 3}, it is immediate that a subset S is a blocking set for Cv if and only if the
corresponding circular binary word Sb( ) does not contain any of the subwords 0000, 0010, 1101
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or 1111. The problem of finding a minimal blocking set is therefore equivalent to finding the
minimum weight of a circular binary word satisfying this forbidden subword criterion. We
begin with two simple lemmas.

Lemma 2.6. Suppose Sb b= ( ) is a circular binary word corresponding to a blocking set
S of the configuration Cv. Then any subword of b of length 5 has weight 2 or 3.

Proof. Clearly any subword of length 5 and weight 0 contains the forbidden subword
0000. It is easy to see that the only possible length 5 subword of weight 1 is 01000. The
digit immediately to the left of this subword must be 1, otherwise we get the forbidden
subword 0010. Then the next digit to the left again must be 0, to avoid the forbidden
subword 1101. Continuing in this way, we see that the sequence of digits reading
leftwards from 01000 must be 1, 0, 1, 0, 1, 0, …. But b is a circular word containing the
subword 000, so this is impossible. Thus no subword of length 5 can have weight 1.

Since the roles of the binary digits 0 and 1 in this problem are symmetric
(corresponding to the fact that if S is a blocking set then so is its complement), it follows
that no length 5 subword can have weight 4 or 5 either. □

Lemma 2.7. Suppose Sb b= ( ) is a circular binary word corresponding to a blocking set
S of the configuration Cv. Then b has one of the following forms:

(a) 01010101… or 10101010… (possible only if v is even);
(b) a sequence of 0s and 1s in runs of length 2 or 3 only.

Proof. The proof of Lemma 2.6 shows that whenever the subword 010 appears in b,
then b must be of type (a). A similar argument holds for the subword 101. Thus any run
length of 1 forces type (a), and this is only possible if v is even. Run lengths of 4 or greater
are ruled out by the forbidden subwords 0000 and 1111, so the only remaining possibility
is type (b). □

We are now ready to complete the proof of the theorem.

Proof of Theorem 2.5. Suppose Sb b= ( ) is a circular binary word corresponding to a
blocking set S of the configuration Cv. A simple counting argument in conjunction with
Lemma 2.6 shows that ∣ ∣ ≥S w b= ( )

v2

5
. So writing ∣ ∣ ⌊ ⌋S ε= 2 +

v

5
, it remains to find the

minimum value of ε in all cases. We proceed by considering all the congruence classes
mod 5.

If ≡v 0 (mod 5), then b = 11000 11000 11000… satisfies the conditions of Lemma 2.7
and so ε = 0.

If ≡v 1 (mod 5), then we know ≥ε 1 and b = 11000 11000…11000 1 satisfies the
conditions of Lemma 2.7 and so ε = 1.

If ≡v 2 (mod 5), then we know ≥ε 1 but an examination of all the possibilities shows
that it is not possible to add a single 1 and a single 0 to a word of the form
b = 11000 11000 11000… without creating a run of length 1 or 4. Thus ≥ε 2, and
b = 111000 111000 11000…11000 satisfies the conditions of Lemma 2.7 and so ε = 2.
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If ≡v 3 (mod 5), then we know ≥ε 2 and b = 1100 1100 11000…11000 satisfies the
conditions of Lemma 2.7 and so ε = 2.

If ≡v 4 (mod 5), then we know ≥ε 2 and b = 11000 1100 11000…11000 satisfies the
conditions of Lemma 2.7 and so ε = 2. □

Corollary 2.8. Let ≥k 1. Then there exist:

(a) a configuration v3 with a minimal blocking set of size exactly k+
v

3
⎡⎢ ⎤⎥ ; and

(b) a configuration v3 with a minimal blocking set of size exactly k−
v

2
⎢⎣ ⎥⎦ .

Proof. We use Theorem 2.5. For (a), take v k= 15 and for (b), take v k= 10 . □

2.2 | Configurations without blocking sets

We now turn our attention to the case where χ = 3w , that is, to symmetric configurations with
block size 3 which have no blocking set. This is an old problem which goes back some 30 years.
It has appeared three times as a problem at the British Combinatorial Conference. The first
time was as Problem 194 in the Proceedings of the 13th Conference [3], proposed by H. Gropp
and originated by J. W. DiPaola and H. Gropp. At that time there were 13 unresolved values: 15,
16, 17, 18, 20, 23, 24, 26, 29, 30, 32, 38, 44. It appeared again as Problem 228 in the next
Proceedings [4], by which time the five largest values had been resolved positively due to the
work of Kornerup [18]. Finally in the Proceedings of the 16th Conference [5], Problem 333,
Gropp asked whether there exists a symmetric configuration 163 without a blocking set, having
reported that the case of such a configuration 153 had been resolved negatively.

All configurations v3 for ≤ ≤v7 18 were enumerated by Betten, Brinkmann and Pisanski
[6] in a paper published in 2000, leaving only the values 20, 23, 24, 26 unresolved. The problem
was finally solved in 2003 by Funk et al. [14]. A bipartite graph G with bipartition X Y{ , } such
that ∣ ∣ ∣ ∣X Y n= = is said to be det‐extremal if its n n× biadjacency matrix A satisfies the
equation ∣ ∣A Adet( ) = per( ). (In our context, the biadjacency matrix of the Levi graph of a
configuration v3 is simply the v v× incidence matrix of the configuration.) Thomassen [23]
pointed out that a symmetric k‐configuration is blocking set free if and only if its Levi graph is
det‐extremal. In [14] the following theorem was proved from which it is an immediate corollary
that there are no symmetric configurations v3 without a blocking set for v = 20, 23, 24, 26.

Theorem 2.9 (Funk, Jackson, Labbate and Sheehan). There exists a det‐extremal connected
cubic bipartite graph of order v2 if and only if ∈v {7, 13, 19, 21, 22, 25} or ≥v 27.

The four values 20, 23, 24, 26 indeed seem to be the most problematic. If ≥v 27, it is easy to
give a short self‐contained account to prove that there exists a symmetric configuration v3 with
no blocking set and we do this below beginning with two constructions from [9] which we
present as theorems.

Theorem 2.10 (Bollobás and Harris). If there exist configurations v3 and v( ′)3 without a
blocking set, then there exists a configuration v v( + ′ − 1)3 without a blocking set.
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Proof. Denote the points and blocks of the configuration v3 (resp., v( ′)3) by V and 
(resp., V ′ and ′ ). Choose ∈B  and suppose that points ∈x x x B, ,1 2 3 . Further choose
∈x V′ ′ and suppose that x′ is contained in blocks B B B′ , ′ , ′1 2 3. Define new blocks

⧹ ∪B B x x i= ( ′ { ′}) { }, = 1, 2, 3i i i
′′ . Then ∪ ⧹V V x( ′ { ′}) and ⧹ ∪B( { }) ⧹ B B B( ′ { ′ , ′ , ′ })1 2 3
∪ B B B{ , , }1

′′
2
′′

3
′′ are the points and blocks of a configuration v v( + ′ − 1)3 which it is easily

verified has no blocking set. □

Theorem 2.11 (Bollobás and Harris). If there exist configurations v v v( ) , ( ) , …, ( )k1
3

2
3

2 +1
3

without a blocking set, then there exists a configuration ⋯v v v( + + + )k1 2 2 +1
3 without a

blocking set.

Proof. Denote the points and blocks of the configuration v( )i 3 byV i and i , respectively,
i k= 1, 2, …, 2 + 1. For each i choose a block ∈Bi i and a point ∈x Bi i. Define a new
block ⧹ ∪B B x x

*
= ( { }) { }i i i i+1 , superscript arithmetic modulo k2 + 1. Then⋃ Vi

k i
=1
2 +1 and

⋃ ⧹ ∪B B( { }) {
*
}i

k i i i
=1
2 +1  are the points and blocks of a configuration ⋯v v v( + + + )k1 2 2 +1

3.
Again it is easy to verify that this has no blocking set. □

We note that the construction of Theorem 2.11 was reported independently by Abbott and
Hare [1], referencing an earlier paper of Abbott and Liu [2].

To implement the constructions we begin with three basic systems. From [6], in the range
≤ ≤v7 18 there exist only two symmetric configurations v3 with no blocking set: the unique 73

configuration (Fano plane) and a 133 configuration obtained from two copies of it using
Theorem 2.10.

The blocks of the latter system can be represented by the following triples:

.012 034 056 135 146 236 278 49c 5ab 79b 7ac 89a 8bc

A symmetric configuration 223 with no blocking set was given by Dorwart and Grünbaum
[11]; it is illustrated in Figure 1 and as is evident, is obtained by merging three Fano planes. Its
blocks are as follows:

FIGURE 1 Levi graphs of the unique configurations 213 and 223 with no blocking set
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012 034 056 135 146 236 24l 58f 79c 7ak 7bl 89a 8ck 9bk abc deh

dfj dgi egj eil fgh hij

To deduce the existence of blocking set free configurations v3 for all ≥v 27, first note that by
putting v′ = 7 in Theorem 2.10, it follows that if there exists a blocking set free configuration v3
then there exists a blocking set free configuration v( + 6)3. Thus once there exist such con-
figurations for six consecutive values of v, existence for all larger values of v follows inductively.
Existence for the value v = 27 follows from Theorem 2.11 by putting v v= = 71 2 and v = 133 ,
and for the value v = 28 from Theorem 2.10 by putting v = 7 and v′ = 22. For the value v = 31,
first construct a configuration 253 from Theorem 2.10 by putting v v= ′ = 13 and then, again
from Theorem 2.10, by putting v = 7 and v′ = 25.

As reported in [16], Kornerup [18] constructed blocking set free configurations v3 for the
values v = 29, 30, 32. These are contained in a thesis of the University of Aarhus which we
have been unable to see, and the configurations found do not seem to be published elsewhere.
Thus to give a complete account in one place, we have also constructed configurations 293, 303
and 323 without a blocking set. We show their Levi graphs in Figure 2, and include the blocks
below.

A blocking set free configuration 293:

012 034 056 135 146 29d 2bc 367 457 7es 89b 8as 8cd 9ac abd egk

eij fgifhl fjk ghj hik lnr lpq mnp mos mqr noq opr

A blocking set free configuration 303:

012 034 056 135 146 2bt 2fm 367 457 789 8ae 8cd 9ac 9de abd bce

fhl fjkghj git gkl hik ijl mos mqr noq npt nrs opr pqs

A blocking set free configuration 323:

012 034 056 135 146 27k 2tv 36l 45l 78a 7bc 89b 8ck 9ac 9gt abk

deu dfjdhi efh eij fgi ghj luv mnv mos mqr noq nrs opr pqs ptu

Again we have used the “merging” technique and claim no originality for these. They may
very well be the same systems discovered by Kornerup.

FIGURE 2 Levi graphs of configurations 293, 303 and 323 with no blocking set
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2.3 | Connectivity of configurations

Here we introduce the idea of the connectivity of a symmetric configuration and derive some
results. First recall that in a cubic graph, the vertex connectivity is equal to the edge con-
nectivity. Further if a connected cubic graph is also bipartite, then the connectivity cannot be 1
and so is equal to either 2 or 3. Define the connectivity of a symmetric configuration to be the
connectivity of its Levi graph. Funk et al. [14] present the following operation. LetG1 andG2 be
cubic bipartite graphs which are disjoint, and let ∈y V G( )1 with neighbour set x x x{ , , }1 2 3 and
∈x V G( )2 with neighbour set y y y{ , , }1 2 3 . Then the graph

∪ ∪G G y G x x y x y x y= ( \ ) ( \ ) { , , }1 2 1 1 2 2 3 3

is said to be a vertex‐sum of G1 and G2. They then quote the following theorem which they
attribute to McCuaig [20].

Theorem 2.12 (McCuaig). A 3‐connected cubic bipartite graph is det‐extremal if and only
if it can be obtained from the Heawood graph by repeatedly applying the vertex‐sum
operation.

For our purposes, the significance of the vertex‐sum operation on cubic bipartite graphs is
that it is equivalent to the v v+ ′ − 1 construction of Bollobás and Harris given in
Theorem 2.10. Thus we have the following result.

Theorem 2.13. A 3‐connected symmetric configuration v3 without a blocking set exists if
and only if ≡v 1 (mod 6). Moreover, such systems can only be obtained from the Fano
plane by repeatedly applying the v v+ ′ − 1 construction.

This naturally raises the question of the spectrum of 2‐connected symmetric configurations
without a blocking set. From our account above it is clear that the systems v3 with
≡v 1 (mod 6) arising from Theorem 2.13 are 3‐connected. There are no 2‐connected systems

for ∈v {7, 13, 19} since all have been enumerated and arise from Theorem 2.13; see Table 2 and

FIGURE 3 The Levi graph of a 253 configuration with no blocking set
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the discussion in Section 2.4. So to complete the spectrum, what is needed is a 2‐connected
configuration 253 without a blocking set. Such a configuration does exist and its Levi graph is
shown in Figure 3. The blocks are listed below.

012 034 056 135 146 236 24m 5ln 78d 79c 7an 89b 8ac 9ad bcd blo ego ehi
ejk fhk fij flm ghj gik mno

In fact this graph has already appeared in the literature. It appears as fig. 8 in [20] as a
2‐connected unbalanced 1‐extendible cubic bipartite graph. We have the following result.

Theorem 2.14. A 2‐connected symmetric configuration v3 without a blocking set exists if
and only if ∈v {21, 22, 25} or ≥v 27.

2.4 | Enumeration of configurations

Finally in this section we present some enumeration results. As stated above, for ≤ ≤v7 18

there exist just two symmetric configurations with no blocking set; unique 73 and 133 systems.
Gropp [16] reported that there exist at least four configurations 193 without a blocking set.
Recently the present authors [12] have enumerated all configurations 193 and we confirm that
there are exactly four without a blocking set. These have a nice description as follows. Because
19 = 13 + 7 − 1, it must be true that at least some of the four configurations 193 can be
obtained by using Theorem 2.10 with the unique 133 and 73 configurations without blocking
sets. We may use the construction of Theorem 2.10 with v v= 7, ′ = 13, taking all possible
choices for the distinguished point and block in the two constituent configurations. To this set
of configurations we may add those obtained by taking v v= 13, ′ = 7 in the same way. Finally,
this set of configurations can be reduced to isomorphism class representatives using the GAP
package DESIGN [15,22]. In this way we were able to determine that the method results in
exactly four isomorphism classes of configurations 193 with no blocking set. Thus these cor-
respond precisely to the four in the enumeration; this description of the four 193 configurations
was known to Gropp and the construction is described in [10,16]. The blocks of these four 193
systems are as follows:

012 034 056 135 19a 236 245 4bc 678 79b 7ac 89c 8de afi bgh dfh

dgi efg ehi

012 034 056 135 146 29a 2bc 367 4gh 5fi 79b 7ac 89c 8ab 8de dfh

dgi efg ehi

012 034 056 135 146 236 2de 4fi 5gh 79b 7ac 7fh 89c 8ab 8gi 9ad

bcd efg ehi

012 034 056 135 146 29a 2bc 367 458 79b 7ac 89c 8de afi bgh dfh

dgi efg ehi

Although there is no symmetric configuration 203 without a blocking set, increases in
computer power allowed us to extend the enumeration of symmetric configurations to the case
where v = 20 and this information is summarised in Table 2. Our enumeration, in common
with our previous results [12], was carried out using the program confibaum as used in [6].
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We are grateful to G. Brinkmann for this program and for assistance in our previous
enumeration.

The enumeration confirms the fact that there is no symmetric configuration 203 without a
blocking set. For completeness we describe here the properties enumerated in Table 2, fol-
lowing the notation of [6]. For a configuration  , an automorphism is a permutation of the
points and blocks of  which preserves incidence. The dual of  is the configuration obtained
by reversing the roles of the points and blocks of  . If  is isomorphic to its dual, we say it is
self‐dual, and an isomorphism between  and its dual is an anti‐automorphism. An anti‐
automorphism of  of order two is called a polarity, and a configuration admitting such an
isomorphism is self‐polar. The group of all automorphisms of  (preserving the roles of points
and blocks) is denoted by Aut( ) , and the group of all automorphisms and anti‐automorphisms
by A ( ) . If Aut( ) acts transitively on the points of  then we say  is point‐transitive. A flag
of  is an ordered pair p B( , ) with ∈p B; if Aut( ) acts transitively on the set of flags then we
say  is flag‐transitive; if A ( ) acts transitively on the set of flags regarded as unordered pairs,
then we say  is weakly flag‐transitive. A cyclic configuration  is one admitting a cyclic
subgroup of Aut( ) acting regularly on points.

Note that for consistency with previously published results, the counts in Table 2 include
disconnected configurations.

The next case to consider is v = 21. A 213 configuration without a blocking set can be
constructed from three 73 configurations by Theorem 2.11. Because the automorphism group of
the Fano plane is flag‐transitive, all systems constructed by this method are isomorphic. We
show that this is the unique system of this order without a blocking set. From Theorem 2.13,
any such system is 2‐connected.

The first observation to make is that a cubic bipartite graph with edge connectivity 2 and
edge cutset ab cd{ , } must take the form illustrated in Figure 4. In the diagram, the circles
represent the components C C,1 2 following the edge cut and the black/white colouring of the
vertices represents the bipartition of the graph.

Suppose now that the graph in Figure 4 is the Levi graph of a symmetric configuration 213.
Say the components C C,1 2 following the edge cut have respective orders n1 and n2, with
n n+ = 421 2 . Then C1 has n − 21 vertices of valency 3, and two vertices (a and d) of valency 2.
In other words, it is a subcubic bipartite graph with ∕n3 2 − 11 edges. A similar argument holds
for C2, where the distinguished vertices of valency 2 are b and c.

The problem of constructing all cubic bipartite graphs with edge connectivity 2 can
therefore be reduced to finding all possible components C C,1 2. Note that a component is not
necessarily an edge‐deleted Levi graph of some configuration; this will be the case for C1, for
example, if and only if the distance between the distinguished vertices a and d is at least 5. But
these vertices may be at distance 3 or even 1. However the component can contain no 4‐cycles.
By using the genbg utility provided in the nauty package [21], we may use a computer to
construct all possible components. This computer search shows that the smallest possible one
of these has order 14 and is unique; it is an edge‐deleted Heawood graph. At order 16 there are
three possible components: one with a d, at distance 5 which is an edge‐deleted Levi graph of
the 83 configuration; one with a d, at distance 3 and one with a d, adjacent.

In principle then, all cubic bipartite graphs with edge connectivity 2, girth at least 6 and
order 42 can be constructed by finding all possible components C C,1 2 such that n n+ = 421 2

and joining their distinguished vertices as in Figure 4. The join can be done in two (possibly)
nonisomorphic ways and is subject to the constraint that at least one of C C,1 2 must have its
distinguished vertices nonadjacent (to avoid creating a 4‐cycle).
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We therefore proceed as follows. For n = 14, 16, …, 28 we generate using genbg all
subcubic bipartite graphs of order n and girth at least 6 with ∕n3 2 − 1 edges. Then the idea is
that we connect up a graph of order n with a graph of order n42 − as above, subject to the
constraint noted. The resulting cubic graph will have girth at least 6; this process therefore
generates the entire population of 2‐edge‐connected cubic bipartite graphs of order 42. Any
blocking set free configuration at v = 21 must have a Levi graph within this population.

Although there are a large number of possible components, it turns out that with modern
computers the generation of the components and hence the enumeration of all possible Levi
graphs of configurations 213 could be completed. Exactly one of the resulting Levi graphs arose
from a configuration which failed to have a blocking set. It is illustrated in Figure 1 and its
blocks are as follows.

012 034 056 135 146 236 24l 58f 79c 7ak 7bl 89a 8ck 9bk abc deh

dfj dgi egj eil fgh hij

We therefore have the following result.

Theorem 2.15. There is a unique symmetric configuration 213 having no blocking set; it is
the configuration obtained by using three Fano planes in the construction of Theorem 2.11.

As noted above, the symmetric configuration 223 with no blocking set illustrated in Figure 1
was found by Dorwart and Grünbaum [11]. In fact we can show that this also is the unique
such configuration. We use the same procedure as for the 213 configuration, but the search can
be considerably shortened by the following simple lemma.

Lemma 2.16. Let ≥v 8 be an even number. If a symmetric configuration v3 contains no
blocking set, then its Levi graph is non‐Hamiltonian.

Proof. Suppose that the Levi graph contains a Hamiltonian cycle ⋯p B p B p B pv v0 0 1 1 −1 −1 0

where pi and Bi, respectively, represent point and block vertices, i v= 0, 1, …, − 1. Colour
the even‐numbered points p p p, , …, v0 2 −2 red and the odd‐numbered points blue. Since v is
even, no block is monochromatic and so the even‐numbered points form a blocking set for
the configuration. □

Lemma 2.16 and Theorem 2.13 show that if a symmetric configuration 223 has no blocking
set, its Levi graph must be a 2‐connected non‐Hamiltonian cubic bipartite graph of order 44.

FIGURE 4 A cubic bipartite graph with edge connectivity 2
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Thus an enumeration of blocking set free configurations on 22 points can be achieved by an
exhaustive enumeration of such graphs.

We use the same basic search methodology as in the 213 case, but this time we extend the
generation of the components C C,1 2 up to order 30. To guarantee that the resulting graph of
order 44 will be non‐Hamiltonian, we require that at least one of C C,1 2 must fail to have a
Hamiltonian path between its distinguished vertices. (To check the existence of a Hamiltonian
path, we create an augmented graph in which the two distinguished vertices of valency 2 are
joined to a new vertex; then the augmented graph is Hamiltonian if and only if there is a
Hamiltonian path between the distinguished vertices in the original graph. This technique
allows us to use the well‐tested cubhamg utility in the nauty package, rather than writing
new software for the Hamiltonicity test.)

Restricting our search to pairs C C,1 2 such that at least one component fails to have a
Hamiltonian path between the distinguished vertices gives a very substantial reduction in
the number of component pairs to be considered. We were thus able to complete the
enumeration of the 2‐connected non‐Hamiltonian cubic bipartite graphs of order 44, and
found that only one of these is the Levi graph of a blocking set free configuration 223. Thus
we have the following result.

Theorem 2.17. There is a unique symmetric configuration 223 having no blocking set; it
is the configuration of Dorwart and Grünbaum [11].

Next, a 253 configuration without a blocking set can be constructed by Theorem 2.10 using
either two 133s or a 73 with one of the 193s. Again in [16], Gropp reports that there are at least 19
such configurations. With the assistance of computers in a similar way to the construction of
the 193 configurations, in fact we find 23 isomorphism classes of configurations 253 arising from
Theorem 2.10 in this way. The blocks of these are given in the appendix.

All of these systems have connectivity 3 and we now know that there is at least one further
system which is 2‐connected; thus 25 is the smallest order for which there exist both
3‐connected and 2‐connected blocking set free systems. Using Theorem 2.13 we can now make
an enumeration of 3‐connected symmetric configurations v3 without a blocking set for
∈v {7, 13, 19, 25, 31, 37, 43}. We do this by repeated application of the v v+ ′ − 1 construction

in all possible ways, and reducing the resulting configurations to a set of isomorphism class
representatives. The results are shown in Table 3.

3 | STRONG COLOURINGS

In this section we turn our attention to the strong chromatic number χs of a symmetric
configuration, and also investigate its relationship to the weak chromatic number χw. Our first
observation is that the strong chromatic number of a configuration is equal to the chromatic
number of its associated graph. Since the associated graph is regular of valency 6 and contains
triangles, it follows from Brooks' Theorem that ∈χ {3, 4, 5, 6, 7}s , and χ = 7s if and only if the
associated graph is a complete graph; that is to say, the configuration is the Fano plane.

The first case to consider is χ = 3s . An immediate observation is that each block of the
configuration must contain exactly one point from each of the three colour classes, and so
≡v 0 (mod 3). By colouring two classes in the strong colouring (say) red and the third blue, we

see that χ = 3s implies χ = 2w .
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A nice description of strongly 3‐chromatic configurations is as follows. From the associated
graph of the configuration, form the subgraph induced by the points from any two of the three
colour classes. It is easy to see that this induced subgraph is a cubic bipartite graph (not
necessarily connected), and a given strong 3‐colouring of a configuration gives rise to three
cubic bipartite graphs in this way by deleting each of the colour classes. Given any cubic
bipartite graph Γ, it is natural to ask whether Γ can arise in this way. Our next result answers
this in the affirmative.

Theorem 3.1. Let ≥m 3 and let Γ be a cubic bipartite graph of order m2 . Then there
exists a strongly 3‐chromatic symmetric configuration  on m3 points, and a strong
3‐colouring of  , such that the induced subgraph of the associated graph of  formed by
deleting the points of one colour class is isomorphic to Γ.

Proof. Our aim is to construct a new 6‐regular graph Γ′ on m3 vertices to be the
associated graph of our configuration  . We begin by creating three sets of vertices
V V V, ,1 2 3, each of order m. Between the vertices of V1 and V2 we add edges such that the
induced subgraph on ∪V V1 2 is isomorphic to Γ. We now note that by [7], the edges of Γ
can be decomposed into a collection ofm copies of the graph K3 2, that is, a collection ofm
sets of three disjoint edges. Each of them sets of three edges contains exactly six vertices;
we construct Γ′ by joining each of them vertices in V3 to all the vertices in exactly one of
these sets.

Since Γ′ is a 6‐regular tripartite graph, any decomposition of its edge set into triangles
will yield a strongly 3‐chromatic configuration on m3 points, where the colour classes are
the sets V V V, ,1 2 3. A suitable triangle decomposition is given by using each edge between
vertices inV1 andV2 together with the two edges joining its endpoints to a vertex inV3. By
construction, the configuration  represented by this decomposition has the required
properties, taking the colour class assigned to V3 as the one to be deleted. □

In general, the three cubic bipartite graphs formed by deleting a colour class from a strongly
3‐chromatic configuration in this way will not be isomorphic. Another natural question is
whether we can construct strongly 3‐chromatic configurations in such a way that, with a
suitable colouring, the resulting colour class deleted graphs are actually isomorphic. It turns
out that we can do this for any ≥v 9 which is a multiple of 3.

TABLE 3 Numbers of 3‐connected blocking set free configurations v3

v Configurations Self‐dual Self‐polar

7 1 1 1

13 1 1 1

19 4 2 2

25 23 5 5

31 182 14 14

37 1747 45 45

43 19,485 145 145
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Theorem 3.2. Let ≥s 3 and let v s= 3 . Then there is a cubic bipartite graph Γ of order s2 ,
and a strongly 3‐chromatic symmetric configuration  on v points, such that deleting any of
the three colour classes in a suitable colouring of  we obtain a graph isomorphic to Γ.

Proof. We begin by defining a suitable cubic bipartite graph Γ. Let the vertex set of Γ
consist of ∪a a a b b b{ , , …, } { , , …, }s s0 1 −1 0 1 −1 . There is an edge from ai to bj if and only if

∈i j− {−1, 0, 1}, where of course the arithmetic is modulo s. Now we extend Γ to a
6‐regular graph Γ′, and colour the edges in a particular way. To create Γ′, create a new
vertex set c c c{ , , …, }s0 1 −1 and join edges ci to aj and ci to bj exactly as in Γ. A triangle
decomposition in Γ′ can be defined as follows. For each i s= 0, 1, …, − 1, colour the
edges in Γ′ according to the following rules:

• Edges from ai to bi i− , bi to ci and ci to ai+1 are coloured red.
• Edges from ai to bi, bi to ci+1 and ci to ai−1 are coloured green.
• Edges from ai to bi+1, bi to ci−1 and ci to ai are coloured blue.

Then the monochromatic triangles in the above edge‐coloring form a triangle de-
composition of Γ′. The configuration  represented by this decomposition is strongly
3‐chromatic (since Γ′ is tripartite) and deleting any of the three sets in the tripartition
leaves a graph isomorphic to Γ. □

Note that the symmetric configuration constructed in the above theorem is resolvable, the
sets of monochromatic triangles of the three colours forming the resolution classes. The graph
Γ′ is a Cayley graph of the group × s3  .

We next turn our attention to the case χ = 4s . It is easy to see that a strongly 4‐chromatic
configuration is weakly 2‐chromatic; if we strongly colour the configuration with colours 1, 2, 3,
4 then we can colour the points in colour classes 1 and 2 blue, and the remainder red. Then no
block is monochromatic.

In Table 4 we give computer calculations of the strong chromatic numbers of all connected
configurations with ≤v 15; the numerical evidence is that the case χ = 4s seems to be the most
common. Indeed, our next result shows that we can construct a symmetric configuration with
χ = 4s for all ≥v 8.

Theorem 3.3. There exists a strongly 4‐chromatic configuration v3 for all ≥v 8.

Proof. The proof is similar to that of Theorem 2.3. We again use Martinetti's extension
operation, though the replacement of blocks is different from that done in Theorem 2.3.
First observe from Table 4 that a strongly 4‐chromatic configuration v3 exists for ≤ ≤v8 12.

Let v s= 3 where ≥s 4, and let ≤ ≤V a b c i s= { , , : 0 − 1}i i i . Let the blocks of the
symmetric configuration v3 be the sets a b c a b c{ , , }, { , , }i i i i i i+1 +1 and a b c{ , , }, 0i i i+1

≤ ≤i s − 1.
Now suppose that ≡v 1 (mod 3), ≥v 13. Construct a configuration v( − 1)3 as above.

Introduce a new point∞0 and use the extension operation, replacing the blocks a b c{ , , }0 0 1

and a b c{ , , }1 1 2 by blocks ∞ b c{ , , }0 0 2 , ∞ a c{ , , }0 0 1 and ∞ a b{ , , }0 1 1 . Next suppose that
≡v 2 (mod 3), ≥v 14. Construct a configuration v( − 1)3 as above. Introduce a new point

∞1 and again use the extension operation, replacing the blocks a b c{ , , }0 1 0 and a b c{ , , }1 2 1 by
blocks ∞ a b{ , , }1 0 2 , ∞ b c{ , , }1 1 0 and ∞ a c{ , , }1 1 1 .
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Finally, suppose that ≡v 0 (mod 3), ≥v 15. Construct a configuration v( − 1)3 as above.
Introduce a new point ∞2 and again use the extension operation, replacing the blocks
a b c{ , , }1 0 0 and a b c{ , , }2 1 1 by blocks ∞ a c{ , , }2 2 0 , ∞ a b{ , , }2 1 0 and ∞ b c{ , , }2 1 1 .

In all cases it is clear that the symmetric configurations so constructed have a strong
colouring with four colours and therefore in the first two cases are strongly 4‐chromatic. It
remains to prove that in the case where ≡v 0 (mod 3) it is not 3‐chromatic. Suppose that it
is and that in the block ∞ b c{ , , }0 0 2 ,∞0 receives colour 1, b0 receives colour 2 and c0 receives
colour 3. Then in the block ∞ a c{ , , }0 0 1 , a0 and c1 receive colours 2 and 3 in some order and
likewise in the block ∞ a b{ , , }0 1 1 , a1 and b1 receive colours 2 and 3 in some order, giving four
possibilities in all. However in all cases either a1 and c1 or b1 and c1 receive the same colour,
giving a contradiction. □

Before considering the next case χ = 5s , we state and prove the following theorem which
gives the strong chromatic number of certain cyclic configurations.

Theorem 3.4. Let ≥v 7 and let Cv be the cyclic configuration on v points generated by
the block {0, 1, 3} under the mapping ↦i i v+ 1 (mod ). Then

≡ ∉

≡

χ C

v

v

v v

v

( ) =

7 if = 7,

6 if = 11,

5 if 1, 2, 3 (mod 4), {7, 11},

4 if 0 (mod 4).

vs

⎧
⎨
⎪⎪

⎩
⎪⎪

Proof of this theorem is facilitated by the following lemma.

Lemma 3.5. Let ≥v 7 and let Cv be the cyclic configuration on v points generated by the
block {0, 1, 3}. If v can be expressed in the form a b4 + 5 where a b, are nonnegative integers,
then ≤χ C( ) 5vs .

Proof. We consider the points ofCv to be elements of the cyclic group v . The colours of
the points will be taken from the set {0, 1, 2, 3, 4}. Each point i is assigned colour c i( ) as
follows.

TABLE 4 Strong chromatic numbers of connected configurations v3

v Total χ = 3s χ = 4s χ = 5s χ = 6s χ = 7s

7 1 0 0 0 0 1

8 1 0 1 0 0 0

9 3 1 1 1 0 0

10 10 0 3 7 0 0

11 31 0 21 9 1 0

12 229 4 161 64 0 0

13 2036 0 1451 584 1 0

14 21,398 0 17,342 4053 3 0

15 245,341 251 234,139 10,938 13 0
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≥
c i

i i a

i a i a
( ) =

mod 4 if < 4 ,

( − 4 ) mod 5 if 4 .

⎧⎨⎩

So listing the elements of v from 0 to v − 1 in order, the assignment of colours looks like

0123 0123 … 0123 01234 01234 … 01234.

It is easy to see that if b > 0 this represents a strong 5‐colouring of Cv; and if v is divisible
by 4 we can write v a= 4 and it is a 4‐colouring. □

Proof of Theorem 3.4. The block {0, 1, 3} shows that 0, 1 and 3 must be assigned
different colours; then the blocks {1, 2, 4}, {2, 3, 5} and v{ − 1, 0, 2} show that 2 must be
assigned a fourth colour. So for any ≥v 7, ≥χ C( ) 4vs .

If v can be written in the form a b4 + 5 , then Lemma 3.5 applies and so χ C( )vs will
equal 4 if ≡v 0 (mod 4). If ≢v 0 (mod 4), then by the paragraph above and the proof of
Lemma 3.5, the assignment of colours in a strong 4‐colouring would have to be
0123 0123 … 0123 which is impossible because the points cannot be split into groups of
4. So χ C( ) = 5vs .

The only values of ≥v 7 which cannot be written in the form a b4 + 5 are 7 and 11. If
v = 7 then the associated graph of Cv is the complete graph K7 and this has chromatic
number 7. If v = 11 then Lemma 3.5 cannot be applied, and computer testing shows that
χ C( ) = 6s 11 . In fact as Table 4 shows, this is the unique 6‐chromatic configuration 113. □

The case χ = 5s is interesting. Theorem 3.4 shows that symmetric configurations v3 with
χ = 5s exist for all ≡ ∉v v1, 2, 3 (mod 4), {7, 11} and Table 4 shows that such a configuration
also exists for v = 11 but not v = 7. It remains to determine existence for ≡v 0 (mod 4), which
is more appropriate for us to do later in Theorem 3.8.

All examples of strongly 5‐chromatic configurations v3 with ≤v 15 have χ = 2w , and in-
deed all other examples we have seen have χ = 2w (in other words, the configuration contains
a blocking set). However, we have been unable to find a proof of this, and so the existence of a
symmetric configuration with χ = 5s and χ = 3w remains an open question. As a partial result
in this direction, we can show that all configurations which are “almost” strongly 4‐colourable
have weak chromatic number 2.

Theorem 3.6. Suppose that we have a strongly 5‐chromatic configuration v3 in which all
but at most two points can be coloured using four colours. Then the weak chromatic number
of the configuration is 2.

Proof. First, note that in any 5‐colouring each of the v blocks is coloured with one of the

( ) = 10
5

3
possible sets of three colours; and each of these sets must appear at least once if

the weak chromatic number is 3. (If a set of three colours does not appear in any block,
we can assign blue to these three and red to the other two to get a weak 2‐colouring.)

Now suppose that we can assign four colours (say 1, 2, 3 and 4) to v − 1 points so that no
colour is repeated in a block. Clearly we can assign a fifth colour 5 to the remaining point,
and in this 5‐colouring at least three sets of three colours must fail to appear in any block,
since there are six possible sets containing this colour but only three blocks containing the
single vertex with this colour. Thus the configuration has weak chromatic number 2.
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If we can only assign four colours to v − 2 points the position is more awkward. Let the
two uncoloured points be a and b. Suppose first that a and b do not appear in the same block.
We seek an assignment of two of the existing colours 1, 2, 3, 4 to red and the remaining two
to blue, such that we can choose red or blue for a and b to obtain a weak 2‐colouring. There
are exactly three ways to do this initial red/blue assignment: 12/34, 13/24 and 14/23. We shall
call an assignment compatible with a if it leaves a possible red/blue choice for a such that no
monochromatic block is created. Since a appears in three blocks, it is easy to see that at most
one of the three possible assignments is not compatible with a. For example, if the colours of
the other points in the blocks containing a are {1, 2}, {3, 4} and {1, 4}, then the assignment
12/34 is incompatible with a but the assignments 13/24 and 14/23 are compatible. Since the
same argument holds for b, at least one possible assignment is compatible with a and b and
so the configuration has a weak 2‐colouring.

If a and b do appear in the same block, then each has two other blocks in which it
appears. In this case, not only is there an assignment compatible with both a and b, but
also the choice of red/blue for a and b may be made freely. So we can choose red for a
and blue for b and again there is a weak 2‐colouring. □

Now we come to the case χ = 6s . Table 4 shows that this is uncommon; of the 269,049
connected configurations v3 with ≤ ≤v8 15, only 18 are strongly 6‐chromatic. These are given
in the appendix. Nevertheless, we are able to deduce the existence of strongly 6‐chromatic
configurations for almost all values of v as the next result shows.

Theorem 3.7. There exists a strongly 6‐chromatic connected configuration v3 for v = 11

and for all ≥v 13.

Proof. The cases v = 11 and 13 follow from Table 4. So let ≥v 14 and let C7 be the cyclic
configuration on seven points generated by the block {0, 1, 3} under the mapping
↦i i + 1 (mod 7); this is of course the unique 73 configuration and is strongly

7‐chromatic. Now choose any connected configuration v( − 7)3 and number the points
from 7 to v − 1. By relabelling if necessary, we may assume without loss of generality that
this configuration contains the block {7, 8, 9}. Now create a new configuration  with the
blocks of these two configurations, but replacing the blocks {0, 1, 3} and {7, 8, 9} with
{1, 3, 7} and {0, 8, 9}. Suppose  can be strongly coloured with five colours. Then the
colours assigned to points 1–6 together with a sixth colour for point 0 would give a strong
6‐colouring for the original configuration C7, which is impossible. Thus ≥χ ( ) 6s  and
since ≤χ ( ) 6s  by Brooks' Theorem,  is a strongly 6‐chromatic connected configuration
on v points as required. □

As noted above, all the blocking set free configurations of which we are aware have χ = 6s .
However, only the single example at v = 13 in Table 4 has χ = 6s and χ = 3w , so there are
many examples with χ = 6s and χ = 2w .

Finally in this section we complete the proof of the existence spectrum for χ = 5s which we
earlier deferred until later. It follows the proof of Theorem 3.7 but is more intricate.

Theorem 3.8. There exists a strongly 5‐chromatic connected configuration v3 for all
≡v 0 (mod 4), ≥v 12.
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Proof. Examples for v = 12 and 16 are the following.

012 034 056 135 146 237 289 48a 59b 6ab 78b 79a

012 034 056 135 146 236 278 479 57a 89b 8cd 9ef ace adf

bcf bde

Now let ≥v 20 and let C11 be the cyclic configuration on 11 points generated by the block
{0, 1, 3} under the mapping ↦i i + 1 (mod 11); from Theorem 3.4 this is strongly
6‐chromatic. Now choose any connected configuration v( − 11)3 with χ = 5s and number
the points from 11 to v − 1. From Theorem 3.4 this is possible. By relabelling if necessary, we
may assume without loss of generality that this configuration contains the block {11, 12, 13}
and that in the strong 5‐colouring, these points receive colours red, yellow and blue,
respectively. Now create a new configuration with the blocks of these two configurations but
replacing the blocks {0, 1, 3} and {11, 12, 13} with {1, 3, 11} and {0, 12, 13}. Suppose can be
strongly coloured with four colours. Then the colours assigned to points 1–10 together with a
fifth colour assigned to point 0 would give a strong 5‐colouring of the original configuration
C11, which is impossible. Thus ≥χ ( ) 5s  , and since ≤χ ( ) 6s  by Brooks' Theorem,  is
either strongly 5‐ or 6‐chromatic. It remains to show that it is the former by exhibiting a
colouring.

Colour the blocks of the v( − 11)3 configuration without the block {11, 12, 13} with five
colours red, yellow, blue, green and white, respecting that colours have already been assigned
to points 11, 12 and 13. Colour the remaining points as follows: 4 and 8 red; 2 and 9 yellow; 3
and 7 blue; 0, 1 and 5 green; 6 and 10 white. □

4 | OPEN QUESTIONS

We gather here some of the interesting open questions arising from this study. The first of these
relates to symmetric configurations 253 without a blocking set. We now have enumerations of
all symmetric configurations v3 for ≤ ≤v7 20 and all 3‐connected symmetric configurations
without a blocking set for ≤ ≤v7 43. There are unique configurations 213 and 223 without a
blocking set, both necessarily 2‐connected, and a 2‐connected configuration 253 without a
blocking set is known. The question remains whether this is unique.

The second problem is to extend the work on the sizes of minimal blocking sets, possibly
along the lines of Theorems 2.4 and 2.5. In particular it would be interesting to find con-
structions of symmetric configurations v3 whose minimal blocking set has maximum cardin-
ality, that is, ∕v( − 1) 2 if v is odd and ∕v 2 if v is even. The admittedly limited evidence from
Table 1 suggests that such configurations exist except for v = 7 (where there is no blocking set)
and v = 14, though amongst the set of all symmetric configurations they may be relatively rare.
However, given the long history of blocking set free symmetric configurations, finding those
with only minimal blocking sets of maximum cardinality may also be quite challenging.

The third problem concerns the relationship between the strong and the weak chromatic
numbers. We have observed that if χ = 3s or 4 then χ = 2w and that there are configurations
with χ χ( , )s w equal to both (6, 2) and (6, 3). However all of the known systems with χ = 5s have
χ = 2w . So we ask does there exist a symmetric configuration v3 with strong chromatic number
5 and weak chromatic number 3? Equivalently, does every blocking set free configuration have
strong chromatic number 6?
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Finally, as we observed, a given strong 3‐colouring of a strongly 3‐chromatic configuration gives
rise to three cubic bipartite graphs by deleting each of the colour classes from the associated graph of
the configuration. Denote these graphs by Γ1, Γ2 and Γ3. In Theorem 3.1 we proved that one of these
graphs, say Γ1, can be any cubic bipartite graph. Now suppose that Γ1, Γ2 and Γ3 are all specified. Does
there exist a symmetric configuration v3 whose three cubic bipartite graphs constructed as above are
isomorphic to Γ1, Γ2 and Γ3? If not, what are the constraints on these three graphs for this to be
possible? The case where Γ1, Γ2 and Γ3 are isomorphic would be of particular interest.

There are of course other problems on symmetric configurations and we hope that this
paper will encourage colleagues to work on these.
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APPENDIX A
The 27 configurations with ≤v 14 with a minimal blocking set of size v

2
⎢⎣ ⎥⎦:

012 034 056 135 147 246 257 367
012 034 056 135 147 248 267 368 578
012 034 056 135 178 247 268 379 469 589
012 034 056 137 158 247 268 359 469 789
012 034 056 135 146 278 29a 379 47a 589 68a
012 034 056 135 147 248 269 37a 59a 68a 789
012 034 056 135 147 248 279 36a 59a 689 78a
012 034 056 135 147 248 29a 379 58a 67a 689
012 034 056 135 147 268 279 389 49a 58a 67a
012 034 056 135 178 246 279 37a 49a 58a 689
012 034 056 135 148 257 26b 389 49a 67a 79b 8ab
012 034 056 135 179 246 278 39a 48a 59b 68b 7ab
012 034 056 135 148 257 26c 389 49a 67b 7ac 8ab 9bc
012 034 056 135 149 25c 2ab 37b 478 689 6ac 79a 8bc
012 034 056 135 167 247 2bc 389 49b 58c 68a 7ab 9ac
012 034 056 135 178 239 247 49a 58c 68b 6ac 7ab 9bc
012 034 056 135 178 247 289 37b 4ab 59c 69a 6bc 8ac
012 034 056 135 178 247 289 3bc 45c 69b 6ac 79a 8ab
012 034 056 135 179 247 269 3ac 48a 58c 6bc 78b 9ab
012 034 056 135 179 249 26c 38a 4ac 578 68b 7ab 9bc
012 034 056 135 179 268 29c 3ab 47a 49b 578 6bc 8ac
012 034 056 135 179 26a 289 3ab 478 49b 57c 6bc 8ac
012 034 056 135 179 26b 29c 3ab 47a 4bc 578 68c 89a
012 034 056 135 17c 24b 26a 38c 469 578 79b 8ab 9ac
012 034 056 137 14c 25b 26a 359 468 78c 79a 8ab 9bc
012 034 056 137 158 247 2ab 368 49a 59c 6bc 79b 8ac
012 034 056 137 189 26b 29c 3ab 45c 49a 578 68a 7bc

ERSKINE ET AL. | 421

https://gap-packages.github.io/design
https://gap-packages.github.io/design
https://doi.org/10.1002/jcd.21773


The 23 blocking set free configurations 253 arising from Theorem 2.10:

012 034 056 135 1fg 236 29c 478 4hi 5ab 6de 79b 7ac 89a 8bc dfh dgi efi
ejk glo hmn jln jmo klm kno
012 034 056 135 146 29a 2bc 367 4mn 5lo 79b 7ac 89c 8de 8jk afi bgh dfh
dgi efg ehi jln jmo klm kno
012 034 056 135 146 236 2jk 4lo 5mn 79b 7ac 7ln 89c 8de 8mo 9aj afi bcj
bgh dfh dgi efg ehi klm kno
012 034 056 135 146 236 2de 49c 5ab 79b 7ac 7fg 89a 8bc 8hi dfh dgi efi
ejk glo hmn jln jmo klm kno
012 034 056 135 146 236 2de 49c 5ab 79b 7ac 7fi 89a 8bc 8jk dfg dhi efh
egi glo hmn jln jmo klm kno
012 034 056 135 146 236 28k 4lo 5mn 78j 79b 7ac 89c 9aj afi bcj bgh dfh
dgi dln efg ehi emo klm kno
012 034 056 135 146 236 278 49c 5ab 7ac 7de 89a 8bc 9fg bhi dfh dgi efi
ejk glo hmn jln jmo klm kno
012 034 056 135 146 236 278 49c 5ab 7ac 7de 89a 8bc 9fi bjk dfg dhi efh
egi glo hmn jln jmo klm kno
012 034 056 135 146 236 278 49c 5ab 7ac 7fk 89a 8bc 9ln bmo def dgh dij
egi ehj fgj hlo imn klm kno
012 034 056 135 1de 236 245 4fg 6hi 79b 7ac 7fh 89c 8ab 8gi 9ad bcd efi
ejk glo hmn jln jmo klm kno
012 034 056 135 1de 236 245 4fg 6hi 79b 7ac 7fi 89c 8ab 8jk 9ad bcd efh
egi glo hmn jln jmo klm kno
012 034 056 135 1ab 236 245 4jk 69c 79a 7bc 7de 89b 8ac 8fi dfg dhi efh
egi glo hmn jln jmo klm kno
012 034 056 135 1ef 236 245 4gi 6jk 79b 7ac 7fi 89c 8ab 8lo 9ad bcd deg
ehi fgh hmn jln jmo klm kno
012 034 056 135 1ef 236 245 4gj 6kl 79b 7ac 7kn 89c 8ab 8lm 9ad bcd dho
egh eij fgi fhj imn kmo lno
012 034 056 135 146 236 2dk 4lo 5mn 79b 7ac 7lm 89c 8ab 8no 9ak bck dgh
dij egi ehj eln fgj fhi fmo
012 034 056 135 146 236 27o 4mn 5dl 79b 7ac 89c 8ab 8lm 9ak bck dgh dij
egi ehj ekn fgj fhi fmo lno
012 034 056 135 1bc 236 245 4jk 69a 79b 7ac 7lm 89c 8de 8no afi bgh dfh
dgi efg ehi jln jmo klo kmn
012 034 056 135 1de 236 245 4no 69c 79a 7bc 7jk 89b 8ac 8lm afi bgh dfh
dgi efg ehi jln jmo klo kmn
012 034 056 135 18b 236 245 49c 67a 7bc 7jk 8ac 8lm 9de 9no afi bgh dfh
dgi efg ehi jln jmo klo kmn
012 034 056 135 1fh 236 245 4gi 69e 7ab 7cd 7jk 8ac 8bd 8lm 9ad 9no bfi
cgh efg ehi jln jmo klo kmn
012 034 056 135 146 2bc 2de 369 45a 79b 7ac 7fi 89c 8ab 8jk dfg dhi efh
egi glo hmn jln jmo klm kno
012 034 056 135 146 2bc 2jk 367 458 79b 7ac 89c 8de 9lm afi ano bgh dfh
dgi efg ehi jln jmo klo kmn
012 034 056 135 146 29a 2bc 367 458 79b 7ac 8de 8jk 9lm afi bgh cno dfh
dgi efg ehi jln jmo klo kmn
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The 18 strongly 6‐chromatic configurations with ≤v 15:

012 034 056 135 147 248 279 36a 59a 689 78a
012 034 056 135 146 236 278 49c 5ab 79b 7ac 89a 8bc
012 034 056 135 146 236 247 589 7ad 7bc 8ac 8bd 9ab 9cd
012 034 056 135 146 28d 29c 368 457 79a 7bc 8ab 9bd acd
012 034 056 135 146 29b 2cd 368 457 79a 7bc 89d 8ac abd
012 034 056 135 146 28d 29c 36e 457 789 7bc 8ab 9ae acd bde
012 034 056 135 147 239 245 6ae 6cd 789 7bc 8ab 8ce 9ad bde
012 034 056 135 146 24c 25e 38a 6ce 78d 79e 7ab 89b 9ad bcd
012 034 056 135 146 25c 26e 38a 4ce 78d 79e 7ab 89b 9ad bcd
012 034 056 135 146 29b 2ae 368 45c 789 7ab 7de 8bd 9ce acd
012 034 056 135 146 28a 2de 36d 45e 78b 79e 7ac 89c 9ab bcd
012 034 056 135 146 27c 28a 36d 45e 78b 79e 89c 9ab ade bcd
012 034 056 135 146 236 24e 5de 78b 79e 7ac 89c 8ad 9ab bcd
012 034 056 135 146 24d 25e 36e 78b 79e 7ac 89c 8ad 9ab bcd
012 034 056 135 146 236 28c 45e 78b 79e 7ac 89d 9ab ade bcd
012 034 056 135 146 25c 2be 368 48c 789 7ab 7de 9ae 9bd acd
012 034 056 135 147 23b 245 68d 6ae 79e 7ac 89a 8bc 9bd cde
012 034 056 135 146 27d 2be 369 45c 789 7ab 8bc 8de 9ae acd
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