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Abstract
We study the maximum modulus set, M(p), of a polynomial p. We are interested
in constructing p so that M(p) has certain exceptional features. Jassim and London
gave a cubic polynomial p such that M(p) has one discontinuity, and Tyler found a
quintic polynomial p̃ such thatM( p̃) has one singleton component. These are the only
results of this type, and we strengthen them considerably. In particular, given a finite
sequence a1, a2, . . . , an of distinct positive real numbers, we construct polynomials p
and p̃ such that M(p) has discontinuities of modulus a1, a2, . . . , an , and M( p̃) has
singleton components at the points a1, a2, . . . , an . Finally we show that these results
are strong, in the sense that it is not possible for a polynomial to have infinitely many
discontinuities in its maximum modulus set.

Keywords Polynomials · Maximum modulus

Mathematics Subject Classification Primary 30D15

1 Introduction

Let f be an entire function, and define the maximum modulus by

M(r , f ) := max|z|=r
| f (z)|, for r ≥ 0.
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Following [7], denote by M( f ) the set of points where f achieves its maximum
modulus; we call this the maximum modulus set. In other words

M( f ) := {z ∈ C : | f (z)| = M(|z|, f )}.

If f is a monomial, thenM( f ) = C; clearly this case is not interesting. Otherwise,
M( f ) consists of a countable union of closed maximum curves, which are analytic
except at their endpoints, and may or may not be unbounded; [1]. It is straightforward
to check that the maximum modulus set is closed.

Our interest in this paper is in the case that f is a polynomial. In particular, we
study two “exceptional” features in the maximum modulus set. The first concerns
discontinuities, which we define as follows.

Definition 1.1 Let f be an entire function, and r > 0. If there exists a connected
component � of M( f ) such that min{|z| : z ∈ �} = r , then we say that M( f ) has
a discontinuity of modulus r . Note that a maximum modulus set may have more than
one discontinuity of the same modulus.

These discontinuities were first studied by Blumenthal [1], see also [2]. Hardy [3]
was the first to give an entire function with discontinuities in its maximum modulus
set; in fact he constructed a transcendental entire function whose maximum modulus
set has infinitelymany discontinuities. Such discontinuities were studied further in [6],
where it was shown that, given a sequence (ak)k∈N of strictly positive real numbers
tending to infinity, there is a transcendental entire function whose maximum modulus
set has discontinuities of modulus ak for each k ∈ N.

Blumenthal did not give any examples of a polynomial whose maximum modulus
set has discontinuities, although he conjectured that there is a cubic polynomial with
this property. Such a polynomial was given in [5]. Remarkably, this is the only such
example in the literature, and seems to have only one discontinuity. Our first result
is a significant generalisation of that in [5], and complements the main result in [6]
mentioned above.

Theorem 1.2 Suppose that a1, a2, . . . , an is a finite sequence of distinct positive real
numbers. Then there exists a polynomial p, of degree 2n + 1, such that M(p) has
discontinuities of modulus a1, a2, . . . , an.

It is possible for some of the analytic curves that make up the maximum modulus set
to be degenerate; in other words, to be singletons. The only examples of this behaviour
are due to Tyler [8], who gave a transcendental entire function f and a polynomial p
such thatM( f ) has infinitely many singleton components, andM(p) has a singleton
component. We show that it is possible to significantly strengthen this polynomial
case.

Theorem 1.3 Suppose that a1, a2, . . . , an is a finite sequence of distinct positive real
numbers. Then there exists a polynomial p, of degree 4n + 1, such that M(p) has
singleton components at the points a1, a2, . . . , an.

Remarks 1. Unlike in [6], where the construction required complicated and delicate
approximations, our results here are direct and elementary.

123



The MaximumModulus Set of a Polynomial

2. Note that we are not claiming in Theorems 1.2 and 1.3 that there might not be
additional discontinuities and/or singleton components in the maximum modulus
sets; see Fig. 1 which indicates that this indeed may happen.

3. Note also that singleton components of M( f ) are always discontinuities in the
sense we have defined them. Thus the conclusion of Theorem 1.2 is already con-
tained in that of Theorem 1.3. However we have retained Theorem 1.2, partly for
reasons of historical interest, and partly because the degree of the polynomials is
smaller in Theorem 1.2 than in Theorem 1.3.

4. It is natural to ask if these results can be achieved with polynomials of smaller
degree. This does not seem possible with the techniques of this paper.

Finally, we show that these constructions are strong, in the sense that a polynomial
can have at most finitely many discontinuities in its maximum modulus set.

Theorem 1.4 Suppose that p is a polynomial. Then M(p) has at most finitely many
discontinuities.

2 Proofs of Theorems 1.2 and 1.3

We require a few lemmas before proving our main results. The first is well-known,
and we omit the proof.

Lemma 2.1 If q(z) := ∑n
k=0 akz

k is a polynomial, then

∣
∣
∣q(reiθ )

∣
∣
∣
2 =

n∑

k=0

|ak |2r2k

+
∑

0≤ j<k ≤ n

2|a j ||ak |r j+k cos(( j − k)θ + arg(a j ) − arg(ak)).

(2.1)

We use Lemma 2.1 to prove the following. Roughly speaking, this result states that
we can force part of the maximum modulus set of a certain class of polynomials to lie
on the real line. This result is the crux of our construction.

Lemma 2.2 Suppose that p̂ is a polynomial with only real coefficients, and that 0 <

R < R′. For a > 0, set

p(z) := a(z2 + 1) + p̂(z). (2.2)

If a is sufficiently large, then

z ∈ M(p) and R ≤ |z| ≤ R′ �⇒ Im z = 0.

Proof Let p̂, R and R′ be as in the statement of the lemma. Note that since

p(−z) = a(z2 + 1) + p̂(−z),

123



L. Pardo-Simón, D.J. Sixsmith

Fig. 1 Computer generated graphics ofM(p) andM( p̃), where the former has discontinuities of modulus
0.5, 1 and 2, as in Theorem 1.2, and the latter has singleton components at 0.5 and 1 as in Theorem 1.3.
Note on the right that, when zoomed out, there appear to be additional discontinuities in these maximum
modulus sets

and p̂ is arbitrary, we lose no generality in proving this result only in the right half-
plane. In other words, we need to prove that if a is sufficiently large, then

z ∈ M(p) and Re z ≥ 0 and R ≤ |z| ≤ R′ �⇒ Im z = 0.

Choose θ0 ∈ (0, π/4). We begin by showing that if a > 0 is sufficiently large, then

z ∈ M(p) and Re z ≥ 0 and R ≤ |z| ≤ R′ �⇒ | arg z| < θ0.

Consider first the polynomial q(z) := z2 + 1. Note that, by Lemma 2.1,

q(r)2 − |q(reiθ )|2 = 2r2(1 − cos 2θ).

123



The MaximumModulus Set of a Polynomial

Set α = 1 − cos 2θ0 > 0. It follows that if θ0 ≤ |θ | ≤ π/2, then

q(r)2 − |q(reiθ )|2 ≥ 2r2α.

We can deduce that, if, in addition, r ≥ R, then

q(r) − |q(reiθ )| ≥ r2α

r2 + 1
≥ R2α

R2 + 1
.

Let K := M(R′, p̂). Choose a >
2K (R2 + 1)

αR2 . We can deduce that if r ∈ [R, R′]
and θ0 ≤ |θ | ≤ π/2, then

p(r) − |p(reiθ )| ≥ (aq(r) − K ) − (a|q(reiθ )| + K )

= a(q(r) − |q(reiθ )|) − 2K

> 0,

which establishes our first claim.
We have shown that if a > 0 is large enough, then the point(s) ofM(p) of modulus

r ∈ [R, R′] are “close” to the real line. It remains to show that, increasinga if necessary,
we can ensure that these points are in fact on the real line.

Note, by Lemma 2.1, that

|p(reiθ )|2 = a2r4 + a2 + 2a2r2 cos 2θ + β(θ),

where β(θ) is a finite sum of terms of the form bk cos kθ , where each k is an integer,
and the coefficients bk are all O(a) as a → ∞. Moreover, the constant in the O(a)

terms is independent of r when we restrict ourselves to the r values in the bounded
set [R, R′]. Note finally that these coefficients are positive or negative depending on
whether the corresponding coefficients in p̂ are positive or negative, though we do not
use this fact.

We then have that

∂

∂θ
|p(reiθ )|2 = −4a2r2 sin 2θ + β ′(θ), (2.3)

and

∂2

∂θ2
|p(reiθ )|2 = −8a2r2 cos 2θ + β ′′(θ). (2.4)

Note that β, β ′ and β ′′ are all O(a) as a → ∞.
Now, equation (2.3), together with the form of β, implies that ∂

∂θ
|p(reiθ )|2 = 0

when θ = 0, and also that

1

θ

∂

∂θ
|p(reiθ )|2 < −4a2r2 + O(a), for |θ | < θ0,
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as a → ∞. It follows that, increasing a if necessary, for each r ∈ [R, R′] the value
θ = 0 is the only stationary point of the map θ 
→ |p(reiθ )| in the range |θ | ≤ θ0.

Moreover, Eq. (2.4), together with the form of β, implies that

∂2

∂θ2
|p(reiθ )|2 < −8a2r2 cos 2θ0 + O(a), for |θ | < θ0,

as a → ∞. Hence, increasing a one final time if necessary, we can deduce that the
stationary point above is a local maximum. The result follows, using our first claim. ��

We use Lemma 2.2 to deduce the following.

Lemma 2.3 Suppose that p̂ is an odd polynomial with only real coefficients, and that
0 < R < R′. For a > 0, let p be the polynomial defined in (2.2). If a is sufficiently
large, then the following holds. Suppose that R ≤ r ≤ R′. Then:

M(p) ∩ {z ∈ C : |z| = r} =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{r} if p̂(r) > 0,

{−r} if p̂(r) < 0,

{−r , r} if p̂(r) = 0.

Proof We first choose a > 0 large enough that the consequence of Lemma 2.2 holds.
Since p̂ is odd, we have that

p(±r) = a(r2 + 1) ± p̂(r).

The result then follows easily. ��
We can now prove our two main constructions.

Proof of Theorem 1.2 Let a1, a2, . . . , an be distinct positive real numbers as in the
statement of the Theorem. Let p̂ be the odd polynomial

p̂(z) := z(z2 − a1
2)(z2 − a2

2) · · · (z2 − an
2),

and set

R := 1

2
min{a1, a2, . . . , an} and R′ := 2max{a1, a2, . . . , an}. (2.5)

Note that p̂(r) changes sign, as r increases from zero, every time we pass through one
of the ak . Let a > 0, and let p be the polynomial in (2.2). The result then follows from
the comment above, together with Lemma 2.3. ��
Proof of Theorem 1.3 Let a1, a2, . . . , an be distinct positive real numbers as in the
statement of the Theorem. Let p̂ be the odd polynomial

p̂(z):= − z(z2 − a1
2)2(z2 − a2

2)2 · · · (z2 − an
2)2,
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and set R and R′ as in (2.5). Note that if r > 0, then p̂(r) is strictly negative, except
when r = ak , for some k, in which case p̂(r) = 0. Let a > 0, and let p be the
polynomial in (2.2). The result then follows from the comment above, together with
Lemma 2.3. ��

3 Proof of Theorem 1.4

In this section, we make use of the pioneering work of Blumenthal onM( f ) for any
entire map f . The results that we require are summarized in the following theorem.

Theorem 3.1 [1] Let f be an entire function, and let S ⊂ C be a compact set. Then
M( f ) ∩ S is either empty, or consists of a finite number of closed curves, analytic
except at their endpoints, and which can intersect in at most finitely many points.

Remark Proofs of the results in [1] can also be found in [9, II.3]. We note that they are
based on the study of the set of points where local maxima of the map θ 
→ | f (reiθ )|
occur. The local structure of these points consists of a (finite) collection of analytic
arcs. See also the work of Hayman [4].

Corollary 3.2 Let f be an entire function, and let S ⊂ C be any compact set. Then
M( f ) ∩ S has at most finitely many discontinuities.

Proof Since M( f ) is a collection of closed curves, by definition of discontinuity,
there is a bijection from the set of discontinuities ofM( f ) to the set of all connected
components ofM( f ) that do not contain the point zero. By this, and since by Theorem
3.1M( f ) ∩ S has finitely many components, the result follows. ��
Remark Note that it follows easily from Corollary 3.2 that the maximum modulus set
of a transcendental entire function can have at most countably many discontinuities.

Proposition 3.3 Suppose that p is a polynomial of degree n, and define its recip-
rocal polynomial, q, by q(z) := zn p(1/z). Then w ∈ M(q)\{0} if and only if
1/w ∈ M(p)\{0}.
Proof Since the reciprocal of the reciprocal of a polynomial equals the original poly-
nomial, it suffices to prove one direction. Suppose that w ∈ M(q)\{0}. Then

|q(w)| = max|z|=|w| |q(z)|,

and so

∣
∣
∣
∣p

(
1

w

)∣
∣
∣
∣ = max|z|=|w|

∣
∣
∣
∣p

(
1

z

)∣
∣
∣
∣ .

Hence 1/w ∈ M(p)\{0}, as required. ��
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Proof of Theorem 1.4 Let p be a polynomial of degree n and let q be its reciprocal
polynomial. Denote by D the closure of the unit disk centred at the origin. Then, by
Corollary 3.2, bothM(p)∩D andM(q)∩D have atmost finitelymany discontinuities.
Thus, by Proposition 3.3,M(p)\D also has at most finitely many discontinuities, and
the result follows. ��
Acknowledgements We would like to thank Peter Strulo for programming assistance leading to Fig. 1.
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