International Journal of Bifurcation and Chaos
© World Scientific Publishing Company

Design and smartphone implementation of H.264-codec video
chaotic duplex communications

Baoju Chen] Simin Yuf Zeqing Zhangft
School of Automation, Guangdong University of Technology,
Guangzhou 510006, P. R. China
*bogychan@foxmail.com
Tsimz'nyu@] 63.com

t2111704 029@mail2. gdut.edu.cn

David Day-Uei Li
Faculty of Science, University of Strathclyde,
Glasgow G4 ORE, U. K.
David. Li@strath.ac.uk

Jinhu Lii¥
School of Automation Science and FElectrical Engineering, Beihang University,
Beijing 100191, P. R. China
jhlu@iss.ac.cn

Received (to be inserted by publisher)

In this paper, an H.264-codec-based video chaotic secure duplex communication scheme was
designed and its smartphone implementation was also carried out. First, an improved self-
synchronous chaotic stream cipher algorithm equipped with a sinusoidal modulation, a multipli-
cation, a modulo operation and a round down operation (SCSCA-SMMR) was developed. Using
the sinusoidal modulation and multiplication, the improved algorithm can resist the divide-and-
conquer attack by traversing multiple non-zero component initial conditions (DCA-TMNCIC).
Meanwhile, also by means of the round down operation and modulo operation, on the premise
that the DCA-TMNCIC does not work, the original keys cannot be further deciphered only
by the known-plaintext attack, the chosen-plaintext attack and the chosen-ciphertext attack,
respectively. Then, the Android low-level multimedia support infrastructure MediaCodec class
was used to access low-level media encoder/decoder components and the H.264 hardware encod-
ing/decoding was performed on real-time video, so the video chaotic encryption and decryption
can be realized in real-time by smartphones. Security analysis and smartphone experiment re-
sults verify the effectiveness of the proposed method.

Keywords: video chaotic secure duplex communication; divide-and-conquer attack; chosen-
ciphertext attack; H.264 hardware encoding/decoding; smartphone implementation.
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1. Introduction

In 1989, Robert Matthews proposed a chaotic encryption algorithm for the first time by studying the Logis-
tic map [Matthews, 1989|. Since then, chaotic encryption algorithms and their applications in multimedia
secure communication have attracted wide attention. Chaotic cryptosystems are mainly classified into two
types: open-loop chaotic cryptosystems [Arslan & Junaid, 2018; Hua & Zhou, 2016; Norouzi et al., 2014;
Parvin et al., 2016; Song & Qiao, 2015; Xu & Tian, 2019; Yang et al., 2015] and closed-loop feedback chaotic
cryptosystems [Elhosany et al., 2012; Niu et al., 2017; Shahzadi et al., 2019; Wu & Chua, 1993; Zhang et al.,
2019; Zhu et al., 2018|. For the open-loop chaotic cryptosystem, since the encrypted signals are not fed back
into the encryption process or the chaotic system, the plaintext and the chaotic sequence remain entirely
independent. Therefore, the cryptanalyst can obtain the equivalent keys according to cryptographic analysis
methods such as the known-plaintext attack, the chosen-plaintext attack, and the chosen-ciphertext attack
[Li et al., 2019; Ozkaynak, 2018; Wen & Yu, 2019; Wen et al., 2019; Zhang & Yu, 2019]. For example,
in [Arslan & Junaid, 2018|, an image encryption cryptosystem based on binary bit planes extraction and
multiple chaotic maps (IEC-BPMC) was proposed, and a classical structure named “permutation-diffusion”
was adopted. However, the encryption sequences used for bit-level permutation and bit-wise XOR, diffusion
are not related to plain images, which were mentioned in [Wen & Yu, 2019]|. Moreover, once the diffusion
part is deciphered, IEC-BPMC will degenerate into a permutation-only process. But according to the anal-
ysis results in [Jolfaei et al., 2015; Li & Lo, 2011; Zhang et al., 2018|, it was proved to be insecure. Thus,
the equivalent diffusion keys and the equivalent permutation keys can be obtained by the chosen-plaintext
attack method and the divide-and-conquer strategy, respectively. In [Xu & Tian, 2019], an image chaotic
encryption algorithm based on orthogonal Latin cubes and bit cubes was given, in which a structure named
“permutation-diffusion-permutation” was employed. But [Zhang & Yu, 2019] pointed out that the genera-
tion of Latin cubes in this algorithm is independent of the plain image, and the corresponding number of
bits in the cipher image changes regularly in the diffusion stage when any bit in the plain image changes.
Because of this fundamental flaw, the equivalent keys can be acquired by the chosen plaintext attack and
the differential attack. Besides, there are also some chaotic encryption schemes, in which the secret keys are
related to the plaintext [Jain & Rajpal, 2016; Niyat et al., 2017; Ye & Huang, 2015]. However, these schemes
are open-loop systems essentially, and the equivalent keys can also be recovered by the chosen-plaintext
attack [Dou et al., 2017; Li et al., 2018a,b|. For example, in [Li et al., 2018b]|, the security analysis of an
encryption algorithm based on hybrid hyper-chaos and cellular automata proposed in [Niyat et al., 2017|
was given, and it pointed out that the generation of key stream is related to the sum of plaintext pixels,
while keeping the sum of pixel values of each color channel unchanged, the equivalent permutation keys
can be obtained by adjusting individual pixel values of the chosen plaintexts, and all possibilities of the
equivalent diffusion keys can be obtained by using the chosen-plaintext attack.

Compared with the open-loop chaotic cryptosystem, the closed-loop feedback chaotic cryptosystem is
related to the plaintexts or the ciphertexts, increasing the difficulty of deciphering encryption algorithms.
Specifically, in the closed-loop cryptosystem, the equivalent keys cannot be obtained directly by the crypt-
analyst like the open-loop cryptosystem. The cryptanalyst can only obtain the original keys by employing
cryptanalysis, which is undoubtedly more difficult than obtaining the equivalent keys. Note that there is
an important class of self-synchronous chaotic stream cipher algorithms in closed-loop feedback chaotic
cryptosystems [Chen et al., 2018a; Gan et al., 2017; Lin et al., 2015|, and the main features are as fol-
lows: (1) The ciphertexts containing the plaintext information are fed back into the chaotic system to
realize self-synchronization, which are independent of the initial conditions of senders and receivers; (2)
In the actual channels (such as LAN and WAN), synchronization can be restored automatically when ex-
ternal interferences occur. In fact, existing communication systems always run in actual channels, so the
self-synchronous ability is necessary to meet actual needs; (3) In multimedia chaotic secure communica-
tion systems realized by FPGA, ARM, SOPC, and other hardware platforms, the self-synchronous chaotic
stream cipher reveals practical application values, especially when the chaotic encrypted signal needs to
realize long-distance real-time transmission through actual channels; (4) Since the round down operation
and modulo operation are used to obtain the lower 8 bits of the state variables to encrypt the plaintext, the
cryptanalyst can only obtain the lower 8 bits of the state variables through cryptanalysis, but not all the
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information. Therefore, when the initial values are not used as the attack conditions, the original keys are
difficult to decipher directly by using the chosen-ciphertext attack only. However, the main problem of this
kind of self-synchronous chaotic stream cipher algorithms is that the original chaotic iterative equation will
degenerate into an asymptotically stable iterative one when the ciphertext is selected as a fixed value, so
the explicit function of state variables and secret keys can be obtained. Based on this idea, and according
to the chosen-ciphertext attack, the secret keys can be deciphered by the single key decipher algorithm [Lin
et al., 2018a]. In particular, the cryptanalyst can traverse single non-zero component initial conditions to
decipher the secret keys of the encryption algorithm by the divide-and-conquer attack if the initial condi-
tions are not used as the secret keys [Lin et al., 2018b|. On the one hand, for further improving the security
performance of self-synchronous chaotic stream cipher algorithms, the SCSCA-SMMR was proposed in this
paper. On the other hand, to make a more comprehensive security analysis for self-synchronous chaotic
stream cipher algorithms, an improved divide-and-conquer attack method with stronger attack strength
was also proposed, which is based on the divide-and-conquer attack by traversing single non-zero com-
ponent initial conditions (DCA-TSNCIC) given in [Lin et al., 2018b]. The main feature of the improved
divide-and-conquer attack method is that all possible choices for multiple non-zero component initial con-
ditions are traversed through the exhaustive method. With the new arrangements mentioned above, the
improved self-synchronous chaotic stream cipher algorithm can resist the DCA-TMNCIC and also can solve
the security problems of the self-synchronous chaotic stream cipher algorithms proposed in [Chen et al.,
2018a; Gan et al., 2017; Lin et al., 2015]. The security analysis comparisons between the self-synchronous
chaotic stream cipher algorithms proposed in recent years and the SCSCA-SMMR proposed in this paper
are given below, as shown in Table 1.

From Table 1, with the SCSCA-SMMR, a chaotic encryption and decryption scheme based on H.264
bitstream was designed and its smartphone video chaotic secure communication was also realized. Video
capturing, video previewing, H.264 hardware encoding, chaotic encrypting, and network sending were re-
alized at smartphone senders. Network receiving, chaotic decrypting, H.264 hardware decoding, and video
displaying were implemented at smartphone receivers. The main features are as follows:

(1) An improved algorithm 3-D SCSCA-SMMR has been developed suitable for mobile phone imple-
mentations. Chaotic encryption, closed-loop feedback and transmission of ciphertexts can be performed by
taking the lower 8 bits derived from the product of a state variable and a sinusoidally modulated state
variable. The cryptanalysis results indicated that with the sinusoidal modulation and multiplication, the
improved algorithm can resist the DCA-TMNCIC. In addition, the round down operation and modulo op-
eration have been adopted in the improved algorithm, when the DCA-TMNCIC does not work, the original
keys cannot be further deciphered only by the known-plaintext attack, the chosen-plaintext attack and the
chosen-ciphertext attack, respectively.

(2) An encryption-decryption scheme of 3-D SCSCA-SMMR, based on H.264 bitstream has been pro-
posed to encrypt only the network abstract layer unit (NALU) payloads of H.264 bitstream, which can
improve the encryption efficiency and ensure the integrity of H.264 format.

(3) The Android low-level multimedia support infrastructure MediaCodec class has been used to ac-
cess low-level media coder/decoder components, and H.264 hardware encoding/decoding can be performed
on real-time video. Furthermore, the original H.264 bitstream was encrypted at smartphone senders, the
encrypted H.264 bitstream was decrypted at smartphone receivers, and the real-time protocol (RTP) and
user datagram protocol (UDP) were used to transmit the encrypted H.264 bitstream through the duplex
network.

The rest of the paper is organized as follows: Section 2 introduces the 3-D SCSCA-SMMR. and gives
its corresponding security analysis. Section 3 gives the design method of chaotic encryption and decryption
based on H.264 bitstream. Section 4 discusses the H.264-codec-based smartphone implementation scheme
for video chaotic secure duplex communication in detail. Section 5 demonstrates the hardware experiments
and gives the discussions of this work. Finally, Section 6 concludes the paper.
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Table 1. Comparisons of security analysis of self-synchronous chaotic stream cipher algorithms

Encryption algorithms The main features of the algorithms Analysis methods Analysis results

The RGB tricolors of
the video pixels were
oncryptod b.y the lower Combination of Exception of ‘Fhe.
8-D self-synchronous 8 bits derived from . secret keys multiplied
R . . the known-plaintext attack, .
chaotic stream cipher the state variables X by ciphertext and related
algorithm [Lin et al., 2015] z1(k), z2(k), z3(k) the chosen-ciphertext attack, to nonlinear functions
v ’ . ’ ’ and the DCA-TSNCIC [Lin et al., 2018b]. .
with the round down were deciphered.
operation and modulo
operation.

The speech data

was encrypted by the Exception of the

Combination of

3-D self-synchronous lower 8 bits derived . secret keys multiplied
i . . the chosen-ciphertext attack .
chaotic stream cipher from the state variable . . by ciphertext and related
. . and the single key decipher . .
algorithm [Gan et al., 2017]. x1(k) with the round down . : to nonlinear functions
. algorithm [Lin et al., 2018a). .
operation and modulo were deciphered.
operation.

The RGB tricolors of
the video pixels were

encrypted by the lower Exception of the
3-D self-synchronous 8 bits derived from Combination of secret keys multiplied
chaotic stream cipher the product of two state the chosen-ciphertext attack by ciphertext and related
algorithm [Chen et al., 2018a]. variables z1(k), z2(k) and the DCA-TMNCIC. to nonlinear functions
with the round down were deciphered.
operation and modulo
operation.

The H.264 bitstream
was encrypted by the
lower 8 bits derived

Combination of The secret keys
from the product of . .
) the known-plaintext attack, cannot be deciphered
. a state variable z (k) and . .

This work . . the chosen-plaintext attack, temporarily, and a more
a sinusoidally modulated .
state variable sin(za (k) the chosen-ciphertext attack powerful attack method

2 and the DCA-TMNCIC. should be required.

with the round down
operation and modulo
operation.

2. The 3-D SCSCA-SMMR and its security analysis

According to Table 1, an 8-D self-synchronous chaotic stream cipher algorithm was proposed in |Lin
et al., 2015], where the ciphertexts were fed back into the chaotic system to realize self-synchronization.
The main feature is that the RGB tricolors of the video pixels were encrypted by the lower 8 bits
derived from the state variables x;(k),z2(k),x3(k) with the round down operation and modulo oper-
ation, so the cryptanalyst can only obtain the lower 8 bits of the corresponding state variables. How-
ever, the algorithm cannot resist the DCA-TSNCIC, which using the set of eight single initial conditions
choices {(c1,0,---,0),(0,¢2,0,---,0),---,(0,---,0,¢7,0),(0,0,---,0,cs)} and setting ¢; (i =1,2,---,8)
as 27,27+8 27H16 97+24 97432 97+40 97+48 97+56 1 decipher the original keys [Lin et al., 2018b]. For this
problem, the algorithm proposed in [Gan et al., 2017] was further designed in [Chen et al., 2018a] by using
the lower 8 bits derived from the product of two state variables for encryption, and the corresponding
encryption sequence was derived as F(k) = | mod ( % ,28)>. But the cryptanalysis results
show that although the algorithm can resist the DCA-TSNCIC, it cannot resist the DCA-TMNCIC. To
cope with this problem, in this section, an improved algorithm 3-D SCSCA-SMMR was developed, and the
cryptanalysis proved that the improved algorithm can resist the DCA-TMNCIC.
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2.1. The description of 3-D SCSCA-SMMR

According to [Chen et al., 2018a| and [Gan et al., 2017|, the iterative equation of a chaotic encryption
system was derived as

27 (k +1) = anal? (k) + 1oy (k) + arsa§) (k)
xge)(k +1) = anp(k) + aggxée)(k) + CLQg.CUée)(k) . (1)
:cée)(k +1) =az1p(k) + agga}ée)(k) + aggxée)(k) + esin(o x p(k))

Similarly, the iterative equation of a chaotic decryption system was derived as

xéj; (k‘ + 1) = aumgd)(k) + al(zdl)fgd)(k) + al(gdn;:gd)(k)
x5 (k+1) = aqip(k) + agozy ' (k) + azzzy (k) . (2)
xgd)(k +1) = asip(k) + a32xéd)(k) + a33x§d)(k:) + esin(o x p(k))

In Eqs. (1) - (2), k= 0, 1, 2,3, 4... ,a11 = 0.205, alp = —0.595, aiz = 0.265, a9y = —0.125, a3 = 0.595,
as1 = 0.33, azo = —0.33, azg = 0.47, ¢ = 3x 102, and o = 2x 10° denote the secret keys, p(k) denotes the ci-
phertext, x(e)(k:) (i = 1,2, 3) denote the state variables of the chaotic encryption system, azgd)(k) (1=1,2,3)

denote the Zstaute variables of the chaotic decryption system.
According to Egs. (1) - (2), the 3-D SCSCA-SMMR can be described as follows:

(1) Chaotic sequence for encryption

In the improved algorithm, the chaotic sequence :Ege)(k:) and :née)(k:) used for encryption can be gen-
erated by Eq. (1). By using the sinusoidal modulation, multiplication, round down operation, and modulo
operation, the encryption sequence E(k) can be derived as

E(k) = (mod ( Me)(k) X sin(xg€>(k))J ,28)) : (3)

where k =0,1,2,---, mod (H ,28) denotes module operation, and |-] denotes round down operation.
(2) Encryption process
By encrypting the plaintext m(k) with E(k), the ciphertext p(k) can be derived as

p(k) = E(k) & m(k)
- (mod nge)(k‘) X sin(ﬂcge)(k:))J ,28)) ®m(k)

where k =0,1,2,---, @& denotes XOR operation.

(3) Chaotic sequence for decryption

In the improved algorithm, the chaotic sequence mgd)(k:) and a:gd)(k) used for decryption can be gen-

erated by Eq. (2). By using the sinusoidal modulation, multiplication, round down operation, and modulo
operation, the decryption sequence D(k) can be derived as

D(k) = <mod (Md)(k) X sin(g;g@(k))J ,28)) , (5)

where £ =10,1,2,---.
(4) Decryption process
By decrypting the ciphertext p(k) with D(k), the decrypted data 7 (k) can be derived as

m(k) = D(k) ® p(k)
= (Inod (L:Egd)(k‘) X sin(;vgd)(k‘))J ,28>) @ p(k)’

where k =0,1,2,---.
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2.2. Security analysis

Since the sinusoidal modulation and multiplication are involved in the improved algorithm given by Egs.
(1) - (6), the 3-D SCSCA-SMMR can resist the DCA-TMNCIC. Meanwhile, also the round down operation
and modulo operation are included in the improved algorithm, when the DCA-TMNCIC does not work, the
original keys cannot be further deciphered only by the known-plaintext attack, the chosen-plaintext attack
the chosen-ciphertext attack, respectively. The cryptanalysis in detail is as follows:

(1) According to the exhaustive method, all possible choices for multiple non-zero component initial
conditions can be traversed. By choosing the initial conditions z;(0) = ¢; (i = 1,2, 3), the set of all initial
condition choices can be derived as

(1‘1(0), 1‘2(0), 1‘3(0)) = {(01, 0, y 0), (0, Cc9, 0), (0, 0, 63), (Cl, Cco, 0), (01, 0, 63), (0, Cc9, 03), (01, Cc9, 63)}. (7)

From Eq. (7), it is noted that the set of all possible choices for single initial conditions choices
{(c1,0,0),(0,c2,0),(0,0,c3)} is the subset of the set of all possible choices for multiple non-zero com-
ponent initial conditions. Therefore, in terms of attack strength, the DCA-TMNCIC is stronger than the
DCA-TSNCIC proposed in [Lin et al., 2018b].

(2) According to the known-plaintext attack method, the cryptanalyst should obtain not only m(k), but
also the corresponding p(k). With the first known plaintext m(0), the corresponding first known ciphertext
p(0) can be derived as

p(0) = E(0) & m(0)
= (mod (L:Uge) (0) x sin(xée) (0))J ,28>) @ m(0)7

where E(0) denotes the first encryption sequence value.
By choosing x;(0) = ¢; (i = 1,2, 3) and substituting p(0) into Eq. (1) or Eq. (2), the first iterative result
can be derived as

(8)

r1(1) = aricr + arzc2 + aises
x2(1) = a21p(0) + azzce + agzscs . (9)
$3(1) = a3 (0) + agaca + asgscs + ESin(O' X p(O))

By substituting z;(1) and z2(1) in Eq. (9) into Eq. (4), the second known ciphertext p(1) can be derived

p(1) = E(1) @m(1)
_ (mod (Me)(l) x sin(:cge>(1))J ,28)) @ m(1) , (10)
= (mod (| (a11¢1 + a12¢2 + a13cs) x sin(agip(0) + agzac + agses) | ,2%)) @ m(1)

where E(1) denotes the second encryption sequence value, m(1) denotes the second known plaintext.
According to Eq. (10), the explicit relation among the secret keys a;;(i = 1,2;5 = 1,2,3), m(1), and
p(1) can be derived as

(mod (L(ancl + ajgco + a1363) X sin(aglp(O) + ag9co + aggcg)J , 28)) = p(l) (&) m(l) . (11)

According to the DCA-TMNCIC method, by substituting Eq. (7) into Eq. (11), then setting ¢; = ¢ (i =
1,2,3) the corresponding explicit relationships among a;; (i = 1,2,3;5 = 1,2,3), m(1), and p;(1) (i =
1,2,-- 7) can be derived as

mod anc x sin(a21p(0))], 28))

mod |a12¢ % sin(ag1p(0)+agec) |,
mod Lalgc x sin(ag1p(0)+asgsc) ],
mod (| (ar1c+ aizc) x sin((a21p(0
mod (| (a11¢+ ay3¢) X sin((az21p(0
gmod (a12¢ + aizc) x sin(agp(0) + a23c)J ,28))

(
mod (allc + ajoc + aze) x sin(ag1p(0) + agec + a23c)J

2 ;; = pg(l) e&m
)28 = p3(1) @T)n
) + assc)) )

+ mc))J 283
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According to Eq. (12), when the 3-D SCSCA-SMMR is attacked by using the DCA-TMNCIC, we cannot
obtain the direct relationships among a;; (i = 1,2,3;j = 1,2,3), m(k), and p(k). The sinusoidal modulation,
multiplication, round down operation and modulo operation are involved in the improved algorithm, so the
relationships between a;; (1 = 1,2,3;j = 1,2, 3) become more complicated. Specifically, with the product of
x1(k) and sin(z2(k)), the common factor ¢ of each formula in Eq. (12) cannot be extracted, so we cannot
set the suitable initial conditions to obtain the correct estimated values of a;; (i = 1,2,3;j = 1,2,3), such
as setting ¢ as 27,27+8 27+16 97424 97432 97+40 9T+48 97+56 {6 decipher the secret keys proposed in [Lin
et al., 2018b]. In addition, only the lower 8 bits derived from the product of z;(k) and sin(z2(k)) can be
obtained, so we cannot further decipher the original keys only by the known-plaintext attack when the
DCA-TMNCIC does not work.

With the cryptanalysis mentioned above, we can know that the secret keys cannot be deciphered by
employing the combination of the known-plaintext attack and the DCA-TMNCIC. Similarly, the same
conclusion can be obtained by utilizing the combination of the chosen-plaintext attack and the DCA-
TMNCIC.

(3) According to the chosen-ciphertext attack method, the cryptanalyst can choose the ciphertext in
the favor of deciphering, and also the cryptanalyst can obtain the corresponding plaintext. In order to
eliminate the influence introduced by the nonlinear functions in Eq. (1) and Eq. (2), we select p(k) = 0 and
the original chaotic equation can be derived as

r1(k +1) = anxy(k) + arox2(k) + a13w3(k)
wa(k + 1) = agwa(k) + azszs(k) ) (13)
x3(k + 1) = asgza(k) + agsxs(k)

where k = 0,1,2,---. It is obvious that with the chosen-ciphertext attack, Eq. (13) is degenerate as a linear
system. According to Eq. (6), the decryption operation can be derived as

(k) = (mod(|z1(k) x sin(za(k))] ,2%)) @ p(k)
= (mod(|z (k) x sin(za(k))],2%)) @0 . (14)
— (mod([a1 (k) x sin(as(k))] ,2%))
By substituting z;(0) = ¢; (i = 1,2, 3) into Eq. (13), the first iterative result can be derived as
1) = a11c1 + a1z¢2 + aizcs

(
xg(l) = a922C2 + a23C3 . (15)
x3(1) = a32C2 + a33C3
E

By substituting z1(1) and z2(1) in Eq. (15) into Eq. (14), the second decrypted data m(1) can be
derived as
(1) = (mod(|a1(1) x sin(za(1))] ,2%)) @ p(1)
= (mod(|z1(1) x sin(z2(1))],2%)) @0 . (16)
= (mod( L (ancl + ajgoco + CL1303) X Sin((CLQQCQ + aggcg))J ,28))
According to the DCA-TMNCIC method, by substituting Eq. (7) into Eq. (16), then setting ¢; = ¢ (i =

1,2, 3), the corresponding explicit relationships among a;; (i = 1,2,3;j = 1,2,3) and m;(1) (i = 1,2,--- ,7)
can be derived as

(11 (1) = (mod (|21(1) x sin(z2(1))],2%)) =0
ma(1) = (mod (|z1(1) x sin(z2(1))],2%)) = (mod ([ar2¢ x sin(agc)],2%))
m3(1) = (mod (|z1(1) x sin(z2(1))],2%)) = (mod (|asc x sin(agsc)],2%))
m4(1) = (mod (|x1(1) x sin(z(1))],2%)) = (mod ([ (a11c + a12¢) x sin(agac)], 28;3
ms(1) = (mod (|21(1) x sin(z2(1))],2%)) = (mod (|(a11c + aizc) x sin(agse)|, 2
(1) = (mod (|z1(1) x sin(z2(1))],2%)) = (mod (|(a12¢ + a13¢) x sin((agec + assc))] , 28))
m7(1) = (mod (|z1(1) x sin(z2(1))],2%)) = (mod ([(a11¢ + a12¢ + arzc) X sin((agac + azzc))] ,28))

(17)
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According to Eq. (17), when the 3-D SCSCA-SMMR is attacked by using the DCA-TMNCIC, we
cannot obtain the direct relationships among a;; (i = 1,2,3;5 = 1,2,3), m(k). The sinusoidal modulation,
multiplication, round down operation and modulo operation are involved in the improved algorithm, so the
relationships between a;; (i = 1,2,3;j = 1,2,3) become more complicated. Specifically, with the product
x1(k) and sin(z2(k)), the common factor ¢ of each formula in Eq. (17) cannot be extracted, so we cannot
set the suitable initial conditions to obtain the correct estimated values of a;; (i = 1,2,3;5 = 1,2, 3), such
as setting c as 27,27+8 27H16 97424 97T+32 9T+40 9T+48 9T+56 {6 decipher the secret keys proposed in [Lin
et al., 2018b]. In addition, only the lower 8 bits derived from the product of z;(k) and sin(z2(k)) can be
obtained, so we cannot further decipher the original keys only by the chosen-ciphertext attack when the
DCA-TMNCIC does not work.

With the cryptanalysis mentioned above, we can know that the secret keys cannot be deciphered by
employing the combination of the chosen-ciphertext attack and the DCA-TMNCIC.

3. The design method of chaotic encryption-decryption based on H.264
bitstream

In this section, a design method of chaotic encryption-decryption based on H.264 bitstream was adopted
to realize the 3-D SCSCA-SMMR, proposed in Section 2, as shown in Fig. 1.
From Fig.1, we can know that the data transmission between the sender and the receiver is transmitted

L Extract the [NALU Payload]
Input one frame original R -
H.264 bitstream > in the original
) H.264 bitstream
(e)(k)
[ X0k +1) |= £,00) [
> ) 4 Restore the [Start Code]
X > LJ »| mod(-,2°) »(N »| and [NALU Header]
(e) in the H.264 bitstream
X (K) | . >
> X (k+1) | = £2() 2 (k) sin(’) _ _
[mod (int(x® (k) xsin(x (k)))) ,2ﬂ
Y
Output one frame
() — f@
> an (k +1)J =1,7() encrypted
H.264 bitstream
RTP unpacking < ubP Ethernet < ubP RTP packing
A\ 4
Input one frame
encrypted
H.264 bitstream Output one frame
decrypted
\ 4 H.264 bitstream

A

Extract the [NALU Payload]
in the encrypted
H.264 bitstream Restore the [Start Code]

and [NALU Header]
in the H.264 bitstream

X (k)

[0 ]= 170 F——y v £
Lr

X | | ] = mod(,2°) |[—>

\4

L+ = 190 POl T
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Fig. 1. Design method of chaotic stream cipher encryption-decryption based on H.264 bitstream



Design and smartphone implementation of H.264-codec video chaotic duplex communications 9

through the actual channels (such as LAN and WAN), and it usually suffers from signal interferences and
data loss in actual transmission processes. However, the chaotic precise synchronization of self-synchronous
chaotic stream cipher algorithms requires a transient process. In this process, if some of H.264 bitstream are
lost in actual network channel transmissions, the decrypted H.264 bitstream will be inconsistent with the
encrypted H.264 bitstream, which may damage the H.264 format and fail to decode the H.264 bitstream
at the receiver. Note that an original H.264 NALU consists of [Start Code|, [NALU Header| and [NALU
Payload|, where [Start Code| and [NALU Header| are codec recognition formats of the H.264 bitstream,
INALU Payload| is the payload of the H.264 bitstream. Therefore, in this scheme, for ensuring the integrity
of H.264 format and improving the encryption efficiency, only [NALU Payload| of the H.264 bitstream is
extracted for encryption, and [Start Code] and [NALU Header| are not encrypted. The design principles
are as follows:

(1) At the sender, first, one frame H.264 bitstream is received from the encoder. Then, only [NALU
Payload| of the original H.264 bitstream is extracted for encryption. When the chaotic encryption is com-
pleted, [Start Code| and [Header| are restored, and one frame encrypted H.264 bitstream is generated.
Finally, the RTP is used for the packet, and the UDP is used for network transmission.

(2) At the receiver, first, one frame encrypted H.264 bitstream packetized by the RTP is received from
the network through the UDP. Then, only [NALU Payload] of the encrypted H.264 bitstream is extracted for
decryption. When the chaotic decryption is completed, [Start Code| and [NALU Header| are restored, and
one frame decrypted H.264 bitstream is generated. Finally, the decrypted H.264 bitstream is transmitted
to the decoder for decoding.

4. The H.264-codec-based smartphone implementation scheme for video chaotic
secure duplex communication

4.1. OQwerall design scheme

In this section, an overall design scheme of the H.264-codec-based smartphone implementation scheme for
video chaotic secure duplex communication was proposed. As shown in Fig. 2, the whole system includes
two smartphone senders, two smartphone receivers, and a network transmission. Video capturing, video
previewing, H.264 hardware encoding, chaotic encrypting, and network sending are realized at smartphone
senders. Network receiving, chaotic decrypting, H.264 hardware decoding, and video displaying are imple-
mented at smartphone receivers. The duplex communication of network is realized by the combination of
RTP and UDP. The design principles are as follows:

(1) There are four video data buffer queues in the whole system, one for sending video data and one
for receiving video data in each of two smartphones. Video capturing, video previewing, H.264 hardware
encoding, chaotic encrypting, network sending, network receiving, chaotic decrypting, H.264 hardware de-
coding, and video displaying are performed in different threads. Asynchronous communication of data is
realized through queue cache, and parallel processing of data is implemented in a multithread architecture.

(2) There are five modules both at the Sender-1 and Sender-2, including a video capture module, a
video preview module, an H.264 hardware encoding module, a chaotic encryption module, and an RTP
packing and UDP sending module. In the video capture module, the original video data is captured, then
the original video is previewed and pushed to the data buffer queue in the video preview module. In the
H.264 hardware encoding module, the Android low-level multimedia support infrastructure MediaCodec
class is adopted to access low-level media coder/decoder components, and the original video data is pulled
from the data buffer queue to perform the H.264 hardware encoding, then the original H.264 bitstream
is obtained and pushed to the data buffer queue. In the chaotic encryption module, the original H.264
bitstream pulled from the data buffer queue is encrypted, then the encrypted H.264 bitstream is pushed
to the data buffer queue. In the RTP packing and UDP sending module, the encrypted H.264 bitstream is
pulled from the data buffer queue for RTP packetization and UDP network sending. Note that Sender-1
transmits the encrypted H.264 bitstream to Receiver-1, Sender-2 transmits the encrypted H.264 bitstream
to Receiver-2.

(3) There are four modules both at Receiver-1 and Receiver-2, including a UDP receiving and RTP
packing module, a chaotic decryption module, an H.264 hardware decoding module, and a video display
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Fig. 2.

module. In the UDP receiving and RTP unpacking module, the RTP packets received from Sender-1 and
Sender-2 are unpacked and restored to the encrypted H.264 bitstream, then the encrypted H.264 bitstream
is pushed to the data buffer queue. In the chaotic decryption module, the H.264 bitstream pulled from the
data buffer queue is decrypted, then the decrypted H.264 bitstream is pushed to the data buffer queue. In
the H.264 hardware decoding module, the Android low-level multimedia support infrastructure MediaCodec
class is adopted to access low-level media coder/decoder components, and the decrypted H.264 bitstream is
pulled from the data buffer queue to perform the H.264 hardware decoding, then the decoded video data is
obtained and pushed to the data buffer queue. In the video display module, the decoded video data pulled

from the data buffer queue is displayed on the surface.

Diagram of smartphone implementation of an H.264-codec-based video chaotic secure duplex communication system
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4.2. Design and tmplementation of sender program architecture

According to Fig. 2, the diagram of the sender program architecture is given, as shown in Fig. 3, includ-
ing six classes that work on different threads: Main class, Camera class, Encoder class, Sender class, and
BufferQueue class. Note that each class contains a multi-level program architecture, colors red, green, yel-
low, purple, and black in order from program architecture level 1 to 5. In each class, the execution priority
of program architecture is level 1 > level 2 > level 3 > level 4 > level 5. In addition, the arrows represent
the direction of data interaction between different program architecture and classes, and the functions are
realized by the methods indicated by the arrows.The functions of each class and method are detailed below:

The Main class realizes the threat creation and controls the start and the end of each thread, including;:

(1) intCameraSuface(): Initialize the parameters of the camera.

(2) setVideoFrameListener(): Set a listener for the camera to capture the original video data.

(3) startCamera(): Turn on the camera.

(4) createEncoder(): Create an encoder thread and a new buffer queue to cache the data in the H.264
hardware encoding module via new EncoderBufferQueue().

(5) createEncrypter(): Create a chaotic encryption thread and a new buffer queue to cache the data in
the chaotic encryption module via new EncrypterBufferQueue().

(6) createSender(): Create a network sending thread and a new buffer queue to cache the data in the
RTP packing and UDP sending module via new SenderBufferQueue().

(7) stop(): Stop all threads.

The Camera class realizes the video capture and preview, including:

(1) setPreviewParams(): Set the parameters for the original video preview.

(2) setPreviewCallback(CaptureYuvStr): Capture the original video data cyclically.

(3) onCaptureRawFrameCallback(byte[| buffer): Callback the original video data.

(4) pushEncoderQueue(): Push the original video data to the buffer queue.

(5) startPreview(): Strat the video preview.

The Encoder class adopts the Android low-level multimedia support infrastructure MediaCodec class
to access low-level media coder/decoder components, and performs the H.264 hardware encoding on the
real-time video, including;:

(1) new Encoder(EncoderBufferQueue): Create an encoder object.

2) configEncoder(): Set the parameters of the encoder.
setEncoderListener(): Set an encoding listener.

stratEncoderThread(): Strat the encoding thread.

pullEncoderQueue(): Pull the original video data from the buffer queue.

(6) mediaCodecEncoding(): Encode the original video data cyclically, and then obtain the original
H.264 bitstream.

(7) callbackEncryptdata(): Callback the original H.264 bitstream.

(8) pushEncrypterQueue(): Push the original H.264 bitstream in the buffer queue.

The Encrypter class realizes the chaotic encryption of the original H.264 bitstream, including:

1) new Encrypter(EncrypterBufferQueue): Create an encrypter object.

) stratEncrypterThread(): Strat the chaotic encryption thread.

) pullEncrypterQueue(): Pull the original H.264 bitstream from the buffer queue.

) encrryptBitStr(): Extract and encrypt [NALU payload| of the original H.264 bitstream.

) callbackSenddata(): Callback the encrypted H.264 bitstream.

) pushSenderQueue(): Push the encrypted H.264 bitstream to the buffer queue.

he Sender class realizes the RTP packing and UDP sending, including;:
)
)
)
)
h

~— — — —

(

(3
(4
(5

(
(2
(3
(4
(5
(6

new Sender(SenderBufferQueue): Create a network sending object.
startSenderThread(): Strat the network sending thread.

startRtpPacketizer(): Pack the encrypted H.264 bitstream by RTP.

udpSend(): Send the RTP packets by UDP.

The BufferQueue class realizes the buffer queues to cache the data for each thread.

T
(1
(2
(3
(4
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4.3. Design and tmplementation of receiver program architecture

According to Fig. 2, the diagram of receiver program architecture is given, as shown in Fig. 4, including
four classes that work on different threads: Main class, Receiver class, Decrypter class, Decoder class,
and BufferQueue class. Note that each class contains a multi-level program architecture, colors red, green,
yellow, and purple in order from program architecture level 1 to 4. In each class, the execution priority of
program architecture is level 1 > level 2 > level 3 > level 4. In addition, the arrows represent the direction
of data interaction between different program architecture and classes, and the functions are realized by
the methods indicated by the arrows.The functions of each class and method are detailed belows:

The Main class realizes the threat creation and controls the start and the end of each thread, including;:

(1) creatReceiver(): Create a network receiving thread.

(2) creatDecrypter(): Create a decrypter thread and a new buffer queue to cache the data in the chaotic
decryption module via new DecrypterBufferQueue().

(3) creatDecoder(): Create a decoder thread and a new buffer queue to cache the data in the H.264
hardware decoding module via new DecoderBufferQueue().

(4) stop(): Stop all threads.

The Receiver class realizes the UDP receiving and RTP unpacking of the encrypted H.264 bitstream
packets, including:

(1) new Receiver (ReceiverBufferQueue): Create a network receiving object.

(2) startReceiverThread(): Strat the network receiving thread.

(3) startUdpReceiver(): Unpack the RTP packets received from the network, and then restore them to
the encrypted H.264 bitstream.

(4) startFrameConstruct(): Reconstruct the unpacked encrypted H.264 bitstream to a completed frame
H.264 bitstream.

(5) callbackFramedata(): Callback each frame of reconstructed encrypted H.264 bitstream.

(6) pushDecrypterQueue(): Push each frame of reconstructed encrypted H.264 bitstream to the buffer
queue.

The Decrypter class realizes the chaotic decryption of the encrypted H.264 bitstream, including;:

(1) new Decrypter(DecrypterBufferQueue): Create a decrypter object.

(2) stratDecrypterThread(): Strat the chaotic decryption thread.

(3) pullDecrypterQueue(): Pull the encrypted H.264 bitstream from the buffer queue.

(4) decryptBitStr(): Extract and decrypt [NALU payload| of the encrypted H.264 bitstream.

(5) callbackDecryptdata(): Callback the decrypted H.264 bitstream.

(6) pushDecrypterQueue(): Push the decrypted H.264 bitstream to the buffer queue.

The Decoder class adopts the Android low-level multimedia support infrastructure MediaCodec class
to access low-level media coder/decoder components, and performs the H.264 hardware decoding on the
decrypted H.264 bitstream, including:

(1) new Decoder(DecoderBufferQueue): Create a decoder object.

(2) setDecoderListener(): Set a decoding listener.

(3) startDecoderThread(): Strat the decoding thread.

(4) pullDecrypterQueue(): Pull the decrypted H.264 bitstream from the buffer queue.

(5) findAveNalSpsAndPPS(): Find the sequence parameter set (SPS) and picture parameter set (PPS)
in each frame of decrypted H.264 bitstream.

(6) configDecoder(): Set the parameters of the decoder.

(7) mediaCodecDecoding(): Decode the decrypted H.264 bitstream cyclically, and then obtain the
decoded video data.

(8) startRenderThread(): Display the decoded video by using open graphics library for embedded
systems (OpenGL ES).

The BufferQueue class realizes buffer queues to cache the data for each thread.
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5. Hardware implementation results and discussions

According to the design scheme given in Section 3 and Section 4, two smartphones named Huawei Matel0
Pro with HiSilicon Kirin 970, Octa-core CPU (4 x Cortex A73 2.36 GHz + 4 x Cortex A53 1.80 GHz)
+ i7 co-processor, Mali-G72 MP12 GPU and 6 GB RAM + 128 GB ROM memory were selected as
communication devices. In the experiment, the IP addresses were set as 192.168.1.101 and 192.168.1.111,
at the sender and at the receiver respectively. Note that each smartphone can be used as both a sender
and a receiver, under the duplex communication mode. When the secret keys both at the sender and at the
receiver are matched, the encrypted H.264 bitstream can be accurately decrypted at the receiver, as shown
in Fig. 5. The original videos are displayed on the interfaces of Sender-1 and Sender-2. The encrypted H.264
bitstreams received from Sender-1 and Sender-2 are accurately decrypted, decoded and displayed on the
interfaces of Receiver-1 and Receiver-2, respectively. But even if only one secret key is mismatched, while
other secret keys are exactly matched, the encrypted H.264 bitstream cannot be decrypted at the receiver,
as shown in Fig. 6. The encrypted H.264 bitstreams received from Sender-1 and Sender-2 are unsuccessfully
decrypted, decoded and displayed on the interfaces of Receiver-1 and Receiver-2, respectively. When the
network communication status is normal, and the encrypted H.264 bitstream is accurately decrypted at the
receiver.

As we know, transmission frame rate is an important performance of video chaotic secure communication
system. In the experiment, we used the number of frames calculation method under a fixed time to test the
transmission frame rate at different resolutions. The formula for calculating the transmission frame rate
can be derived as

JrameNum frameNum

(/s), (18)

where fp,s denoted the number of frames transmitted per second, frameNwum denoted the number of
frames transmitted in fixed time, fixedT'ime denoted the fixed running time, lastTime denoted the ini-
tial system time before the frame count, curTime denoted the current system time. According to Eq.
(18), one gets the corresponding calculation algorithm, given by Algorithm 1. When calling the function
System.current TimeMills() in the algorithm, the current system time will be returned.

Jps

- fizedTime ~ curTime — lastTime

Algorithm 1 The algorithm for calculating transmission frame rate
Input: fizedT'ime
Output: f,,
lastTime <+ System.current TimeMills()
while TURE do
frameCount++
curTime < System.current TimeMills()
if (curTime — lastTime > fizedTime) then
frameNum < frameCount
fps < frameNum/(curTime — lastTime)
return f,
end if
end while

Moreover, the efficiency of the scheme realized on smartphones is mainly for consumed time of H.264
encoding/decoding, chaotic encryption/decryption and network transmission. In the experiment, we used
the time calculation method under a fixed number of frames to test the consumed time of each module at
different resolutions. The algorithm for calculating the consumed time of 100 frames of video is given by
Algorithm 2.

According to the Algorithm 1 and Algorithm 2, the transmission frame rate and the consumed time
of each fountion module is tested at different resolutions, as shown in Table 2. From Table 2, with the
increase of resolution, the consumed time of chaotic encryption/decryption also increases, but little effect
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Algorithm 2 The algorithm for calculating the consumed time of 100 frames of video
Output: consumedl'ime
lastTime <+ System.current TimeMills()
while TURE do
runing function module
frameCount++
if (frameCount == 100) then
curTime <+ System.current TimeMills()
consumedTime < curlime — lastTime
return consumedTime
end if

end while

on the consumed time of H.264 encoding/decoding and network transmission. It can be seen that the
computational complexity of encryption algorithm is one of the important parts affecting the real-time
performance.

With the discussion of the proposed scheme mentioned above, we can know that comparing with
numerical simulations reported in some studies, hardware implementations for video chaotic secure commu-
nication are much more difficult to realize because of several real-time requirements and a large amount of
data encryption and transmission. At present, there are many studies in video chaotic secure communica-
tion systems realized by ARM, SOPC, FPGA, and other hardware platforms|Lin et al., 2015; Chen et al.,
2018a,b|, but few reports for video chaotic secure communication on mobile devices. Compared with the
previous hardware implementation schemes, the advantages of the scheme proposed in this paper are as
follows:(1) It is the first time to realize video chaotic secure wireless communication system in duplex mode,
in which both the sender and the receiver adopt the smartphone of Android system. The proposed scheme
can serve as a good application example of chaotic secure communications for smartphone and other mobile
devices in the future.(2) Regardless of the performance differences between different hard platforms, firstly,
for greatly compressing data, the H.264 hardware encoding is performed on real-time video. Secondly, for
ensuring the integrity of H.264 format and improving the encryption efficiency of the H.264 bitstream, only
the payload is encrypted. Thirdly, for reducing the network transmission delay, the strategy of combining
RTP and UDP is adopted. Finally, for improving the work efficiency of the system, the queue cache struc-
ture and multithread architecture are employed. All of these methods can be well optimized the real-time
performance of the video chaotic communication system.

Furthermore, since the sinusoidal modulation and multiplication are adopted in the 3D SCSCA-SMMR
to meet high security, the computation complexity of the algorithm is also increased. Considering the com-
putation complexity of 3D SCSCA-SMMR and the performance of hardware devices restrict the further
improvement of real-time performance, as shown in Table 2. Only the resolution is 320x240, the transmis-
sion frame rate after encryption/decryption is higher than 25 f/s. With higher resolutions such as 640x480,
the transmission frame rate after encryption/decryption is lower than 25 f/s. Thus, our future work is to
study a better strategy to balance the real-time performance and the computation complexity and security
of encryption algorithm, we can propose an encryption algorithm with high security and low computation
complexity to meet the high real-time requirements at higher resolutions.

Table 2. Test results of transmission frame rate and consumed time of each module at different resolutions

Resolution H.264 chaotic RTP packing and H.264 chaotic UDP receiving and  Transmission
encoding encrypting UDP sending decoding decrypting RTP unpacking frame rate
320x240 1.732s 0.349s 0.184s 0.486s 0.349s 0.006s 26f/s

640x480 1.744s 0.961s 0.236s 0.491s 0.961s 0.009s 171/s
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6. Conclusions

Up to the present, the cryptanalysis of chaotic encryption algorithms has been mainly focused on open-loop
chaotic cryptosystems and some of closed-loop feedback chaotic cryptosystems. However, it is rare to be
reported for the chaotic self-synchronous chaotic stream cipher algorithms whose ciphertexts are fed back
into the chaotic system. Although some reports suggest that some cryptanalysis methods (such as the single
key decipher algorithm and the DCA-TSNCIC) can be used to decipher the original keys, these methods
have some limitations. Meanwhile, some improved algorithms were also proposed to resist the existing at-
tack methods, but these improved schemes may not be suitable for hardware implementation or resist other
attack methods with stronger attack strengths. To deal with these problems, in this work, we proposed:

(1) An improved divide-and-conquer attack cryptanalysis method DCA-TMNCIC;

(2) An improved algorithm 3-D SCSCA-SMMR,;

(3) An H.264-codec-based smartphone implementation scheme for video chaotic secure duplex commu-
nication.

With a stronger attack strength than the DCT-TSNCIC, the DCA-TMNCIC can make a more compre-
hensive security analysis for self-synchronous chaotic stream cipher algorithms. To resist the combination
of the chosen-plaintext attack, known-plaintext attack, chosen-ciphertext attack and DCA-TMNCIC, the
sinusoidal modulation, multiplication, modulo operation and round down operation are included in the
improved algorithm. Compared with previously published works, listed in Table 1, the security of the
self-synchronous chaotic stream cipher algorithms has been significantly improved. The improved chaotic
encryption algorithm was then used in an H.264-codec-based video chaotic secure duplex communication
system, and it is also convenient for smartphone implementations. The hardware implementation results
have verified the feasibility of the proposed approach.
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