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Abstract
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and Levrard (Ann. Statist. 47(1), 177–204 (2019)), an estimator for the reach is given.
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almost achieves these rates in the C 3 and C 4 cases, with a gap given by a logarithmic
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1 Introduction

1.1 Motivation

The reach of a submanifold M ⊆ RD is a geometric invariant which measures how
tightly the submanifold folds in on itself. Dating back to Federer [12], it encodes both
local curvature conditions as well as global ‘bottlenecks’ arising from two regions of
the manifold that are far apart in the manifold’s intrinsic metric but are close in the
ambient Euclidean metric. The reach is a key regularity parameter in the estimation of
other geometric information. Methods and algorithms from topological data analysis
often use the reach as a ‘tuning parameter’. The correctness of their results depends
on setting this parameter correctly.

Statistical inference from point clouds has become an active area. In a probabilistic
framework, a reach condition, meaning that the reach of the submanifold under study
is bounded below, is usually necessary in order to obtain minimax inference results
in manifold learning. These include: homology inference [7,17], curvature [3], reach
estimation itself [1], as well as manifold estimation [3,13,15]. In this context, there is a
risk of algorithms being applied as ‘black boxes’ without attention to their underlying
assumptions. Efficient reach estimationwould be a vital addition to this field, providing
a so-called sanity test of other results.

In this direction, the way was paved in [1]: under some specific assumptions, an
estimator of the reach has been proposed and studied when the observation is an n-
sample of a smooth probability distribution supported on an unknown d-dimensional
submanifold M of a Euclidean space RD together with the tangent spaces at each
sampled point. For certain types of C 3-regularity models, the estimator, based on a
representation of the reach in terms of points of M and its tangent spaces [12, Thm.
4.18] achieves the rate n−2/(3d−1). A lower bound for the minimax rate of convergence
is given by n−1/d . In the special case when the reach ofM is attained at a bottleneck,
the algorithm in [1] achieves this rate. However, in general, one does not knowwhether
this condition is satisfied a priori.

In this paper, we continue the study of reach estimation by taking a completely
different route: we use the relationship between the reach of a submanifold ofRD and
its convexity defect function. This function was introduced in [6] and measures how
far a (bounded) subset X ⊆ RD is from being convex at a given scale. It is a powerful
geometric tool which has other applications such as manifold reconstruction, see the
recent work by Divol [10]. By establishing certain new quantitative properties of the
convexity defect function of a submanifold M ⊆ RD that relate to both its curvature
and bottleneck properties, we show that the convexity defect function can be used to
compute the reach of a submanifold. From this we obtain a method which transforms
an estimator of M, along with information on its error, into a new estimator of the
reach.

The recent results of Aamari and Levrard in [3] provide an estimator ofM which is
optimal, to within logarithmic terms. Transforming this into an estimator of the reach,
we obtain new convergence results over general C k-regularity models (k ≥ 3). These
rates improve upon the previous work of [1]. By establishing lower bounds for the
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minimax rates of convergence, we prove that our results are optimal up to logarithmic
terms in the cases k = 3 and k = 4.

1.2 Main Results

We present here one of several possible definitions of the reach. Given a submanifold
M ⊆ RD , consider its δ-offset given by the open set Mδ ⊆ RD , where

Mδ =
⋃

p∈M
Bδ(p).

Here Bδ(p) denotes the open Euclidean ball centered at p with radius δ. For small
enough δ (a uniform choice for such δ exists in general only whenM is compact), one
has the property that for all y ∈ Mδ \ M, there is a unique straight line from y to a
point in M realizing the distance from y to M. In other words, the metric projection
π : Mδ → M is well defined.

Definition 1.1 (Federer [12]) The reach of a submanifold M is

sup
{
δ ≥ 0 : the nearest point projection π : Mδ → M is well defined

}
.

We denote the reach by R(M) or simply R when the context is clear.

Other equivalent characterizations of the reach exist. For example, in Sect. 4.1
below, we use the characterization from [12, Thm. 4.18]. More recently, [8, Thm. 1]
defined the reach in terms of the metric distortion.

Our main results are obtained for a statistical model which imposes certain standard
regularity conditions on the manifolds being considered, requires that they are com-
pact and connected, and also imposes conditions on the distributions being considered
which have support on those manifolds. The set of distributions satisfying these con-
straints on C k manifolds is denoted in the results below byPk and these constraints
are elaborated upon in Sects. 3 and 6.

Theorem 1.2 For d-dimensional submanifolds of regularity C k with k ≥ 3, and for
sufficiently large n, there exists an estimator R̂, explicitly constructed in Sect. 6 below,
that satisfies

sup
P∈Pk

EP⊗n [|R̂ − R|] ≤ C

⎧
⎪⎪⎨

⎪⎪⎩

(
log n

n − 1

)1/d
for k = 3,

(
log n

n − 1

)k/(2d)

for k ≥ 4,

where R̂ denotes an estimator of the reach R = R(M) constructed from an n-sample
(X1, . . . , Xn) of independent random variables with common distribution P ∈ Pk .
The quantity C > 0 depends on d, k, and the regularity parameters that define the
class Pk , and the notation EP⊗n [ · ] refers to the expectation operator under the
distribution P⊗n of the n-sample (X1, . . . , Xn).
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We also provide a lower bound for the minimax convergence rate. In case k = 3, 4,
our estimators are almost optimal, with a gap given by a log n factor.

Theorem 1.3 For certain values of the regularity parameters (depending only on d
and k),

inf
R̂

sup
P∈Pk

EP⊗n [|R̂ − R|] ≥ cn−(k−2)/d ,

where the infimum is taken over all the estimators R̂ = R̂(X1, . . . , Xn), and c > 0
depends on d, k, and the regularity parameters.

These results are of an entirely theoretical nature. The question of practical imple-
mentation remains, although it is not of primary interest for the paper. Starting with a
point cloud X1, . . . , Xn , one may implement the following protocol:

• EstimateM from the data X1, . . . , Xn by the best availablemanifold reconstruction
method M̂, or, indeed, by any other method.

• Compute hM̂ (Definition 4.1) and derive R̂ thanks to Definition 6.7.

The only inputs are M̂ and the regularity parameters that define the class Pk . It is a
common practice in statistics to assume some prior knowledge of the class in order
to constrain the problem. However, the quantities Cd,k,Rmin and C in Theorem 6.8
are unknown, which creates difficulties in deriving the accuracy of the estimator R̂
and, for example, calculating a confidence interval. This is common to every minimax
result and could in practice be treated by estimating the variance of the estimator via
any conventional computational method such as the bootstrap [11]. A more detailed
discussion lies outside the scope of the present paper.

1.3 Organization of the Paper

The paper is divided into two halves: a first half that is mainly geometric in flavor
and a second half which employs mainly statistical techniques. To that end Sects.
2–4 describe the geometric setting of this paper in some detail, Sect. 5 discusses the
approximation of the reach in a deterministic setting, while Sects. 6 and 7 are devoted
to showing that the new algorithm proposed to estimate the reach achieves the rates
stated in Theorem 1.2 and to the proof of the lower bound for the minimax rate stated
in Theorem 1.3.

Section 2: We elaborate on the geometry of the reach. We recall a dichotomy due
to Aamari et al. [1] in Theorem 2.1 and we study in particular the distinction between
global reach orweak feature size in Definition 2.2 and the local reach in Definition 2.3,
according to the terminology of [1]. This is not apparent in the classical Definition 1.1
of Federer.

Section 3: A geometrical framework is given for studying reach estimation. We
describe precisely a class Ck

Rmin,L
of submanifolds, following Aamari and Levrard [3].

Manifolds M in this class admit a local parametrization at all points p ∈ M by the
tangent space TpM, which is the inverse of the projection to the tangent space and
satisfies certain C k bounds.
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Section 4: This section is devoted to the study of the convexity defect function
hM of M as introduced in [6] and its properties. We show how the local reach can
be calculated from the values of hM near the origin in Proposition 4.3 and how the
weak feature size (the global reach) appears as a discontinuity point of hM whenever
it is smaller than the local reach. This is done by proving an upper bound on hM in
Proposition 4.4. Propositions 4.3 and 4.4 are central to the results of the paper.

Section 5: When we attempt to estimate the reach in later sections, we will not
know M exactly. Instead, we will know it up to some statistical error coming from
an estimator. Propositions 5.1 and 5.3 give approximations of the local reach and
the weak feature size, respectively, calculated from some proxy M̃. The errors of the
approximations are given in terms of the Hausdorff distance H(M, M̃).

Section 6: Building on the definitions in Sect. 3, a statistical framework is described
within which we study reach estimation in a minimax setting. This defines a classPk

of admissible distributions P over their supportM, the submanifold of interest, which
belongs to the class Ck

Rmin,L
. To apply the results of the previous section, we may use

the Aamari–Levrard estimator [3] M̂ of M from a sample (X1, . . . , Xn) as the proxy
M̃ for M. This estimator is almost optimal over the class Pk . This yields estimators
of the local reach and finally of the reach R(M) in Sect. 6. We then prove the upper
bounds announced in Theorem 1.2 above in Theorems 6.5–6.8.

Section 7: Using the classical Le Cam testing argument we obtain minimax lower
bounds as announced in Theorem 1.3.

2 Geometry of the reach

The reach of a submanifold M, which we will denote by R(M), or simply R, is an
unusual invariant. Definition 1.1 conceals what is almost a dichotomy—the reach of
a submanifold can be realized in two very different ways. This is made precise by the
following result.

Theorem 2.1 ([1, Thm. 3.4]) Let M ⊆ RD be a compact submanifold with reach
R(M) > 0. At least one of the following two assertions holds.

(Global case) M has a bottleneck, that is, there exist q1, q2 ∈ M such that
(q1 + q2)/2 ∈ Med(M) and ‖q1 − q2‖ = 2R(M).

(Local case) There exists q0 ∈ M and an arc-length parametrized geodesic γ such
that γ (0) = q0 and ‖γ ′′(0)‖ = 1/R(M).

Here, Med(M) is the medial axis ofM, i.e., the subset of RD on which the nearest
point projection on M is ill defined, namely

Med(M) = {z ∈ RD : ∃ p, q ∈ M, p �= q, d(z, p) = d(z, q) = d(z,M)}.

We say that the result above is only ‘almost’ a dichotomy because it is possible for
both conditions to hold simultaneously. The curve γ could be one half of a circle with
radius R(M) joining q1 and q2, for example, in which case the term ‘bottleneck’ might
be considered a misnomer, or the points q1 and q2 might not lie on γ at all, so that the
two assertions hold completely independently.
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This situation invites us to consider two separate invariants. One, the weak feature
size, Rwfs, is a widely studied invariant encoding large scale information such as
bottlenecks. The second, which we will call the local reach, R�, following [1], will
encode curvature information. Theorem 2.1 states that the minimum of these two
invariants is the reach,

R = min {R�, Rwfs}.

Note that, in Riemannian geometry, the local reach is referred to as the focal radius
of M, while the reach itself is often referred to as the normal injectivity radius of M.

2.1 TheWeak Feature Size

The weak feature size is defined in terms of critical points of the distance function
fromM (in the sense of Grove and Shiohama; see for instance [14, p. 360]).

Consider the function, dM : RD → R defined by dM(y) = inf p∈M ‖y − p‖. Note
that M = d−1

M (0). Following [6], let �M(y) = {x ∈ M : dM(y,M) = ‖x − y‖}, i.e.,
those x in M realizing the distance between y and M. Then we define a generalized
gradient as

∇M(y) := y-Center(�M(y))

dM(y,M)
,

where Center(σ ) is defined as the center of the smallest (Euclidean) ball enclosing
the bounded subset σ ⊆ RD . This generalized gradient ∇M for dM coincides with the
usual gradient where dM is differentiable. We say that a point y ∈ RD \M is a critical
point of dM if ∇M(y) = 0.

For example, if y is the midpoint of a chord the endpoints of which meet the
submanifold perpendicularly, then from y there are two shortest paths to M which
travel in opposite directions. It follows that y is a critical point.

Definition 2.2 Given a submanifoldM of RD let C denote the set of critical points of
the distance function dM. The weak feature size, denoted Rwfs(M) or simply Rwfs, is
then defined as Rwfs := inf {dM(y) : y ∈ C}.

By Theorem 2.1, if the reach is realized globally then the first critical point will be
the midpoint of a shortest chord which meetsM perpendicularly at both ends, and so
the weak feature size is equal to the reach.

2.2 The Local Reach

In the local case, Theorem 2.1 tells us that the reach is determined by the maximum
value of ‖γ ′′‖ over all arc-length parametrized geodesics γ . This can be formulated
more concisely by considering instead the second fundamental form, II, which mea-
sures how the submanifoldM curves in the ambient Euclidean spaceRD . We refer the
reader to a standard text in Riemannian geometry such as [9] for a precise definition
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of the second fundamental form. Informally, the second fundamental form is defined
as follows. For a pair of vector fields tangent to M, the (Euclidean) derivative of one
with respect to the other is not usually tangent toM. In fact, the tangential component
is the Levi-Civita connection of the induced (Riemannian) metric onM. The normal,
or perpendicular, component yields a symmetric, bilinear form, namely, the second
fundamental form, denoted by IIp. In particular, if the norm of IIp is small thenM is
nearly flat near p and if the norm is large then it is an area of high curvature.

Definition 2.3 Given a submanifold M of RD let IIp denote the second fundamental
form at p ∈ M. The local reach of M, denoted R�(M) or simply R�, is the quantity

R� = inf
p∈M

{
1

‖IIp‖op
}
.

We use the term ‘local reach’ here to reflect the fact that this quantity is generated
entirely by the local geometry. In differential geometry literature the local reach is
referred to as the focal radius of the submanifold.

3 Geometrical Framework

We define a class of manifolds which are suitable for the task of reach estimation. This
class is the same as that considered by Aamari and Levrard [3] for other problems in
minimax geometric inference. The class is that of C k submanifolds, but with some
additional regularity requirements. These guarantee the existenceof aTaylor expansion
of the embedding of the submanifold with bounded coefficients, as well as a uniform
lower bound on the reach.

Definition 3.1 (see [3]) For two fixed natural numbers d < D and for some k ≥ 3,
Rmin > 0, andL = (L⊥, L3, . . . , Lk), we let Ck

Rmin,L
denote the set of d-dimensional,

compact, connected submanifolds M of RD such that:

(i) R(M) ≥ Rmin;
(ii) for all p ∈ M, there exists a local one-to-one parametrization ψp of the form

ψp : BTpM(0, r) ⊆ TpM → M, v �→ p + v + Np(v),

for some r ≥ 1/(4L⊥), with Np ∈ C k(BTpM(0, r),RD) such that

Np(0) = 0, d0Np = 0, ‖d2vNp‖op ≤ L⊥,

for all ‖v‖ ≤ 1/(4L⊥);
(iii) the differentials divNp satisfy ‖divNp‖op ≤ Li for all 3 ≤ i ≤ k and ‖v‖ ≤

1/(4L⊥).

We define subclasses of Ck
Rmin,L

as follows, using the gap R� − Rwfs between the
weak feature size and the local reach. For fixed values of Rmin and L, we define

M k
0 = {

M ∈ Ck
Rmin,L : Rwfs(M) ≥ R�(M)

}
and
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M k
α = {

M ∈ Ck
Rmin,L : Rwfs(M) ≤ R�(M) − α

}
, α > 0.

Note that

Ck
Rmin,L =

⋃

α≥0

M k
α .

Manifolds in Ck
Rmin,L

admit a second parametrization, one that represents the manifold
locally as the graph of a function over the tangent space so that the first non-zero
term in the Taylor expansion is of degree two and is given by the second fundamental
form. These parametrizations in general satisfy weaker bounds than L. The degree
k Taylor polynomial then gives an algebraic approximation of the manifold, which
will be very useful in later calculations. The following lemma from [3] describes the
Taylor expansion of a local parametrization at every point p ∈ M.

Lemma 3.2 ([3, Lem. 2]) Let k ≥ 3,M ∈ Ck
Rmin,L

, and r = min {Rmin, L
−1
⊥ }/4. Then

for all p ∈ M there is a local one-to-one parametrization around p,	p : U → M, for
someU ⊂ TpM, which contains B(p, r)∩M in its image, satisfies prTpM ◦	p(v) = v

on its domain, and takes the form

	p(v) = p + v + 1

2
T2(v

⊗2) + 1

6
T3(v

⊗3) + · · · + 1

(k − 1)!Tk−1(v
⊗(k−1)) + Rk(v),

where ‖Rk(v)‖ ≤ C‖v‖k . Furthermore T2 = IIp and ‖Ti‖op ≤ L ′
i , where L ′

i and C
depend on d, k, Rmin, and L, and the terms T2, . . . , Tk−1,Rk are all normal to TpM.

Definition 3.3 We call the degree j truncation of the parametrization 	p given in
Lemma 3.2 the approximation of degree j to M around p and write it as

	
j
p(v) = p + v + 1

2
T2(v

⊗2) + 1

6
T3(v

⊗3) + . . . + 1

j !Tj (v
⊗ j ).

4 Convexity Defect Functions

The convexity defect function, originally introduced by Attali et al. [6], measures how
far a subset X ⊆ RD is from being convex at scale t . The goal of this section is
to establish a relationship between the convexity defect function and the reach. The
definition is valid for any compact subset of RD . In this section we will principally
consider the case of a closed submanifoldM as before, but in the sequel we will need
to know that this function can be defined in greater generality.

We recall the definition. Given a compact subset σ ⊆ X, it is contained in a smallest
enclosing closed ball in RD . We define Rad σ to be the radius of this ball. We denote
by Hull σ the convex hull of σ in RD . Then we define the convex hull of X at scale t
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Fig. 1 The convex hull at scale t , Hull(X, t) (in blue), of a curve X (in black). Enclosed between the dotted
curves is the minimal tubular neighborhood around X that contains Hull(X, t) — its width is the convexity
defect function hX(t)

to be the following subset of RD:

Hull(X, t) =
⋃

σ⊆X
Rad σ≤t

Hull σ.

For two compact subsets A and B of RD , we define the asymmetric distance
H(A|B) = supa∈A d(a, B) so that H(A, B) = max {H(A|B),H(B|A)} is the sym-
metric Hausdorff distance.

Definition 4.1 Given a compact subset X ⊆ RD , we define the convexity defect func-
tion hX : R≥0 → R≥0 by hX(t) = H(Hull(X, t),X) = H(Hull(X, t) |X).

We recall here from [6] some useful properties of hX (Fig. 1).

1. hX(0) = 0.
2. hX is non-decreasing on the interval [0,RadX] and constant thereafter.
3. If X̃ ⊆ RD satisfies H(X, X̃) < ε, where H is the Hausdorff distance, then

hX̃(t − ε) − 2ε ≤ hX(t) ≤ hX̃(t + ε) + 2ε for any t ≥ ε.
4. hX(t) ≤ t for all t ≥ 0. Moreover, hX(t0) = t0 if and only if t0 is a critical value

of the distance function, dX.
5. If the reach, R = R(X) > 0, then on [0, R) the function hX(t) is bounded

above by a quarter-circle of radius R centered on (0, R). In other words, hX(t) ≤
R − √

R2 − t2 for t ∈ [0, R).

From item 4. and the definition of the weak feature size in terms of critical points of
the distance function, the following proposition is immediate.

Proposition 4.2 If M is a submanifold of RD then Rwfs = inf {t > 0 : hM(t) = t}.
Wecan also relate the local reach to the convexity defect functionwith the following

proposition, which we will prove in Sect. 4.2.

Proposition 4.3 Let k ≥ 4. There exists a constant C (depending on Rmin, L, d,
and k) such that, for any sufficiently small non-negative real t , t ≤ tRmin,L,d,k , and any
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M ∈ Ck
Rmin,L

, we have

∣∣∣∣hM(t) − t2

2R�

∣∣∣∣ ≤ Ct4.

In case k = 3, there exists a constant C ′ (depending on Rmin,L, d) such that, for any
sufficiently small non-negative real t , t ≤ tRmin,L,d , and any M ∈ Ck

Rmin,L
, we have

∣∣∣∣hM(t) − t2

2R�

∣∣∣∣ ≤ C ′t3.

We will write, somewhat informally,

R� = 1

h′′
M(0)

.

The function hM is not actually twice differentiable; h′′
M(0) here is a ‘pointwise second

derivative’. Since R = min {R�, Rwfs}, these two propositions show how the convexity
defect function yields the reach.

Proposition 4.3 will be proven in Sect. 4.2, but first we need to refine the upper
bound given in item 5. of the properties of hX given after Definition 4.1 for the case
where X is a submanifold.

4.1 Upper Bounds on the Convexity Defect Function

The two aspects of the reach relate to the convexity defect function in quite different
ways, which naturally leads one to wonder which aspect of the reach is responsible
for item 5. of the properties of hX given after Definition 4.1. In this subsection we
improve the upper bound by increasing the radius of the bounding circle from R to R�,
though the bound still only holds on the interval [0, R) (compare with [6, Lem. 12]).
See Fig. 2 for an illustration.

Proposition 4.4 If M ∈ Ck
Rmin,L

and R = R(M) is its reach, then on [0, R) the function
hM(t) is bounded above by a quarter-circle of radius R� centered on (0, R�). In other

words, hM(t) ≤ R� −
√
R2

� − t2.

For submanifolds in the classM k
0 (where Rwfs ≥ R�), this result does not have any

content. However, for manifolds inM k
α , i.e., manifolds for which Rwfs ≤ R� − α for

some α > 0, the bound is sharper, with the following consequence.

Corollary 4.5 IfM ∈ M k
α for some α > 0, then hM is discontinuous at R(M).

Proof Since α > 0, we have R(M) = Rwfs < R�. For t < Rwfs the bound hM(t) ≤
R� −

√
R2

� − t2 from Proposition 4.4 holds. On the other hand, for t = Rwfs we
have hM(t) = t . Therefore the one-sided limit limt↗Rwfs hM(t) < hM(Rwfs) and the
function is discontinuous.
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Fig. 2 A curve X (left) and its convexity defect function hX(t) (right), which is below the quarter-circle of
radius R� for t < R(X) = Rwfs. Since Rwfs < R�, we observe a discontinuity at t = Rwfs

The proof of Proposition 4.4 will require a few steps. We can focus our attention
on the local reach by paying attention to sets of the form M′ = M ∩ B(z, r), where
z ∈ RD , 0 < r < R(M), and B(z, r) is a closed ball. Lemma 4.6 will show that
subsets of this type have no bottlenecks. We would expect, then, that the reach of
such a subset is generated by the local geometry. Lemma 4.9 quantifies this point: the
reach ofM′ is determined by the behavior of the second fundamental form onM′. The
principal point of difficulty here relates to the boundary of the setsM′. The proposition
then follows from the fact that hM(t) can be bounded using the functions hM′(t) and
so the bound is in fact determined by the second fundamental form, i.e., by R� in
particular.

Lemma 4.6 Let A ⊆ RD be a compact set. Let 0 < s < R(A), z ∈ RD, and A′ =
A∩ B(z, s), where B is a closed ball. If A′ �= ∅, then A′ cannot have any bottlenecks,
i.e., there is no pair p, q ∈ A′ with ‖p − q‖ = 2R(A′) and (p + q)/2 ∈ Med(A′).

Proof Suppose for a contradiction that a bottleneck exists. Then it is a chord of length
2R(A′). Since diam A′ ≤ 2s we obtain that 2R(A′) ≤ 2s < 2R(A) ≤ 2R(A′), the
last inequality holding by [5, Lem. 5].

We now consider the case where A = M, a submanifold, and consider the intersec-
tions M′. Our goal is to find the reach of the intersections, M′, in order to bound hM′
and hence hM. We will use the following characterization of the reach due to Federer
[12]:

1

R(A)
= sup

p,q∈A

2d(q − p,Cp A)

‖q − p‖2 ,
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where Cp A is the tangent cone at p, which, as Federer showed, always exists for a
set of positive reach. This quotient can be related to the second fundamental form as
follows (cf. [1, Lem. 3.3]; and also work of Lytchak [16] for more general results).

Lemma 4.7 Let k ≥ 3 and M ∈ Ck
Rmin,L

. Let M′ = M ∩ B(z, r), where z ∈ RD,
0 < r < R(M) and B is a closed ball. Then, providedM′ contains more than a single
point, for any p ∈ M′ the norm of the second fundamental form is given by

‖IIp‖op = lim sup
q→p
q∈M′

2d(q − p,CpM′)
‖q − p‖2 ,

whereCpM′ is the cone tangent toM′ at p. In particular,1/R(M′) ≥ supp∈M′ ‖IIp‖op.
Proof We claim that ∂M′ is a C k submanifold of M. Consider the distance function
to the central point z ∈ RD , say f (y) = d(z, y). This function is smooth on RD \ z
and its pull-back f |M is C k on M \ z. For any p ∈ ∂M′, f (p) = r . Note that r is a
critical value of f |M precisely when the distance sphere ∂B(z, r) is tangent to M at
some p ∈ M.

However, this cannot happen for r < R(M). This is because r is less than the
focal radius at p and soM must lie in the exterior of B(z, r). This in turn implies that
M′ = {p} which contradicts the assumption that it is not a singleton. Therefore, r is
a regular value of the C k function f on M and the pre-image ∂M′ is an embedded
submanifold without boundary, as claimed.

As a consequence, M′ is an embedded submanifold of M of full dimension with
boundary. The tangent cone inRD , CpM′, is given by TpM for p in the interior ofM′
and by a half-space of TpM for p ∈ ∂M′, namely

CpM′ = TpM ∩ {u : 〈p − z, u〉 ≤ 0},

where z is the center of the ball containing M′. We now consider some other point
q ∈ M′, q �= p, and show that the projection of q to TpM lies in CpM′. Suppose
p ∈ ∂M′ ⊆ ∂B. Consider the affine hyperplane HD−1 through p perpendicular to the
line pz. Since q ∈ B, q lies on the same side of H as z and therefore the projection
of q to TpM lies in CpM′. If p /∈ ∂M′ then TpM = CpM′ and so this statement
automatically holds.

Let us assume now that q is close to p, satisfying ‖q− p‖ ≤ min {Rmin, (L⊥)−1}/4,
so that the projection of q toCpM′ satisfies the conclusion of Lemma 3.2. In particular,
if v is the projection of q onto TpM, we may write

q − p = v + IIp(v, v)

2
+ R3(v),

where the remainder R3(v) is of order O(‖v‖3). Therefore

d(q − p,CpM′) =
∥∥∥∥
IIp(v, v)

2
+ R3(v)

∥∥∥∥.
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We can then calculate the Federer quotient,

2d(q − p,CpM′)
‖q − p‖2 = ‖IIp(v, v) + 2R3(v)‖

‖v‖2 + ‖IIp(v, v)/2 + R3(v)‖2

= 1

‖v‖2/‖IIp(v, v) + 2R3(v)‖ + ‖IIp(v, v) + 2R3(v)‖/4 .

As q → p we see that v → 0. In order to compute the lim sup, we may assume that
a sequence of points qi is chosen so that ‖IIp(vi , vi )‖ is maximized. Then, since all
terms in the denominator go to zero except the ratio ‖vi‖2/‖IIp(vi , vi )‖, we have

lim sup
q→p
q∈M′

2d(q − p,CpM′)
‖q − p‖2 = lim

i→∞
‖IIp(vi , vi )‖

‖vi‖2 .

We would like to claim that

lim
i→∞

‖IIp(vi , vi )‖
‖vi‖2 = ‖IIp‖op,

but recall that p may lie on the boundary of M′ and so we must check that a suitable
sequence of points qi ∈ M′ can be found. Since CpM′ is a half-space and IIp is a
symmetric, bilinear form, there is someunit vectorw ∈ CpM′ such that‖IIp(w,w)‖ =
‖IIp‖op. Then we can choose a sequence qi ∈ M′ so that the projections of the qi are
tivi , where the vi are unit vectors in CpM′ such that vi → w and the ti are positive
numbers with ti → 0. The existence of such a sequence is equivalent to the fact that
w ∈ CpM′. The final statement then follows from

‖IIp‖op = lim sup
q→p
q∈M′

2d(q − p,CpM′)
‖q − p‖2

≤ sup
p,q∈M′

2d(q − p,CpM′)
‖q − p‖2 = 1

R(M′)
.

Remark 4.8 The regularity assumption of k ≥ 3 in the previous lemma may possibly
be improved to k ≥ 2. This stems from the assumption in Lemma 3.2 which in turn
derives from the regularity assumption in [3, Lem. 2]. However, this is not needed in
the sequel so we do not pursue this further.

Lemma 4.9 Let k ≥ 3 and M ∈ Ck
Rmin,L

. Let M′ = M ∩ B(z, r), where z ∈ RD,
0 < r < R(M), and B is a closed ball. Then, provided M′ contains more than a
single point, we have 1/R(M′) = supp∈M′ ‖IIp‖op.
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Proof We have already shown in Lemma 4.7 that 1/R(M′) ≥ supp∈M′ ‖IIp‖op. By
Lemma 4.6, M′ does not contain any bottlenecks. It follows that the reach is attained
in one of two ways and we examine each case.

Case 1: The reach ofM′ is attained by a pair of points q, r ∈ M′ but ‖q−r‖ < 2R(M′).
In this case we apply [1, Lem. 3.2] to obtain, inM′, an arc of a circle of radius R equal
to the reach of M′. Note that that lemma is stated for manifolds, but in fact the proof
only requires a set of positive reach. Then, for any point p on the reach-attaining arc,
we obtain that

1

R(M′)
≤ ‖IIp‖op ≤ sup

s∈M′
‖IIs‖.

Case 2: The reach of M′ is attained at a single point, say p, in M′. It follows, using
Lemma 4.7, that

1

R(M′)
= lim sup

q→p
q∈M′

2d(q − p,CpM′)
‖q − p‖2 = ‖IIp‖op ≤ sup

s∈M′
‖IIs‖op.

Combining the two cases, then, we also have that

1

R(M′)
≤ sup

s∈M′
‖IIs‖op,

completing the proof.

Proof of Proposition 4.4 Let M′ = M ∩ B(z, r), where z ∈ RD , 0 < r < R(M), and
B is a closed ball. Recall that on [0, R(M′)) we have

hM′(t) ≤ R(M′) −
√
R(M′)2 − t2 .

By Lemma 4.9, ifM′ is not a single point we have

1

R�

= sup
s∈M

‖IIs‖op ≥ sup
s∈M′

‖IIs‖op = 1

R(M′)
,

and this entails the bound hM′(t) ≤ R� −
√
R2

� − t2 on [0, R(M′)). If M′ is a point
then hM′(t) = 0 for all t and so the same bound holds.

Recalling that R(M′) ≥ R(M) for every M′ with RadM′ < R(M), we have, for
0 < t ≤ r < R(M),

sup
M′=M∩B(z,r)

hM′(t) ≤ R� −
√
R2

� − t2.
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Now for every σ ⊂ M with Rad σ ≤ t ≤ r , there is some M′ = M ∩ B(z, r) with
σ ⊂ M′ and it follows that

hM(t) ≤ sup
M′=M∩B(z,r)

hM′(t).

Setting t = r and combining the two inequalities, we have, for 0 < t < R(M),

hM(t) ≤ R� −
√
R2

� − t2 .

4.2 The Convexity Defect Function Near Zero

We have seen in the previous section how, for M ⊆ RD a compact submanifold, the
function hM on [0, R) obeys an upper bound determined by R�. We now study hM in
greater detail in a neighborhood of zero to obtain a Taylor polynomial, identifying R�

as the reciprocal of the ‘pointwise second derivative’, 1/h′′
M(0). More formally, we

prove Proposition 4.3, which states that, for any sufficiently small t ,

∣∣∣∣hM(t) − t2

2R�

∣∣∣∣ ≤ Ctk∧4.

Once more, we approach hM by considering setsM′, which are the intersection ofM
with small closed balls.

We introduce a new function hlocM′(p, r1, r2; t), which contains information on
the convexity of M′. Lemma 4.10 shows how hM can be determined from all the
hlocM′(p, r1, r2; t). Recall fromLemma 3.2 that such setsM′ can bewritten as the graphs
of functions over TpM and that these functions have Taylor expansions. Lemma 4.12
will set a lower bound on hloc for the degree 3 approximation to M around p, which
Lemma 4.14 translates to a lower bound on hlocM′(p, r1, r2; t) itself. Varying M′ we
obtain a lower bound on hM(t) for small t , which we combine with the upper bound
from Proposition 4.4 to prove the result.

Lemma 4.10 Let B denote a closed ball. Then, for any compact set X ⊂ RD and any
r1, r2, t > 0 satisfying r1 ≥ 2t and r2 ≥ t + r1, we have

hX(t) = sup
p∈X

hlocX (p, r1, r2; t)

where

hlocX (p, r1, r2; t) = H

⎛

⎜⎜⎝
⋃

σ⊆X∩B(p,r1)
Rad σ≤t

Hull σ

∣∣∣∣ X ∩ B(p, r2)

⎞

⎟⎟⎠.

123



Discrete & Computational Geometry

Proof We begin by showing hX(t) ≥ supp∈X hlocX (p, r1, r2; t). We have immediately,
for any p ∈ X and any r1, t > 0,

hX(t) = H

⎛

⎜⎜⎝
⋃

σ⊆X
Rad σ≤t

Hull σ

∣∣∣∣ X

⎞

⎟⎟⎠ ≥ H

⎛

⎜⎜⎝
⋃

σ⊆X∩B(p,r1)
Rad σ≤t

Hull σ

∣∣∣∣ X

⎞

⎟⎟⎠,

and so all that is necessary is to check that

H

⎛

⎜⎜⎝
⋃

σ⊆X∩B(p,r1)
Rad σ≤t

Hull σ

∣∣∣∣ X

⎞

⎟⎟⎠

= H

⎛

⎜⎜⎝
⋃

σ⊆X∩B(p,r1)
Rad σ≤t

Hull σ

∣∣∣∣ X ∩ B(p, r2)

⎞

⎟⎟⎠ = hlocX (p, r1, r2; t).

Let the asymmetric distance

H

⎛

⎜⎜⎝
⋃

σ⊆X∩B(p,r1)
Rad σ≤t

Hull σ

∣∣∣∣ X

⎞

⎟⎟⎠

be realized by the data σ ⊆ X ∩ B(p, r1), y ∈ Hull σ , p′ ∈ X. We have d(p′, y) ≤ t
and d(y, p) ≤ r1, so that d(p′, p) ≤ r1 + t ≤ r2.

Now we check that hX(t) ≤ supp∈X hlocX (p, r1, r2; t). If σ ⊂ X, we have σ ⊂
B(p, 2Rad σ) for any p ∈ σ . By requiring Rad σ ≤ t , we obtain H(Hull σ |X) ≤
hlocX (p, r1, r2; t) for any p ∈ σ provided r1 ≥ 2t .

For a bilinear map S : Rd ×Rd → RD−d and a trilinear map T : Rd ×Rd ×Rd →
RD−d , we denote

M(S, T ) = {(
v, S(v⊗2) + T (v⊗3)

) : v ∈ Rd} ⊆ RD,

which is a C∞ submanifold of RD of dimension d.
By setting S and T to be the coefficients of 	3

p, the approximation of degree 3
to a manifold M around p ∈ M (see Definition 3.3), we can easily see that, near p,
M(S, T ) is Hausdorff close to M. This assumes that p = 0 and that TpM is the
subspace spanned by the first d coordinates. This assumption, which is used in the
statement of the lemma below, is for convenience only. For each p ∈ M there is an
isometry of RD which causes it to be satisfied.

Lemma 4.11 Let M ∈ Ck
Rmin,L

. Suppose that p = 0 ∈ M and TpM = Rd ⊆ RD.
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• If k ≥ 4, we have, for s ≤ s1 with s1 depending only on Rmin,L, k, d,

H(M ∩ B(0, s), M(S, T ) ∩ B(0, s)) ≤ Cs4,

where S and T are obtained from the degree 3 approximation 	3
0 given in Defini-

tion 3.3 by S = d20	
3
0/2 = II0, T = d30	

3
0/6, and the constant C = CRmin,L,k,d .

• When k = 3 we can use the degree 2 approximation 	2
0 and pick T ≡ 0, to obtain

H(M ∩ B(0, s), M(S, 0) ∩ B(0, s)) ≤ C ′s3.

Proof Let us initially take s1 = min {Rmin, L
−1
⊥ }/4. Then for any point q ∈ M ∩

B(0, s), if v = prT0M(q) then

q = 	0(v) = v + S(v⊗2) + T (v⊗3) + R(v),

where 	0 is the expansion given in Lemma 3.2 and ‖R(v)‖ ≤ L ′
4‖v‖4/24, unless

k = 3. In case k = 3, if we wish to control the remainder we can only use the degree 2
polynomial approximation 	2

0.
It is therefore clear that, for the point q = 	0(v) ∈ M ∩ B(0, s), there is a

corresponding point 	3
0(v) ∈ M(S, T ) within the required distance and, conversely,

for any point 	3
0(v) ∈ M(S, T )∩ B(0, s), there is a corresponding point 	0(v) ∈ M.

The constant C may be chosen to be C = L ′
4/24. However, the corresponding point

is not guaranteed to lie in the ball B(0, s). In the next paragraph we establish that
there is a vector v′ very close to v, such that 	3

0(v
′) or 	0(v

′), as appropriate, will be
sufficiently close.

Let us continue to assume k ≥ 4, since the case k = 3 is essentially identical. We
first consider the possibility that ‖	3

0(v)‖ ≤ s but ‖	0(v)‖ > s . It is clear that, for
sufficiently small s, ‖	0(v)‖2 ≤ s2 + C0s6, where C0 depends on Rmin, L⊥, L3,
and L4. It follows that ‖	0(v)‖ ≤ s + C1s5. Consider now a vector v′ = (1 − λ)v,
with λ ≈ 0, chosen so that ‖	0(v

′)‖ = s. For small enough s we have λ ≤ C2s4. It
follows immediately that 	0(v

′) lies within C3s4 of 	0(v), and hence within Cs4 of
	3

0(v). The case where ‖	0(v)‖ ≤ s but ‖	3
0(v)‖ > s is dealt with similarly.

The utility of M(S, T ) is that, since it is algebraic, we can compute explicit bounds
for hlocX , where X = M(S, T ).

Lemma 4.12 Let r1 ≤ r2 ≤ 131/4‖T ‖−1/2
op /2, and let X = M(S, T ). Then for any

t ≤ min {‖S‖−1
op /2, 2r1/

√
13} we have

hlocX (0, r1, r2; t) ≥
(
t − t5‖T ‖2op

2

)2
‖S‖op ≥ t2‖S‖op − t6‖S‖op‖T ‖2op.

Proof Let v be a unit norm vector in Rd such that ‖S(v⊗2)‖ = ‖S‖op. Let z ≤
min {‖S‖−1

op /2, 2r1/
√
13}. Note that the upper bound on r1 gives a third upper bound
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for z, namely z ≤ 13−1/4‖T ‖−1/2
op ≤ ‖T ‖−1/2

op . We set

p1 = (
zv, S((zv)⊗2) + T ((zv)⊗3)

)
and

p2 = (−zv, S((−zv)⊗2) + T ((−zv)⊗3)
)

and denote the two-point set containing them by σ = {p1, p2}. In order to use σ

to bound hlocX we must (1) check σ ⊆ X ∩ B(0, r1), (2) find the radius of σ , and
(3) determine H(Hull σ |X ∩ B(0, r2)).

Firstly, since σ ⊆ M(S, T ), it is enough to show that ‖p1‖2, ‖p2‖2 ≤ r21 . Using
all three bounds on z, we can check

‖p1‖2, ‖p2‖2 ≤ z2 + z4‖S‖2op + 2z5‖S‖op‖T ‖op + z6‖T ‖2op
≤ 2z2 + 2z3‖S‖op + z4‖S‖2op by z‖T ‖1/2op < 1

≤ 13

4
z2 by z‖S‖op ≤ 1/2

≤ r21 by z ≤ 2r1/
√
13.

Secondly, we obtain the radius as

Rad σ =
√

(2z)2 + (2z3‖T (v⊗3)‖)2
2

= z
√
1 + z4‖T (v⊗3)‖2

≤ z

(
1 + z4‖T ‖2op

2

)
since

√
1 + x ≤ 1 + x

2
for x ≥ 0

= z + z5‖T ‖2op
2

.

Thirdly, we place a lower bound on H(Hull σ |X∩ B(0, r2)). Let q = (p1 + p2)/2 ∈
Hull σ . For any p = (w, S(w⊗2) + T (w⊗3)) ∈ X satisfying ‖w‖ ≤ r2, we have

d(q, p)2 = ‖w‖2 + ‖S(w⊗2) + T (w⊗3) − z2S(v⊗2)‖2
≥ z4‖S‖2op + ‖w‖2(1 − 2z2‖S‖2op − 2z2r2‖S‖op‖T ‖op

)
.

Since z‖S‖op ≤ 1/2 we have 2z2‖S‖2op ≤ 1/2. The same condition also allows us to

see that 2z2r2‖S‖op‖T ‖op ≤ zr2‖T ‖op ≤ 1/2. It follows that

d(q, p)2 ≥ z4‖S‖2op = d(q, 0)2

from which we obtain the bound H(Hull σ |X ∩ B(0, r2)) ≥ z2‖S‖op.
These three calculations yield hlocX (0, r1, r2; z + z5‖T ‖2op/2) ≥ z2‖S‖op. Now we

may reparametrize the argument by setting t = z+z5‖T ‖2op/2. Obviously t ≥ z so we

can invert to obtain z = t − z5‖T ‖2op/2 ≥ t − t5‖T ‖2op/2, and so hlocX (0, r1, r2; t) ≥
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(t − t5‖T ‖2op/2)2‖S‖op ≥ (t2 − t6‖T ‖2op)‖S‖op. If the bounds given in the statement
hold for t , then they will also hold for the smaller value z and so the result is proven.

We are now in a position to convert this bound for an algebraic approximation to
M into one for the small patch of M itself. We need a stability result first.

Lemma 4.13 Let X,Y be two subsets of RD and let r1, r2, t > 0 be such that r1 ≤ r2.
Then, if p ∈ X ∩ Y and H(X ∩ B(p, r2),Y ∩ B(p, r2)) ≤ ε, we have

hlocX (p, r1, r2; t) ≤ hlocY (p, r1 + ε, r2; t + ε) + 2ε.

Proof This is a straightforward adaptation of the proof of [6, Lem. 5]. Indeed, let
σ ⊂ X ∩ B(p, r1) be such that Rad σ ≤ t . Let ξ = Y ∩ B(p, r2) ∩ σε. Since
H(X ∩ B(p, r2),Y ∩ B(p, r2)) ≤ ε, ξ is not empty and satisfies H(ξ, σ ) ≤ ε. Thus
ξ ⊂ Y ∩ B(p, r1 + ε), and furthermore, by [6, Lem. 16], we have Rad ξ ≤ t + ε. We
conclude using that

Hull σ ⊂ Hull ξε = (Hull ξ)ε ⊂ (Y ∩ B(p, r2))
hlocY (p,r1+ε,r2;t+ε)+ε

⊂ (X ∩ B(p, r2))
hlocY (p,r1+ε,r2;t+ε)+2ε.

Lemma 4.14 Let k ≥ 4. There exists s2 > 0 depending only on Rmin,L, k, d such that
for any r2 ≤ s2 and for any r1, t ≥ 0 such that both r1 ≤ r2 and

C0r
4
2 ≤ t ≤ 2√

13
r1

for some constant C0 depending on Rmin,L, k, d, we have, for all M ∈ Ck
Rmin,L

and
all p ∈ M,

hlocM (p, r1, r2; t) ≥ t2‖IIp‖op
2

− Cr42 ,

where C is a constant depending on Rmin,L, k, d. In case k = 3, we have, for all
M ∈ Ck

Rmin,L
and all p ∈ M,

hlocM (p, r1, r2; t) ≥ t2‖IIp‖op
2

− C ′r32 ,

where C ′ is a constant depending on Rmin,L, d.

Proof By applying an isometry of RD , we may assume that p = 0 and that TpM =
Rd ⊆ RD . The result will then follow from Lemmata 4.11 and 4.12 in addition to the
Hausdorff stability property for hloc (Lemma 4.13). Take r2 > 0 smaller than s1 (from
Lemma 4.11), and than 131/4/(2L ′

3
1/2

) (from Lemma 4.12). In the case k ≥ 4, where
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	p is the expansion described in Lemma 3.2, S = d20	p/2 = IIp, T = d30	p/6, and
C0 is the constant from the statement of Lemma 4.11, we have

hlocM (0, r1, r2; t) ≥ hlocM(S,T )(0, r1 − C0s
4, r2; t − C0r

4
2 ) − 2C0r

4
2

≥ (t − C0r
4
2 )2‖S‖op − (t − C0r

4
2 )6‖S‖op‖T ‖2op − 2C0r

4
2

≥ t2‖IIp‖op
2

− Cr42 ,

where C depends only on Rmin,L, d, k. The first inequality only holds if C0r42 ≤ t .
In the case k = 3 the result is obtained similarly.

We conclude with the proof of Proposition 4.3.

Proof of Proposition 4.3 By taking

t ≤ s2
4

∧ (44C0)
−1/3

(from Lemma 4.14), and setting r1 = 2t and r2 = 3t , we have

C0r
4
2 ≤ t ≤ 2√

13
r1 and t + r1 ≤ r2,

so that the hypotheses of both Lemmata 4.10 and 4.14 hold. It is now immediate that
if k ≥ 4,

hM(t) = sup
p∈M

hlocM (p, r1, r2; t) ≥ sup
p∈M

(
t2‖IIp‖op

2
− Cr42

)
= t2

2R�

− 34Ct4,

where C is a constant depending on Rmin,L, d, k, while if k = 3,

hM(t) ≥ t2

2R�

− C ′t3,

where C ′ is a constant depending on Rmin,L. On the other hand, Proposition 4.4
provides an upper bound which will hold for all t < Rmin:

hM(t) ≤ R� −
√
R2

� − t2 ≤ t2

2R�

+ t4

2R3
�

≤ t2

2R�

+ t4

2R3
min

.

5 Approximating the Reach

Recall item 3. of the properties of hX given after Definition 4.1 which guarantees that
the convexity defect function is stable with respect to perturbations of the manifold
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which are small in the Hausdorff distance. This allows one to approximate the reach
of a submanifold M ⊆ RD from a nearby subset M̃.

Given a submanifoldM and another subset M̃ (not necessarily a manifold) so that
H(M, M̃) < ε, we can calculate the convexity defect function hM̃. This can then be
used to approximate R� = (h′′

M(0))−1 and Rwfs = inf {t : hM(t) = t, t > 0}. We can
approximate the local reach via

h′′
M(0) ≈ 2

hM̃(�)

�2

for some choice of step size�. Proposition 4.3 gives the following bound on the error.

Proposition 5.1 Let M ∈ Ck
Rmin,L

. Let 0 < ε < � < 1 be such that ε + � is small
enough to satisfy the hypotheses constraining the variable t in Proposition 4.3. Let
M̃ ⊆ RD be such that H(M, M̃) < ε. Then

• if k ≥ 4,
∣∣h′′

M(0)−2hM̃(�)/�2
∣∣ ≤ Aε�−2+B�2 and, in particular, if� = ε1/4,

∣∣∣∣h
′′
M(0) − 2

hM̃(�)

�2

∣∣∣∣ ≤ (A + B)ε1/2,

• if k = 3,
∣∣h′′

M(0)−2hM̃(�)/�2
∣∣ ≤ Aε�−2 + B� and, in particular, if� = ε1/3,

∣∣∣∣h
′′
M(0) − 2

hM̃(�)

�2

∣∣∣∣ ≤ (A + B)ε1/3,

where the constants A and B depend only on Rmin,L.

Proof Set κ = h′′
M(0) and κ̃ = 2hM̃(�)/�2. Comparing M to M̃, we obtain from

stability that

2
hM(� − ε) − 2ε

�2 ≤ κ̃ ≤ 2
hM(� + ε) + 2ε

�2 .

In the case k ≥ 4, Proposition 4.3 states that |hM(t)−κt2/2| ≤ Ct4, for some constant
C depending only on Rmin,L. It follows that

κ(� − ε)2 − 2C(� − ε)4 − 4ε

�2 ≤ κ̃ ≤ κ(� + ε)2 + 2C(� + ε)4 + 4ε

�2 .

Expanding and using that ε,� < 1, we obtain

|κ − κ̃| ≤ 2C�2 + (3κ + 30C + 4)ε�−2.

Similarly, in the case k = 3, we obtain

|κ − κ̃| ≤ 2C ′� + (3κ + 14C ′ + 4)ε�−2,
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where C ′ is again a constant depending only on Rmin,L. Since κ ≤ 1/Rmin, the
constants may be chosen to be A = max {3/Rmin + 30C + 4, 3/Rmin + 14C ′ + 4}
and B = max {2C, 2C ′}. They depend only on Rmin,L.

Now set� = ε p and seek the p yielding the fastest rate of convergence of the error
bound to zero. Since the exponent in the first term increases with respect to p while
that in the second decreases, the fastest rate is obtained by requiring the two exponents
to be equal, so that p = 1/4 for k ≥ 4 and p = 1/3 for k = 3.

At the weak feature size the convexity defect function satisfies hM(t) = t . The
stability given by item 3. of the properties of hX stated after Definition 4.1 guaran-
tees that the graph of hM̃ lies close to that of hM, but this alone cannot be used to
approximate the first intersection of the graph of hM with the diagonal. The graph of
hM could approach the diagonal very slowly before intersecting it, so that the error in
approximating an intersection time based on the graph of hM̃ is not necessarily small.

However, we are only interested in approximating the weak feature size if it yields
the reach, i.e., when Rwfs < R�. Corollary 4.5 guarantees the existence of a disconti-
nuity in hM at Rwfs; in this case the function hM must jump at Rwfs from being bounded
above by a quarter-circle of radius R� to intersecting the diagonal. This feature makes
it possible to bound the error in an approximation. We begin with a simple lemma.

Lemma 5.2 Fix R > 0. Let the intersection points of the line y = x − 6ε and the
quarter-circle y = R − √

R2 − x2 be (x0, y0) and (x1, y1). Then there is some ε0,
which depends only on R, such that for 0 < ε < ε0 the bounds x0 ≤ 25ε/4 and
x1 ≥ R − ε/4 hold.

Proof The equation x − 6ε = R − √
R2 − x2 can be rearranged to give the quadratic

one 2x2 − (2R + 12ε)x + (36ε + 12R)ε = 0 with solutions

x = 2R + 12ε ± √
(2R − 12ε)2 − 288ε2

4
.

For sufficiently small values of ε, we have the bound

2R − 13ε ≤ 2R − 12ε − 288ε2

4R − 24ε
≤

√
(2R − 12ε)2 − 288ε2 ,

so that the solutions x0 and x1 are bounded by

x0 ≤ 2R + 12ε − (2R − 13ε)

4
= 25

4
ε,

x1 ≥ 2R + 12ε + (2R − 13ε)

4
= R − ε

4
.

It is clear from the proof that for any δ > 0 there is an ε > 0 such that the bounds
can be taken to be (6 + δ)ε and R� − δε. It is sufficient to proceed with δ = 1/4 and
we will do so.
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Proposition 5.3 LetM be such that R(M) > Rmin and let ε < 2Rmin/9 be a positive
number small enough that the conclusion of Lemma 5.2 holds for R = Rmin. Let
M̃ ⊆ RD be such that H(M, M̃) < ε. Now suppose further that M is such that
R� − Rwfs > 9ε/4. Then the value r = inf {t ≥ 22ε/4 : hM̃(t) ≥ t − 3ε} satisfies the
bound |Rwfs − r | ≤ ε.

Proof We first claim that r ≤ Rwfs + ε. To see this, suppose that Rwfs + ε < r .
Then, by the definition of r , either Rwfs + ε < 22ε/4, which by the assumption on
ε cannot happen, or hM̃(Rwfs + ε) < Rwfs − 2ε in which case Rwfs = hM(Rwfs) ≤
hM̃(Rwfs + ε) + 2ε < Rwfs, which is a contradiction.

Now let us seek a lower bound for r , which relies on the fact that R = Rwfs. Note
that hM(r + ε) ≥ hM̃(r) − 2ε ≥ r − 5ε. If the additional inequality

r − 5ε ≥ R� −
√
R2

� − (r + ε)2

holds, so that hM(r + ε) > R� −
√
R2

� − (r + ε)2, then by Proposition 4.4 we would
have r + ε > R = Rwfs, providing the required lower bound r ≥ Rwfs − ε and
completing the proof. By Lemma 5.2, this additional inequality holds whenever

25

4
ε ≤ r + ε ≤ R� − ε

4
.

The first bound is true by the definition of r . The second follows from the upper bound
for r and the gap between Rwfs and R�: r ≤ Rwfs + ε ≤ R� − 5ε/4.

6 Minimax Rates for Reach Estimators: Upper Bounds

Every submanifold has a natural uniform probability distribution given by its volume
measure.We consider probability distributions with density bounded above and below
with respect to this volume measure. Recall the class of manifolds Ck

Rmin,L
from [3]:

d-dimensional compact, connected submanifolds of RD with a lower bound on the
reach andadmitting a local parametrizationwith bounded terms in theTaylor expansion
(see Definition 3.1).

Definition 6.1 For k ≥ 3, Rmin > 0, L = (L⊥, L3, . . . , Lk), and 0 < fmin ≤ fmax <

∞, we let Pk
Rmin,L

( fmin, fmax) denote the set of distributions P supported on some

M ∈ Ck
Rmin,L

which are absolutely continuous with respect to the volumemeasureμM,
with density f taking values μM-a.s. in [ fmin, fmax].

This will be abbreviated by Pk where there is no ambiguity. We define the sub-
modelsPk

α to be those distributions supported on elements ofM k
α (the classes defined

in Sect. 3). These submodels are such that Pk = ⋃
α≥0 P

k
α . The following lemma

shows that the uniform lower bound, fmin, on the density of elements ofPk provides
an upper bound Rmax for both R� and Rwfs, which we will use in our estimators later
in the section.
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Lemma 6.2 There exists Rmax depending on d, fmin, Rmin such that, if P ∈ Pk has
support M, then R�, Rwfs ≤ Rmax.

Proof Due to the relationship between curvature and volume, by [4, p. 2, (3)], that
R� ≤ (volM/ωd)

1/d ≤ ( fminωd)
−1/d , where ωd is the volume of the d-dimensional

sphere of radius 1. Furthermore, Aamari and Levrard have shown [2, Lem. 2.2] that
for some constant C depending only on dimension, diamM ≤ C(d) f −1

minR
1−d
min . Since

Rwfs ≤ diamM/2 we have Rwfs ≤ C(d) f −1
minR

1−d
min /2. Setting

Rmax := max

{
( fminωd)

−1/d ,
C(d) f −1

minR
1−d
min

2

}
,

we have the result.

In [3] the authors construct an estimator M̂ out of polynomial patches, froma sample
(X1, . . . , Xn) of random variables with common distribution P ∈ Pk , supported on
a submanifold M ∈ Ck

Rmin,L
. That estimator has the following convergence property.

(Note that the T ∗
i referred to below are i-linear maps from TpM to RD which are the

i th order terms in the Taylor expansion of the submanifold discussed in Sect. 3.)

Theorem 6.3 ([3, Thm. 6]) Let k ≥ 3. Set

θ =
(
Cd,k

f 2max log n

(n − 1) f 3min

)1/d

for Cd,k large enough. If n is large enough so that 0 < θ ≤ min {Rmin, L
−1
⊥ }/8 and

θ−1 ≥ Cd,k,Rmin,L ≥ sup2≤i≤k |T ∗
i |op, then with probability at least 1 − 2(1/n)k/d ,

we have

H(M̂,M) ≤ C� θk

for some C� > 0. In particular, for n large enough,

sup
P∈Pk

EP⊗n
[
H(M̂,M)

] ≤ C

(
log n

n − 1

)k/d
,

where C = Cd,k,Rmin,L, fmin, fmax .

Note that the estimator is dependent on the value of θ ≈ n−1/d to within logarithmic
terms,which serves as a bandwidth. The convergence rate of this estimator is very close
to the currently established lower bound for estimating the reach R, which is n−k/d ;
see Theorem 7.1 in Sect. 7 below.
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6.1 Estimating the Local Reach

Definition 6.4 We define an estimator for R�(M), the local reach of a submanifoldM,
by

R̂� = min

{
�2

2hM̂(�)
, Rmax

}
,

where M̂ is theAamari–Levrard estimator ofM as discussed at the beginning of Sect. 6
above, ε = C�θk as in Theorem 6.3, � = ε1/3 if k = 3 or � = ε1/4 if k ≥ 4, and
Rmax is as in Lemma 6.2.

Theorem 6.5 Let k ≥ 3, let θ be as in Theorem 6.3, and set ε = C�θk . Then with
probability at least 1 − 2(1/n)k/d , we have

|R̂� − R�| ≤ Cd,k,Rmin,L, fminε
1/3,

and, where k ≥ 4, the exponent is ε1/2. Moreover, for n large enough, we have

sup
P∈Pk

EP⊗n [|R̂� − R�|] ≤ C

(
log n

n − 1

)k/(3d)

,

or, for k ≥ 4, C(log n/(n − 1))k/(2d), where C = Cd,k,Rmin,L, fmin, fmax .

A glance at the proof shows that we actually control
∣∣R̂−1

� − R�
−1

∣∣ rather than
|R̂� − R�|. This has no impact since R� ≤ Rmax is uniformly bounded and we do
not seek fine control on C . Changing the parametrization R �→ 1/R in our statistical
problem and estimating 1/R instead of R would enable us to remove the projection
onto [0, Rmax] that we use to define R̂�.

Proof By construction, R̂� ≤ Rmax, and it is also clear that

∣∣∣∣
1

R̂�

− 1

R�

∣∣∣∣ ≤
∣∣∣∣2
hM̂(�)

�2 − 1

R�

∣∣∣∣.

We derive

|R̂� − R�| = R̂�R�

∣∣∣∣
1

R̂�

− 1

R�

∣∣∣∣ ≤ R2
max

∣∣∣∣2
hM̂(�)

�2 − 1

R�

∣∣∣∣.

The first statement of Theorem 6.5 is then a straightforward consequence of Proposi-
tion 5.1 together with Theorem 6.3. Next, we have

EP⊗n [|R̂� − R�|]
≤ Cd,k,Rmin, fmin,Lε1/3 + 2RmaxP

⊗n(|R̂� − R�| > Cd,k,Rmin, fmin,Lε1/3
)

≤ Cd,k,Rmin, fmin,Lε1/3 + 4Rmaxn
−k/d ,
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thanks to the first part of Theorem 6.5. This term is of order (log n/n)k/3d . For k ≥ 4,
we have the improvement to the exponent ε1/2 and the order becomes (log n/n)k/2d ,
which establishes the second part of the theorem for all values of k ≥ 3 and completes
the proof.

For k = 3, 4, then, the constructed estimator is optimal up to a log n factor as
follows from Theorem 7.1 below.

6.2 Estimating the Global Reach

By the earlier discussion, it is not possible to give a convergence guarantee when
estimating the weak feature size, i.e., the first positive critical value of dM. However,
in the case where R = Rwfs, that is, when Rwfs < R�, this is possible. Accordingly,
we now define an estimator for Rwfs and hence an estimator for the reach itself.

Definition 6.6 We define an estimator for Rwfs, the weak feature size of a submanifold
M, by

R̂wfs = min
{
inf {t ∈ R : 22ε < 4t, hM̂(t) ≥ t − 3ε}, Rmax

}
,

where M̂ is theAamari–Levrard estimator ofM as discussed at the beginning of Sect. 6
above, ε = C�θk as in Theorem 6.3, and Rmax is as in Lemma 6.2.

Our estimator for the reach is then the lesser of the two individual estimators.

Definition 6.7 Let C�, θ be as in Theorem 6.3 and set ε = C�θk . We define an esti-
mator for R(M), the reach of a submanifold M, by

R̂ = min {R̂wfs, R̂�}.

Note that we could just as well use R̂� in place of Rmax to cap the value of R̂wfs,
since we do not analyze the error in the case R̂� < R̂wfs. However, Definition 6.6
appears more natural as a stand-alone estimator of Rwfs.

Theorem 6.8 Let k ≥ 3, let C�, θ be as in Theorem 6.3, and set ε = C�θk , with ε such
that 22ε/4 < min {Rmin, 1}, which is always satisfied for large enough n ≥ 1. Then
with probability at least 1 − 4n−k/d , we have

|R̂ − R| ≤ Cd,k,Rmin,Lε1/3,

and, where k ≥ 4, the exponent is ε1/2. In particular, for n large enough,

sup
P∈Pk

EP⊗n [|R̂ − R|] ≤ C

(
log n

n − 1

)k/(3d)

,

or, for k ≥ 4, C(log n/(n − 1))k/(2d), where C = Cd,k,τmin,L, fmin, fmax .
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Proof We will prove the result in three steps. In Step 1 we provide a bound in the case
R̂� < R̂wfs which holds with high probability. Then in Step 2 we provide a bound in
the complementary case R̂� ≥ R̂wfs. Finally, in Step 3, we combine the two bounds,
proving the first statement, and use it to obtain the bound on the expected loss. In the
following, we use the letters C and C ′ to denote positive numbers that do not depend
on n and that may vary at each occurrence.

Step 1. We have

|R̂ − R|1{R̂�<R̂wfs} = |R̂� − min {R�, Rwfs}|1{R̂�<R̂wfs}
≤ |R̂� − R�| + |R̂� − Rwfs|1(Rwfs<R�)1{R̂�<R̂wfs}
≤ 2|R̂� − R�| + |R� − Rwfs|1(Rwfs<R�)1{R̂�<R̂wfs}

by the triangle inequality. For C1,C2 > 0, introduce the events

�1 = {|R̂� − R�| ≤ C1ε
1/3} and �2 = {

H(M̂,M) ≤ ε
}
.

On {R̂� < R̂wfs}, we have

hM̂(t) < t − 3ε (1)

for all t ∈ [22ε/4, R̂�], therefore, on {R̂� < R̂wfs}∩�1, we infer that (1) holds for t ∈
[22ε/4, R� − C1ε

1/3]. By 3. of the properties of the convexity defect function given
after Definition 4.1, on �2 we have

hM̂(t) ≥ hM(t − ε) − 2ε.

Putting the last two estimates together, we obtain on {R̂� < R̂wfs} ∩ �1 ∩ �2 the
bound

hM(t − ε) < t − 3ε + 2ε

for all t ∈ [22ε/4, R�−C1ε
1/3], or, equivalently, hM(t) < t for t ∈ [(22/4−1)ε, R�−

C1ε
1/3 − ε]. Therefore hM(t) < t for t ≤ R� − C1ε

1/3 − ε and this implies in turn

Rwfs ≥ R� − C1ε
1/3 − ε.

We have thus proven

|R� − Rwfs|1{Rwfs<R�}1{R̂�<R̂wfs}1�1∩�2 ≤ (C1ε
1/3 + ε) ≤ Cε1/3.

Finally

|R̂ − R|1{R̂�<R̂wfs}1�1∩�2 ≤ Cε1/3.
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Step 2. We have

|R̂ − R|1{R̂�≥R̂wfs} ≤ T1 + T2 + T3,

with

T1 = |R̂wfs − Rwfs|1{Rwfs+9ε/4<R�}1{R̂�≥R̂wfs},
T2 = |R̂wfs − Rwfs|1{Rwfs≤R�<Rwfs+9ε/4}1{R̂�≥R̂wfs},
T3 = |R̂wfs − R�|1{R�<Rwfs}1{R̂�≥R̂wfs}.

By Proposition 5.3, we have T1 ≤ ε on �2. We turn to the term T2. We have

hM̂(R̂wfs) ≥ R̂wfs − 3ε

on {R̂� ≥ R̂wfs} by construction. Thanks to item 3. of the properties of the convexity
defect function given after Definition 4.1, we also have

hM̂(R̂wfs) ≤ hM(R̂wfs + ε) + 2ε

on �2. Therefore,

R̂wfs − 5ε ≤ hM(R̂wfs + ε)

holds true on {R̂� ≥ R̂wfs} ∩ �2. Introduce now the event

�3 = {R̂wfs + ε < Rwfs}.

By Proposition 4.4, it follows that

R̂wfs − 5ε ≤ R� −
√
R2

� − (R̂wfs + ε)2

on {R̂� ≥ R̂wfs} ∩ �2 ∩ �3. Solving this inequality when R� > R̂wfs + ε yields
R̂wfs ≥ R� −Cε for some C > 0 that depends on R� only. Otherwise, R� − ε ≤ R̂wfs
directly. Replacing C by max {1,C}, we infer

R�−Cε ≤ R̂wfs ≤ R̂� ≤ R� + C1ε
1/3

on {R̂� ≥ R̂wfs}∩�1 ∩�2 ∩�3 hence |R̂wfs − R�| ≤ Cε1/3 on that event. Combining
this estimate with the condition |R� − Rwfs| ≤ 9ε/4 in the definition of T2 implies

|R̂wfs − Rwfs| ≤ Cε1/3 + 9

4
ε.
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We have thus proven

T21⋂3
i=1 �i

≤ Cε1/3 + 9

4
ε ≤ C ′ε1/3.

On the complementary event �c
3 = {R̂wfs + ε ≥ Rwfs}, we have, on the one hand,

Rwfs − R̂wfs ≤ ε.

But on the other hand, on {R̂� ≥ R̂wfs} ∩ �1 we have

R̂wfs − Rwfs ≤ R̂� − Rwfs ≤ R� − Rwfs + C1ε
1/3 ≤ 9

4
ε + C1ε

1/3 ≤ Cε1/3

thanks to the condition |R� − Rwfs| ≤ 9ε/4 in the definition of T2. Combining these
bounds, we obtain

T2(1 − 1�3)1�1 ≤ Cε1/3.

Putting together this estimate and the bound T21⋂3
i=1 �i

≤ Cε1/3 we established
previously, we derive

T21�1∩�2 ≤ Cε1/3.

We finally turn to the term T3. On {R̂wfs ≥ R�} intersected with {R̂� ≥ R̂wfs} ∩ �1,
we have

0 < R� ≤ R̂wfs ≤ R̂� ≤ R� + C1ε
1/3,

which yields the estimate

|R̂wfs − R�| ≤ C1ε
1/3 on {R̂wfs ≥ R�} ∩ {R̂� ≥ R̂wfs} ∩ �1.

Alternatively, on the complementary event {R̂wfs < R�} intersected with �2∩
{R̂� ≥ R̂wfs} we have R̂wfs − 5ε ≤ R� −

√
R2

� − (R̂wfs + ε)2 in the same way as

for the term T2, provided R̂wfs + ε < R�. This implies R̂wfs ≥ R�−Cε. Other-
wise R̂wfs + ε ≥ R� holds true. In any event, we obtain −Cε ≤ R̂wfs − R�. Since
R̂wfs − R� ≤ C1ε

1/3 on �1, we conclude

|R̂wfs − R�| ≤ ε + C1ε
1/3 ≤ Cε1/3 on {R̂wfs < R�} ∩ {R̂� ≥ R̂wfs} ∩ �1 ∩ �2.

Combining these two bounds for |R̂wfs − R�|, we finally derive

T31�1∩�2 ≤ Cε1/3.
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Putting together our successive estimates for T1, T2, and T3, we have proven

|R̂ − R|1{R̂�≥R̂wfs}1�1∩�2 ≤ ε + 2Cε1/3 ≤ C ′ε1/3.

Step 3. Combining Steps 1 and 2 yields

|R̂ − R|1�1∩�2 ≤ Cε1/3.

By Theorem 6.5, we have P⊗n(�1) ≥ 1 − 2n−k/d as soon as C1 ≥ Cd,k,Rmin, fmin,L.
By Theorem 6.3, we have P⊗n(�2) ≥ 1− 2n−k/d . The first estimate in Theorem 6.8
follows for k ≥ 3. The improvement in the case k = 4 is done in exactly the same
way and we omit it. Finally, integrating, we obtain

EP⊗n [|R̂ − R|] ≤ Cε1/3 + 2Rmax
(
P⊗n(�c

1) + P⊗n(�c
2)
)

≤ Cε1/3 + 4Rmaxn
−k/d ≤ C ′ε1/3

and the second statement of Theorem 6.8 is proven for k ≥ 3. The improvement in
the case k = 4 follows in similar fashion.

7 Minimax Rates for Reach Estimators: Lower Bounds

We fix Rmin, L, k, fmin, and fmax, and recall the classes Pk
α which were defined in

Sect. 6, parametrized by the gap α ≤ R� − Rwfs. These sub-models are such that
Pk = ⋃

α≥0 P
k
α .

Theorem 7.1 If fmin is small enoughand fmax,Lare large enough (dependingon Rmin,
and on α for the second statement), then we have the following lower bounds on the
reach estimation problem:

lim inf
n→∞ n(k−2)/d inf

R̂
sup

P∈Pk
0

EP⊗n [|R̂ − R|] ≥ C0 > 0 and

lim inf
n→∞ nk/d inf

R̂
sup

P∈Pk
α

EP⊗n [|R̂ − R|] ≥ Cα > 0 for all α > 0,

with C0 depending on Rmin and Cα depending on Rmin and α.

In particular, the minimax rate on the whole model Pk is of order n−(k−2)/d . To
show this proposition, we will make use of Le Cam’s Lemma, restated in our context.

Lemma 7.2 (Le Cam’s Lemma, [18]) For any two P1, P2 ∈ P , whereP is a model
of manifold-supported probability measures, we have

inf
R̂

sup
P∈P

EP⊗n [|R̂ − R|] ≥ |R1 − R2|
2

(1 − TV(P1, P2))
n,

where TV denotes the total variation distance between measures and R1 (respec-
tively R2) denotes the reach of the support of P1 (resp. P2).
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Therefore, one needs to compute the total variation distance between two given
manifold-supported measures. When these measures are uniform over their support,
we have the following convenient formula.

Lemma 7.3 Let M1, M2 be two compact d-dimensional submanifolds of RD and let
P1, P2 be the uniform distributions over M1 and M2. Then we have

TV(P1, P2) = H d(M2 \ M1)

volM2

if volM2 ≥ volM1, whereH d denotes the d-dimensional Hausdorff measure onRD.

Proof First note that P1 and P2 are absolutely continuouswith respect toH d with den-
sities 1M1/(volM1) and 1M2/(volM2) respectively. Therefore, we have the following
chain of equalities:

TV(P1, P2) = 1

2

∫ ∣∣∣∣
1M1

volM1
− 1M2

volM2

∣∣∣∣ dH
d

= H d(M1 \ M2)

2 volM1
+ H d(M2 \ M1)

2 volM2

+ H d(M1 ∩ M2)

2

(
1

volM1
− 1

volM2

)

= 1

2

{
1 + H d(M2 \ M1) − H d(M1 ∩ M2)

volM2

}
= H d(M2 \ M1)

volM2
.

Before proving Theorem 7.1 we need to introduce the following technical result:

Lemma 7.4 Let 	 : Rd → R be a smooth function and M ={(v,	(v)) : v ∈Rd} ⊆
Rd+1 be its graph. The second fundamental form of M at the point x = (v,	(v)) ∈ M
is given by

IIx (u, w) = d2	(v)[pr u, prw]√
1 + ‖∇	(v)‖2 for all u, w ∈ TxM

where pr is the linear projection to Rd ⊆ Rd+1.

Proof We define � : v ∈ Rd �→ (v,	(v)) ∈ Rd+1 so that M is the image of Rd

through the diffeomorphism �. Let x ∈ M and let v ∈ Rd be such that x = �(v).
The tangent space TxM is given by TxM = {d�(v)[h] = (h, 〈h,∇	(v)〉) : h ∈ Rd},
so that a normal vector field on M is given by

n(x) =
(

− ∇	(v)√
1 + ‖∇	(v)‖2 ,

1√
1 + ‖∇	(v)‖2

)
∈ Rd+1.
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For u ∈ TxM , where h = pr u, we have

dn(x)[u] =
(

− H	(v)h√
1 + ‖∇	(v)‖2 , 0

)
− 〈H	(v)h,∇	(v)〉

1 + ‖∇	(v)‖2 n(x),

where H	 denotes the Hessian of 	. Now for w ∈ TxM and η = prw, we have

IIx (u, w) = −〈dn(x)[u], w〉 =
〈(

H	(v)h√
1 + ‖∇	(v)‖2 , 0

)
, (η, 〈η,∇	(v)〉)

〉

=
〈

H	(v)h√
1 + ‖∇	(v)‖2 , η

〉
= d2	(v)[h, η]√

1 + ‖∇	(v)‖2

concluding the proof.

We are now ready to prove Theorem 7.1.

Proof of Theorem 7.1 Step 1: The case of Pk
0 . Let M be the d-dimensional sphere in

Rd+1 of radius r centered at −red+1, where ed+1 = (0, . . . , 0, 1). We choose r to be
such that r ≥ 2Rmin. Since M is smooth, there exists L∗ ∈ Rk−2 (depending on r )
such thatM ∈ Ck

r ,L∗ , and thus the uniform probability P onM is inPk
r ,L∗(a∗, a∗) (see

Definition 6.1) with a∗ = (rdsd)−1 and sd being the volume of the unit d-dimensional
sphere.

Let us now perturb M to Mγ , as illustrated in Fig. 3. Define for any γ > 0

	γ :
{
Rd+1 → Rd+1,

z �→ z + γ k�(z/γ )ed+1,

where �(z) = ψ(‖z‖) and where ψ : R → R is a smooth, even, non-trivial, posi-
tive map supported on [−1, 1], decreasing on [0, 1], and with ψ ′′(0) < 0. The above
map is a global diffeomorphism as soon as γ k−1‖d�‖op,∞ < 1. Moreover, we have
‖d	γ − ID‖op,∞ = γ k−1‖d�‖op,∞ and ‖d j	γ ‖op,∞ ≤ γ k− j‖d j�‖, so that, pro-
vided ‖dk�‖ is chosen small enough (depending on r ) and that γ is small enough
(depending again on r ), then we can apply Proposition A.5 from the supplementary
material in [3] to show that the submanifold Mγ = 	γ (M) is in Ck

r/2,2L∗ . Then we
have

volMγ =
∫

Mγ

dvolMγ (x) =
∫

M
|det d	γ (z)| dvolM (z).

Since 1/2 ≤ | det d	γ | ≤ 2 for γ small enough (depending on r ), it follows that
volM/2 ≤ volMγ ≤ 2 volM for the same values of γ , so that the uniformdistribution
Pγ on Mγ in is Pk

r/2,2L∗(a∗/2, 2a∗). If we assume that 2L∗ ≤ L, fmin ≤ a∗/2, and
2a∗ ≤ fmax (which we do from now on) then we immediately have P ∈ Pk

0 and
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Fig. 3 The submanifolds M and Mγ used in the first part of the proof of the lower bound

Pγ ∈ Pk
0 , provided that Rwfs(Mγ ) ≥ R�(Mγ ). We claim that the latter inequality

holds.
Around 0, simple geometrical considerations show that Mγ can be viewed as the

graph of the function

ξγ :

⎧
⎪⎨

⎪⎩

Rd → R,

v �→
√
r2 − ‖v‖2 − r + γ kψ

(
r

γ

√
2 − 2

√
1 − ‖v‖2/r2

)
.

Writing ξγ (v) = ζγ (‖v‖) with ζγ : R → R, a series of computations shows that

ζ ′′
γ (0) = −1

r
+ rγ k−2ψ ′′(0).

Setting c = −ψ ′′(0) > 0 (which depends on r ) we have, using Lemma 7.4,

R�(Mγ ) ≤ 1

|ζ ′′
γ (0)| = 1

1/r + crγ k−2 ≤ r − cr2γ k−2

2

as soon as cr2γ k−2 ≤ 1. Now let us turn to the control of Rwfs(Mγ ). Wewill show that
the distance between any pair of bottleneck points is bounded belowby 2r . Let (x, y) ∈
Mγ be a pair of bottleneck points. First notice that x and y cannot lie simultaneously
in B(0, γ ) because Mγ ∩ B(0, γ ) can be seen as a graph. If x, y ∈ Mγ \ B(0, γ ),
then d(x, y) = 2r necessarily. If, say, x ∈ B(0, γ ) and y ∈ Mγ \ B(0, γ ), then
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Fig. 4 The submanifolds M and Mγ used in the second part of the proof of the lower bound

the open segment (x, y) crosses M at a single point z ∈ M . Therefore, we have that
d(x, y) = d(x, z) + d(z, y). But now, since [x, y] is normal to Mγ at point y, we
know that [z, y] is a diameter of M so that d(z, y) = 2r and thus d(x, y) ≥ 2r . We
have shown that Rwfs(Mγ ) ≥ r ≥ R�(Mγ ) for γ small enough and thus Mγ ∈ M k

0
and Pγ ∈ Pk

0 .
Now, by Lemma 7.3, we have that TV(P, Pγ ) = H d(Mγ \ M)/volMγ ≤ Cγ d

for some constant C depending on r . Applying now Le Cam’s Lemma 7.2 and noting
that R(M) − R(Mγ ) ≥ cr2γ k−2, we obtain

inf
R̂

sup
P∈Pk

0

EP⊗n [|R̂ − R|] ≥ cr2γ k−2

2
(1 − Cγ d)n .

Setting γ = 1/(Cn)1/d , we know that for n large enough (depending on r ), we have

inf
R̂

sup
P∈Pk

0

EP⊗n [|R̂ − R|] ≥ cr2(Cn)−(k−2)/d

8
.

Set r to be equal to 2Rmin and the first statement of Theorem 7.1 follows.

Step 2: The case of Pk
α . We next turn to the second part of the theorem. We fix

α > 0 and construct a manifold M ∈ Ck as follows. We consider the two parallel
disks B(0, 2r) ⊆ Rd ⊆ Rd+1 and B(2red+1, 2r) ⊆ 2red+1 + Rd ⊆ Rd+1, with
r ≥ 2Rmin, and link them together so that M satisfies the following:

• M is a smooth submanifold of Rd+1,
• M has reach r and (0, 2red+1) is a reach attaining pair,
• R�(M) ≥ r + α.

See Fig. 4 for a schematic notion of such M , visualized with d = 1.
Furthermore, we know that there exists L∗ (depending on r and α) such that M ∈

Ck
r ,L∗ and P ∈ Pk

r ,L∗(a∗, a∗) where a∗ = 1/volM and where P is the uniform
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probability over M . We again consider the map

	γ :
{
Rd+1 → Rd+1,

z �→ z + γ k�(z/γ )ed+1.

Similarly to the first part of the theorem, for γ small enough (depending on α and r ),
we know that Mγ = 	γ (M) is a smooth submanifold in Ck

r/2,2L∗ and that the uniform

distribution Pγ over Mγ lies inPk
r/2,2L∗(a∗/2, 2a∗). Again, assuming that L ≥ 2L∗,

fmin ≤ a∗/2, and fmax ≥ 2a∗, we have that P ∈ Pk
α and, furthermore, that Pγ ∈ Pk

α ,
provided R�(Mγ ) ≥ Rwfs(Mγ ) + α. We claim that the latter inequality holds.

Since � is maximal at 0, we know that (γ kψ(0)ed+1, 2red+1) is still a bottleneck
pair, and thus Rwfs(Mγ ) ≤ r − cγ k where we set c = −2ψ(0) (depending on α

and r ). For the curvature, notice that it is unchanged outside of B(0, γ ) and that Mγ

is just the graph of v �→ γ k�(v/γ ) within this ball. Using Lemma 7.4, we thus
have R�(Mγ ) ≥ min {r + α, (Cγ k−2)−1}, with C depending on α and r , so that
R�(Mγ ) ≥ Rwfs(Mγ ) + α for γ small enough (depending on α and r ), and therefore
Mγ ∈ M k

α and Pγ ∈ Pk
α .

Using Lemma 7.3, we have that TV(P, Pγ ) = H d(Mγ \ M)/volMγ ≤ δγ d for
some constant δ depending on r . Applying now Le Cam’s Lemma 7.2 and noticing
that R(M) − R(Mγ ) ≥ cγ k , we get

inf
R̂

sup
P∈Pk

0

EP⊗n [|R̂ − R|] ≥ cγ k

2
(1 − δγ d)n .

Setting γ = 1/(δn)1/d , we know that for n large enough (depending on r and α), we
have

inf
R̂

sup
P∈Pk

0

EP⊗n [|R̂ − R|] ≥ c(δn)−k/d

8
.

Setting r = 2Rmin yields the result, completing the proof of Theorem 7.1.
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