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Abstract—Although wireless sensor networks (WSNs) are considered as one of the prominent solutions for flood
monitoring; however, the energy constraint nature of the sensors is still a technical challenge. In this paper, we tackle
this problem by proposing a novel energy-efficient remote flood monitoring system, enabled by compressive sensing.
The proposed approach compressively captures water level data using; i) a random block-based sampler, and ii) a
gradient-based compressive sensing approach, at a very low rate, exploiting water level data variability over time. Through
extensive experiments on real water-level dataset, we show that the number of packet transmissions as well as the size of
packets are significantly reduced. The results also demonstrate significant energy reduction in sensing and transmission.
Moreover, data reconstruction from compressed samples are of high quality with negligible degradation, compared to
classic compression techniques, even at high compression rates.

Index Terms—Compressive sensing, Sparse recovery, Energy efficiency, Wireless sensor network, Water level, Remote monitoring.

I. INTRODUCTION
Current flood warning analysis which relies on water-level sensors

and precipitation forecasts is not capable of providing near-real-
time and automated flood monitoring. In this regard, wireless sensor
network (WSN) as one of the key enabling technologies of Internet
of Things (IoT), is one of the most efficient technologies that could
be used for remote and real-time data collection from rivers. With
WSN, several sensors are connected with each other and deployed
in the side of the river. This not only lets the managers to understand
any sudden changes in the river but also let them to generate a
large database of river water levels that could be used to predict the
upcoming floods [1]. However, continuous and real-time monitoring
of the river requires frequent transmission of data which drains the
limited energy of the sensors.

WSN has been used in several flood monitoring applications as an
efficient technology for remote data collection [2]–[7]. For instance,
authors in [4] proposed an architecture for a flash flood alert system.
The system consists of a WSN and a sink node located close to the
WSN to collect it. Periodically, or in case of abnormal conditions, the
sink sends information via cellular network to a command center. The
work in [8] describes the implementation of a river monitoring system
using an event-based component model for WSN. It monitors flood,
pollution and human tampering and warns potential stakeholders
whenever they are at risk. In [9], a real-time flood monitoring and
warning system has been presented for a selected area of the southern
part of Thailand. In this system, water condition is monitored remotely
using a WSN that transmits the required data to an application sever
via General Packet Radio Service (GPRS). However, mitigating the
number of redundant packets to reduce the energy consumption of
the sensor nodes has been remained a challenge [10].

Recently, compressive sensing (CS) [11] has unveiled promising
performance in multimedia data transmission [12] and IoT appli-
cations by offering low sampling rate [13]. Since CS offers data
acquisition from the filed of interest with sub-Nyquist sampling rate,
it can significantly mitigate transmission and power consumption costs
of IoT systems. CS can also be deployed on an embedded system
within an intermediate layer for the purpose of local processing of
received data from sensors [14]. Therefore, data aggregation, storing,
and reconstruction of original data with the aim of extraction of
salient information and important features can be performed on the
cloud which hosts the application layer. Moreover, CS has shown to
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Fig. 1. Layout of an exemplary CS-based remote flood monitoring.

provide higher compression rates and better reconstruction quality
[15], compared to traditional methods e.g. based on Hadamard or
Wavelet transform. Despite such great advantages, limited applications
of CS-based IoT/WSN systems have been reported in the literature.
Most existing works that combine CS with WSN focus on general
methodological perspective rather than application-specific criteria.
Among those few, a cost-effective compressive sensing approach was
proposed for wireless transmission of fetal Electrocardiogram (ECG)
and Electroencephalogram (EEG) signals [16], [17]. A distributed
adaptive CS is proposed in [18] for complex meteorological data
with spatial and temporal correlation. A comprehensive report on
use of CS for WSN with detailed quantitative analysis with popular
sensors can be found in [19].

In this paper, considering that power management is one of the main
issues in WSNs and data transmission is the most energy consuming
task in a sensor node, we reduce the number of transmissions based
on CS technique. To the best of our knowledge, this is the first
work that addresses compressive sensing for wireless monitoring of
flood events. Taking into account the slow-variation of water levels,
we propose two novel methods by utilising a block structure and
Gradient operator to compressively acquire data samples. Figure 1
illustrates the proposed topology where low-cost water level sensors
are deployed across the river of interest. In this layout, data collection
can be done using a drone that approaches the sensor nodes and
acts as a mobile sink to reduce transmission distance and save more
energy [20]. Therefore, only limited number of packets, filtered by
CS, are transmitted to the drone from a close distance that greatly
reduce the power consumption and extend the network lifetime.

II. PROPOSED APPROACH
Let us assume that a stream of water level samples from ! sensor

nodes, deployed in the rivers, are to be compressively gathered at the
gateway (mobile sink in Figure 1). This can be achieved by using a
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block-based strategy [21]. In this approach, we assume that original
blocks (segments) acquired by the sensor nodes, within a certain
period of time, is composed of = discrete samples, represented by:

x; = [G; (0), G; (1), . . . , G; (= − 1)]> (1)

where ; ∈ [1, 2, . . . , !] denotes the ;-th sensor node, ! is the total
number of nodes, and [·]> denotes the transpose operator. These
samples, however, are not to be sent to the sink. Instead, a compressed
version of segments with size < << = will be received by the
sink. Here, the compressive sensing problem can be mathematically
expressed as:

y; = �x; + v; (2)

where y; ∈ R< is the measurement vector, and � ∈ R<×= is called
the measurement matrix (sensing matrix). Measurement noise is
represented by vector v; which is incurred during the compression
procedure. The measurement matrix � plays a crucial role in both
compression and reconstruction phases. It should be designed to
provide high compression ratio (i.e. < << =) and at the same time
guarantee recovery of x; from measurements y; . On the other hand,
successful reconstruction relies on the key assumption of sparsity
on x; , meaning that most entries are zero. This assumption does
not always hold in the primary domain (e.g. time), thus, one may
need to transform the data into a different domain (e.g. frequency).
It has been shown that problem (2) still holds if x; can be made
sparse by transformation into a different domain, e.g. Discrete Cosine
Transform (DCT). This condition can turn equation (2) into:

y; = �	s; (3)

whereΨ is an =×=matrix of orthogonal basis, and s; ∈ R= is the sparse
coefficients vector associated to x; . After receiving the compressed
vectors at the sink, i.e. {y1, y2, . . . , y;}, they are transmitted to the
cloud computer for further processing whereby the original data,
i.e. {x1, x2, . . . , x;}, is reconstructed (Figure 1). In a typical send-
and-receive scenario, as proposed in this paper, the measurements
y; are frequently transmitted to the receiver, whereas � and 	 are
known to the receiver. At the receiver, x; (or s; , equivalently) is to
be reconstructed from y; , � and 	. The reconstruction stage does
not consume any energy of the WSN. Numerous techniques have
been proposed in the literature for such reconstruction, the most
famous ones are Basis Pursuit (BP) [22] and Orthogonal Matching
Pursuit (OMP) [23]. However, not all methods are efficient and one
needs to design techniques depending on the data of interest [24]. As
mentioned above, finding sparse representation of the data of interest
is crucial for achieving a successful CS system. In what follows, we
propose two solutions for this problem: i) using block sparse Bayesian
learning model in WSN (BSBL–WSN); and ii) proposing a novel
method, termed gradient compressive sensing WSN (GCS–WSN),
for compression and transmission of water level samples.

A. BSBL–WSN
Blocks of compressed measurements via matrix multiplication, i.e.

(2), will be transmitted to the cloud server for further processing. This
process is called CS encoding which can be performed entirely in the
analog domain at the sensor nodes. In other words, vector y; can be
directly acquired by a Random Demodulator (RD) module operating
at a sub-Nyquist sampling rate. As this process is to be implemented
for data blocks, we have found it very close to a recent work presented
by Zhang et al. [17] for telemonitoring of physiological data through
a wireless body-area network. Here, we utilise this method for sparse
representation of water level data for efficient transmission through
a wireless sensor network. Zhang et al. [17] proposed a method
that can be efficiently used for compression and reconstruction of

EEG data. They initially considered ECG signals which naturally
have block structure [16], but later showed that such assumption
can be valid for arbitrary waveform such as EEG without a distinct
block structure [17]. This motivated us to use the same concept
for water level data too. In our proposed block sparse Bayesian
learning method, BSBL–WSN, the input signal x; is partitioned into
concatenation of several non-overlapping blocks as shown in (1). By
removing the baseline from each segment (i.e. removing the offset),
we can observe that only a few blocks are non-sparse among these
blocks. This is due to the fact that water level is normally stable
in normal conditions and sudden changes occur mainly in case of
flooding. This behaviour allows us to model the water level data in
form of a block-sparse data. We model the block-sparse signal x; as
a parameterised multivariate Gaussian distribution:

?(x;; W; ,C;) ∼ N (0, W;C;), ; = 1, · · · , !. (4)

where W; is a non-negative parameter controlling the block-sparsity
of x; . Also, C; ∈ R=×= is a positive-definite matrix to model the
correlation structure of the corresponding block. The posterior of x
can then be obtained via [17]:

?(x; |y;;_, W; ,C;) = N(`G ,�G), (5)

with
`G = �0�

)
(
_I +��0�

)
)−1 y,�G =

(
�−1

0 +
1
_
�)�

)−1

In order to estimate the original vector x; , we first need to find the
parameters _ (non-negative regularisation scalar), W; , C; . It has been
shown that these parameters can be estimated by a using a Type
II maximum likelihood procedure [17]. Therefore, we follow the
Expectation Maximization (EM) method and define these learning
rules:

W; ←
1
=

Tr[C−1
; (�G + `G`

)
G )] (6)

_←
||y; −�`G | |22 + Tr(�G�)�)

<
(7)

The above learning-based rules can estimate the model parameters,
and finally the vector x; can be estimated using the Maximum-A-
Posterior (MAP):

x̂; ← �0�
)
(
_I +��0�

)
)−1 y; . (8)

In general, various structures such as random binary or random
Gaussian distribution have been used for measurement matrix in
the literature. However, there are evidences that using sparse binary
matrix, which are much easier to implement in embedded systems,
can lead to more energy-efficient compression compared to other
structures [18]. Therefore, we consider random binary �, and inverse
DCT dictionary 	.

B. GCS–WSN
We will see later in Section III that the proposed BSBL–WSN

performs very accurately and can recover the original samples on the
cloud. However, the reconstruction process explained above is not as
simple as traditional methods such as BP [22] or OMP [23]. In this
section, our aim is to propose a very simple CS techniques for water
level data so that traditional reconstruction methods can be applied
too. Naturally, water level data has small fluctuations, and sharp rises
occur only in case of flooding events. In fact, crucial information
exist mainly at few (sparse) transition points. In order to model
these changes in a mathematical form, we propose to use Gradient
(derivative) function which measures the variations of a function.
In other words, it can sparsify our data as it is a requirement for
successful implementation of CS. The process of converting water
level data into its sparse counterpart can be simply implemented by
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Fig. 2. Performance evaluation of the proposed approach: Average reconstruction error between original data and reconstructed data vs (a)
various compression rates and (b) various input SNRs (dB); (c) Transmission energy vs Transmission distance at various compression rates.
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Fig. 3. Example of water level data reconstructed from 50% com-
pressed samples using two CS-based methods (BSBL and SL0), and
one classic compression technique, i.e., Wavelet Thresholding.

an analog differentiator at the sensor nodes. Here, we mathematically
define the gradient of x; as:

x′; (C) = ∇x; (C) =
mx; (C)
mC

(9)

where C is the time variable which is replaced by = after acquisition
process, and x′

;
is the sparse vector. Now, the compressive sensing

problem can be re-defined and directly applied to x′
;

via y′
;
= �x′

;
. We

call the proposed approach as Gradient Compressive Sensing (GCS).
After obtaining the compressed measurements y′

;
at the gateway,

they are sent to the cloud server where the original signal, i.e., x′
;
, is

recovered by a CS algorithm using the shared measurement matrix
�. Most common sparse recovery methods such as BP [22], or OMP
[23], can be used for this purpose. The recovered data encompasses
the information of water level variations. However, if needed, the
integral of x′

;
can be calculated to yield x; .

III. EXPERIMENTAL RESULTS
Extensive experiments were conducted to evaluate the performance

of the proposed methods with real water level dataset retrieved from an
online flood information system in Malaysia1. The dataset includes
water level samples captured from 15 sensor nodes deployed on
various rivers. There are 150 data points for a 24-hour period.

A. CS performance
An example of 150-point water level data are first compressed

using random binary matrix of size 70 × 150 (equivalent to 50%
compression ratio). Then, the the proposed BSBL–WSN method is
applied to the compressed sampled to reconstruct the original data
points. For comparison, we also applied Smoothed–ℓ0 (SL0) [25]
and classic Wavelet thresholding to reconstruct the original samples.
SL0 uses a smooth measure of ℓ0-norm to recover sparsest vector
from the compressed measurements. Figure 3 shows the results of
this experiment along with the obtained Mean Square Error (MSE).
It is clearly observed that the original signal has been successfully

1http://infobanjir.water.gov.my/real_time.cfm

recovered where BSBL–WSN outperforms both SL0 and Wavelet
thresholding, with a much smaller reconstruction error.

In order to evaluate the robustness of the proposed approaches,
we conducted an experiment to reconstruct all water level data
at various compression ratios. Figure 2 (a) illustrates the average
reconstruction performance of original flood data points from
compressed measurements at various compression rates. In this
experiment, 50 trials have been conducted at each compression rate,
and random binary sensing matrix (measurement matrix) have been
used. As observed from Figure 2 (a), the average MSE is acceptable
for up to around 75% compression rate using the proposed BSBL–
WSN. It is also observed that BSBL outperforms SL0 as expected.
Interestingly, Figure 2 (a) reveals that the proposed GCS–WSN
provides greater reconstruction performance among all other methods
in the graph. However, such performance significantly drops at 50%
onward where average MSE sharply increases. The reason of this
significant drop could be due to weakness of BP method (used for
sparse reconstruction) to recover highly compressed samples.

Next, the robustness of the proposed methods against noisy inputs
is assessed. To do this, White Gaussian Noise (WGN) is added to the
original samples with different Signal-to-Noise-ratio (SNR) levels.
Then, compressive sensing is applied and the average reconstruction
errors over 50 trials are recorded. The compression ratio is kept
at 50% in all trials. Figure 2 (b) presents average MSEs versus
varying input SNR from 1 to 30 dB. A monotonic reduction in MSE
is observed for all the methods where the proposed methods, i.e.,
BSBL–WSN and GCS–WSN outperform SL0.

B. Energy efficiency
In the proposed method, unlike the conventional WSN, instead

of transmitting each captured sample, we transmit a number of
samples in a compressed packet. So that, the senor nodes can save
considerable amount of energy by transmitting much less number of
packets [26]. We discuss the energy model used and show how the
compression techniques have reduced the energy consumption of the
nodes. Let us denote the required energy for sampling, computation,
and communication by �B<, �2<? , �2<<, respectively. In order to
calculate the energy saving of sampling as a result of applying CS,
we use the following equation [19]:

�B0E8=6 ≈ (
= − <
=
) (�B< + �2<< + �2<?). (10)

Recall that = and < are number of samples before and after
compression, respectively (i.e.< < =). We have assumed transmission
distance between the sensor nodes and the mobile sink to be 10 meters.
In addition, normalized sampling and computation energies with
respect to communication energy are calculated as �B< = 4.2× 10−4

and �2<? = 0.11, respectively [19]. Note that both BSBL and GCS
methods consume the same amount of sensing energy as they follow
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similar sampling procedures. Table 1 provides the results of saved
energy using Eq. (10) at different compression rates. As observed
from this table, when the compression rate is increased, the amount
of energy saving becomes greater, correspondingly. However, there
should be a compromise between these two factors with respect
to reconstruction error. For instance, one can go for up to 70%
compression on the sensors if BSBL–WSN is used for reconstruction
(with MSE = 0.1440). Using GCS–WSN at this rate and beyond is
not recommended as the associated MSE is not acceptable (MSE =
0.5852). In addition to the advantages of CS in reducing the energy
consumed for sensing, considerable power to transmit the samples
is saved. In fact, CS allows us to combine a number of packets into
one packet and reduce the number of transmissions. Although, the
size of a compressed packet is larger than a packet with a single
sample but because of transmitting much less number of packets,
sensor nodes consume less energy in transmitter (E4;42) and spend
low power in transmitter amplifier (�0<?) to achieve an acceptable
signal noise ratio. The energy used for transmitting a packet has
been calculated as follows [27]:

�)- ( , 3) = E4;42 + E0<? 3
4 (11)

where  is the number of bits to be transmitted in each packet, 3
is the distance between a sensor node and the sink. We assume a
two-ray ground model where E4;42 = 50 nJ/bit, and E0<? = 100
pJ/bit/m2. Figure 2 (c) depicts the transmission energy �)- (11)
versus distances within 3 = [5 15] meters for various compression
rates. As observed from this figure, for longer distances more energy
is required as expected. Also, increasing the compression ratio
(equivalent to decreasing  ) can significantly reduce the transmission
costs compared to the no-compression case (i.e. CR = 0).

TABLE 1. Energy saving performance at various compression rates.

<, = CR (%) �B0E8=6

MSE
BSBL GCS

50, 50 0 0 0.0076 7×10−20

45, 50 10 0.11 0.0074 2×10−10

35, 50 30 0.33 0.0208 1×10−9

25, 50 50 0.55 0.0435 0.0050
15, 50 70 0.77 0.1440 0.5852
10, 50 80 0.88 0.2613 0.9326

IV. CONCLUSIONS
In this paper, the problem of energy-efficient water level data

transmission in WSN was addressed. The research focuses on reducing
the number of packet transmissions using compressive sensing as
a promising resolution to conserve the energy of the sensor nodes.
Two different methods, based on block-sparse modeling and Gradient
function, were proposed to capture the input samples in a compressed
fashion. Our experiments have shown significant reduction of energy
consumption during data acquisition. Notably, we observed that the
proposed techniques allow accurate and robust reconstruction of
original samples at the receiver side (i.e. cloud).
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