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Regaining Cognitive Control: An Adaptive
Computational Model Involving Neural

Correlates of Stress, Control and Intervention

Nimat Ullah(B) and Jan Treur

Social AI Group, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
nimatullah09@gmail.com, {nimat.ullah,j.treur}@vu.nl

Abstract. Apart from various other neural and hormonal changes caused by
stress, frequent and long-term activation of the hypothalamus–pituitary–adrenal
(HPA) axis in response to stress leads in an adaptive manner to the inadequacy
of the stress response system. This leads to a cognitive dysfunction where the
subject is no more able to downregulate his or her stress due to the atrophy in
the hippocampus and hypertrophy in the amygdala. These atrophies can be dealt
with by antidepressant treatment or psychological treatments like cognitive and
behavioural therapies. In this paper, an adaptive neuroscience-based computational
networkmodel is introducedwhich demonstrates such a cognitive dysfunction due
to a long-term stressor and regaining of the cognitive abilities through a cognitive-
behavioural therapy: Mindfulness-Based Cognitive Therapy (MBCT). Simulation
results are reported for the model which demonstrates the adaptivity as well as the
dynamic interaction of the involved brain areas in the phenomenon.

Keywords: Stress induced neural anatomy · Negative metaplasticity ·
Mindfulness · Adaptive causal modeling · Cognition · Positive metaplasticity ·
Therapy

1 Introduction

Alteration in cognitive abilities can, potentially, be caused by the various ups and downs
in humans’ life and body. For instance, although termed to vary person to person, decline
in cognitive abilities with increasing age and long-term stress have been confirmed by [1,
2]. Similarly, another discrepancy in the cognitive abilities is the lack of flexibility with
age [3] which is considered very essential by many, specifically in changing situations.
Taking the potentially negative consequences of long-term stress into account, various
studies have reported similar findings regarding its effects in the long run [2, 4, 5], i.e.,
cognitive decline. At the cellular level, according to [6, 7], the cell loss and, therefore,
changes in the synaptic plasticity take place because of the decrease in the brain-derived
neurotrophic factor (BDNF) caused by the increase in the glucocorticoids.

To handle this severe problem in cognition, various studies, for instance [2], suggest
antidepressant treatment but on the other hand, [8, 9] come up with Mindfulness-Based
Cognitive Therapy (MBCT) [10] as an effective treatment for similar problems in general
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and cognitive impairments caused by long-term stress. In MBCT, the subject is trained
to focus on the present moment, gain awareness of himself and accept reality. Cognitive
Behaviour Therapy (CBT) is another, almost similar therapy but according to [11]MBCT
was foundmore effectivewhen compared toCBTand that’s also the reasonwhy the study
presented here considers MBCT. The reason may lie in the fact that the later combines
techniques from the former with a mindfulness training program which provides added
value.

Moreover, to combine these concepts into a single model, this study considers an
adaptive network modeling approach [12] because of its efficacy and suitability for the
adaptive and cyclic processes, as demonstrated in [13, 14]. In rest of the paper, Sect. 2
gives brief account of the literature on the subject, Sect. 3 presents the adaptive network
model, which is explained by simulation results in detail in Sect. 4. Finally, the paper is
concluded in Sect. 5.

2 Related Work

The alteration in cognitive abilities caused by long-term stress are attributed to the
neuronal losses at the cellular level causedby stress. These changes are considered similar
to those caused by depression [2]. For instance [6] links such cellular changes in the
hippocampus to the increased level of glucocorticoid hormones, i.e., cortisol. Similarly,
at the molecular level too, these cellular paucities were found in the hippocampus which
are, most of the time, caused by the decrease expression of BDNF and resultant increased
level of glucocorticoid/cortisol [6, 7, 15]. The down-regulating role of the increased level
of glucocorticoids in the hippocampal expression has also been reported by [16]. BDNF
is considered essential for neuronal survival, but [17] attributes reduction of BDNF to
the potential mediating action of glucocorticoid on the hippocampus.

The effect of the boost of glucocorticoids is referred to as negative metaplasticity
as it downregulates adaptivity of the hippocampal synaptic connectivity. In contrast, the
boost in the expression of BDNF is referred to as positive metaplasticity as it strengthens
connectivity in the hippocampus. These changes in the background, at the neural level,
cause lack of control at the forefront or what we know as cognitive loss whereby the sub-
ject lacks the ability to regulate his or her emotions in an adaptive manner. Having said
this, it is also possible that the same process is reversed by adequate means (antidepres-
sant treatment for instance [2]), increasing the expression of BDNF. Synapses process
and transmit neural information with some efficacy. Alteration in the synapsis is called
synaptic plasticity or (first-order) synaptic adaptation. As mentioned above, synaptic
plasticity itself can also change which is referred to as second-order adaptation or meta-
plasticity. According to [2], if metaplasticity improves the adaptive cognitive function,
it’s considered positive metaplasticity but on the contrary, if it brings impairment to the
aforementioned adaptive cognitive function then it’s called negative metaplasticity. This
kind of cognitive impairment has been observed in both humans [18] and animals [19]
as a result of long-term stress [20, 21].

MBCT, that is modeled here as a treatment for the above cognitive deficit, is con-
sidered a very effective approach [8, 9]. This therapy improves psychological health by
increasing mindfulness. It combines Kabat-Zinn’s [10] mindfulness-based stress reduc-
tion programwith the techniques used inCBT.MBCT, therefore, promotes acceptance of
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feelings without judgement, focusing on the present moment and awareness of self [22].
Acceptance enables the person to disintegrate him or herself from the negative thoughts
and consider emotions as a non-permanent event [23]. After this disengagement from
negative thoughts, the mindfulness training helps the person in positive reappraisal [24].
Similarly, the focus on the present moment helps the person get insight of his or her own
feelings and sensations for successful reappraisal of his thoughts. Generally, there are
various brain areas involved in all these processes of MBCT but the most responsible
parts that are considered essential for successful MBCT are the anterior cingulate cor-
tex (ACC), insula, temporo-parietal junction, posterior cingulate cortex and prefrontal
cortex (PFC) [15]. Activation of ACC helps enhance attention regulation by sustaining
attention on a chosen object. Insula and temporo-parietal junction enhance body aware-
ness by focusing on the internal experience like emotions, breathing and body sensation.
PFC is responsible for the control of emotion regulation. Moreover, PFC together with
posterior cingulate cortex, insula, temporo-parietal junction also helps the person change
his perspective on himself [15].

Currently, there are various modeling techniques used in the field of artificial intel-
ligence, specifically for modeling and simulating brain processes as summarized in [25,
26] but this study uses [12] because of its suitability for the model presented in this
paper. This modeling approach comes under the umbrella of causal modeling which has
a long history in Artificial Intelligence, e.g., [27, 28]. The dynamic and adaptive perspec-
tive on causal relations makes this technique unique among other similar approaches.
Here, causal effects are exerted over time. Interestingly, the causal relations themselves
are adaptive and can change over time too. Moreover, this type of adaptation can itself
be adaptive too, leading to second-order adaptivity as occurs in metaplasticity; e.g.,
[2]. The network model introduced here is a second-order adaptive temporal-causal
network model whereby adding dynamics and adaptation makes the model capable of
application that would otherwise be out of scope of the causal modeling. This provides
us with a useful opportunity to transform qualitative processes as described in empiri-
cal literature into adaptive causal network models. Simulations then can show that the
underlying neural mechanisms that according to the assumptions made in this empirical
literature explain certain observed emerging phenomena are indeed able to generate the
phenomena computationally.

3 Multilevel Adaptive Cognitive Modeling

The multilevel adaptive causal network modeling approach [12, 29] has been used as a
tool for the development and simulation of the adaptive causal model. The conceptual
and numerical representation of the network characteristics used are summarized below
in Table 1. Currently, this technique provides a dedicated software environment with a
library of over 40 combination functions, publically available at https://www.researchg
ate.net/publication/336681331, for combining the incoming causal impacts to a network
state. The library also includes facilities to compose the existing functions into new
functions by mathematical function composition. Moreover, self-defined functions can
also be added to the library easily as per need of the model and phenomenon which
makes this technique very feasible and flexible. The combination functions used in the
current paper are shown in Table 2.

https://www.researchgate.net/publication/336681331
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Table 1. Conceptual and numerical representations of the network characteristics used

Concept Conceptual representation Explanation

Connectivity characteristics

States and connections X, Y, X → Y Describes the nodes (representing
state variables, shortly called
states) and links (representing
causal connections between
states) of the network

Connection weight ωX,Y A connection weight ωX,Y
(usually in [−1, 1]) represents the
strength of the causal impact of
state X on state Y through
connection X → Y

Aggregation characteristics

Aggregating multiple impacts on
a state

cY (..) For each state Y (a reference to) a
combination function cY (..) is
chosen to combine the causal
impacts of other states on state Y

Timing characteristics

Timing of the effect of causal
impact

ηY For each state Y a speed factor ηY
≥ 0 is used to represent how fast a
state is changing upon causal
impact

Concept Numerical representation Explanation

State values over time t Y(t) At each time point t each state Y
in the model has a real number
value, usually in [0, 1]

Single causal impact impactX,Y (t)
= ωX,YX(t)

At t state X with a connection to
state Y has an impact on Y, using
connection weight ωX,Y

Aggregating multiple causal
impacts

aggimpactY (t)
= cY (impactX1,Y (t),…,
impactXk,Y (t))
= cY (ωX1,Y X1(t), …,
ωXk,Y Xk(t))

The aggregated causal impact of
multiple states Xi on Y at t, is
determined using combination
function cY (..)

Timing of the causal effect Y(t + �t) = Y(t) +
ηY [aggimpactY (t) − Y(t)] �t
= Y(t) + ηY [cY (ωX1,YX1(t), …,
ωXk,YXk(t)) − Y(t)] �t

The causal impact on Y is exerted
over time gradually, using speed
factor ηY ; here the Xi are all
states with outgoing connections
to state Y

Using this technique,we propose an adaptive causal networkmodelwith connectivity
as given in Fig. 1. A description of the various states of the model is provided in Table
3 where the background colors differentiate between the different levels of the model.
The base level refers to the basic functioning of the model, involving the regulation of
the negative emotions.
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Table 2. Basic combination functions from the library used in the presented model

Notation Formula Parameters

Advanced logistic
sum

alogisticσ,τ(V1, …,Vk) [ 1
1+e−σ(V1+···+Vk−τ)

−
1

1+eστ)
](1 + e−στ)

Steepness σ > 0
Excitability
threshold τ

Hebbian learning hebbμ(V1, V2,W ) V1V2(1 − W ) + W Persistence factor μ

> 0

Identity id(V ) id(V ) = V

The first-order adaptation levels of the model explicitly represent weights ωX,Y of
some of the connections in the base model by first-order self-model states WX,Y (also
called reification states). For instance, X13 and X14 are first-order self-model states rep-
resenting the adaptive connection weights ωadrenalcortex,hippocampus and ωadrenalcortex,PFC,
i.e., the connections represented by the two outgoing light-blue colored arrows fromX6,
in the base model, respectively. The persistence μ and speed factors η of these con-
nections’ adaptation states X13 and X14 are represented by second-order self-model
states X15 (Mcortisol−feedback ), X16 (Hcortisol−feedback ) and X17 (Mcortisol), X18(Hcortisol),
respectively. The impact of these self-modeling states on their respective states in the
lower order is represented by the red downward connections from the upper levels to the
lower levels.

Table 3. States and their explanation

States Role in the model Level
X1 stimulus Anything causing stress in the real world

Base Level

X2 thalamus Processing of sensory information
X3 amygdala Detects negative emotions and informs HPA to respond [15]
X4 hypothalamus

A
ls

o
ca

lle
d

H
PA

 a
xi

s Part of autonomic stress response system which re-
leases cortisol in the body to handle the situation [30].X5 anterior-pituitary

X6 adrenal-cortex
X7 hippocampus Memory formation [15]
X8 PFC Regulator of the emotions [15]
X9 ACC Activated by MBCT where: 

- ACC regulates attention,
- Insula together with temporo-parietal-junction gives body 

awareness,
- PFC, posterior cingulate cortex, insula and temporo-parietal 

junction helps in changing one’s perspective on the self [15].

X10 insula

X11
temporo-parietal-
junction

X12
posterior-cingu-
late-cortex

X13 First-order self-model states for hebbian learning representing 
connection weights adrenalcortex,hippocampus

and adrenalcortex,PFC

First-Order 
Self-Model 

LevelX14

X15 These states represent the adaptive control of plasticity, also 
called metaplasticity as described for instance in [2, 4, 5]. The 
hormones released by HPA which can cause negative as well as 
positive metaplasticity in different brain parts  [30]

Second-Order
Self-Model 

Level

X16

X17

X18
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Generally, there are various adaptive connections in the brain, the plasticity and
metaplasticity of which are subject to various factors, for instance reward is one of those
factors to be mentioned [31]. This model is however motivated by the psychological
computational model presented in [32] but the network in this model is modeled based
on anatomical knowledge in the light of the findings from neurosciences as presented in
Sect. 2. This model, therefore, only considers the aforementioned two adaptive connec-
tions out of the many adaptive connections in the brain. It demonstrates the phenomenon
of negative and positive metaplasticity at a neural level where long-term stress causes
cognitive loss through negative metaplasticity whereby the person loses control on regu-
lation capabilities. As a treatment, MBCT has been used in the model which enables the
person to regain his or her cognitive control through positive metaplasticity. The base
model is a network of main parts of human brain and body involved in the stress experi-
ences and the MBCT. The first-order adaptation represents the hormonal changes taking
place as a result of stress and its treatment i.e. MBCT. The first-order adaptation uses a
Hebbian learning principle [33]. The second-order adaptation represents the adaptation
of the first-order adaptation to control the adaptation.

Fig. 1. Adaptive causal network model for therapeutic intervention for long-term stress

In the base model when the person faces some negative stressing stimulus, it’s
detected by the amygdala through the thalamus. Detection of stress by the amygdala
automatically activates the Stress Response System which means activation of the
Hypothalamic-pituitary-adrenal (HPA) axis as a result [30, 34]. The HPA releases cor-
tisol to handle the situation. This works fine if this is not very frequent but repeated and
prolonged activation of the HPA axis and hence prolonged release of cortisol blunts the
stress response system; this is where the problem begins. In the model, the connections
to PFC and hippocampus from the HPA model the hormonal effect of HPA on the two,
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which impairs the function of the PFC and hippocampus leading to the lack of cognitive
control called negative metaplasticity, as mentioned.

The MBCT practice, on the other hand, activates the ACC, insula, temporo-parietal
junction and posterior cingulate cortex which helps the person decrease activation of the
HPA and hence less release of cortisol over time [15]. At the neural level these changes
are considered as positive metaplasticity as the person regains control over his cognitive
abilities. TheM- and H-states represent the persistence and speed factor of the learning
taking place at the respective base level connections.

In Box 1 and Box 2, the full specification of the network characteristics needed for
reproduction of the model results are given. These specifications are not only essential
for the reproduction of the results demonstrated in Fig. 2, 3, 4 and 5 but also qualitatively
validates themodel against the relevant literature in the sense that they show that personal
characteristics exist by which indeed the assumed neural mechanisms lead to the overall
patterns reported in the literature. Box 1 contains the connectivity role matrices called
mb and mcw. Here mb gives all those incoming connection to a state which are either
at the same level or from a lower level. The downward connections are indicated in role
matrix mcw wherein they are used as indicator of their respective adaptive connection.
For instance, in the model in Fig. 1, state X13 (i.e., a W-state) represents the adaptive
base level connection from X6 to X7, the causal effect of which is modeled by the
downward connection from X13 to X7. Similarly, the adaptive connection from X6 to X8
is represented by X14 showing the cortisol level, the frequent and increased expression
of which causes cognitive loss.

mb connectivity: 

base connectivity 

1 2 3 4 5 6 7 mcw connectivity: 

connection weights

1 2 3 4 5 6 7 

X1 stimulus X1 X1 stimulus 1
X2 thalamus X1 X2 thalamus 1
X3 amygdala X2 X7 X8 X10 X3 amygdala .7 .1 -.8 .1 
X4 hypothalamus X3 X4 hypothalamus 1
X5 anterior-pitui-

tary
X4 X5 anterior-pitui-

tary
1

X6 adrenal-cortex X5 X6 adrenal-cortex 1
X7 hippocampus X3 X6 X8 X10 X7 hippocampus .15 X13 .4 .22
X8 PFC X3 X6 X7 X9 X10 X11 X12 X8 PFC .15 X14 .22 .2 .2 .2 .2 
X9 ACC X3 X8 X12 X9 ACC .74 .01 1
X10 insula X3 X9 X10 insula .45 1
X11 temporo-parie-

tal-junction 
X10 X11 temporo-parie-

tal-junction 
1

X12 posterior-cingu-
late-cortex 

X8 X9 X12 posterior-cin-
gulate-cortex

.15 1

X13 X6 X7 X13 X13 1 1 1
X14 X6 X8 X14 X14 1 1 1
X15 X6 X7 X13 X15 X15 -1 1 1 1
X16 X6 X7 X13 X16 X16 -1 1 1 1
X17 X6 X8 X14 X17 X17 -1 1 1 1

Box 1. Role matrices for connectivity characteristics.

Similarly, role matrices mcfw, mcfp for the aggregation characteristics and ms for
the timing characteristics are given in Box 2. Matrix mcfw contains selection of the
combination functions used for aggregation of the incoming causal impact at a state Xi.
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For instance, state X8 uses alogistic(..) and state X14 uses hebb(..) combination function
as given in Table 2. Moreover, the first-order adaptation state X18 uses the Hebbian
learning combination function hebb(..) from the same table. Role matrixmcfp specifies
the parameter values for each of the combination function as indicated inmcfw. Note here
that the red cells with numbered state names Xi in it, indicate the downward connections
from these states in all the matrices except mb. Role matrix ms carries all the speed
factor values of the states. In role matrix ms, the rows with red cells represent the state
with adaptive speed factors i.e. X13 and X14.

mcfw 
aggrega-

tion: 1 2 3 mcfp
aggrega-

tion 1 2 3 ms timing:

Combination 
function weights

alo-
gisti

c 

heb
b Id 

Combination function 
parameters 

Alogistic Hebb id 
1 

Speed factors 

X1 stimulus 1 X1 stimulus 1 X1 stimulus 0
X2 thalamus 1 X2 thalamus 1 X2 thalamus 1
X3 amygdala 1 X3 amygdala 8 .4 X3 amygdala .2 

X4
hypothala-

mus 1 X4 hypothalamus 1 X4
hypothala-

mus .3 

X5
anterior-pitu-

itary 1 X5
anterior-pitui-

tary 1 X5
anterior-pi-

tuitary .3 

X6
adrenal-cor-

tex 1 X6 adrenal-cortex 1 X6
adrenal-
cortex .3 

X7 hippocampus 1 X7 hippocampus 8 .52 X7
hippocam-

pus .3 

X8 PFC 1 X8 PFC 8 .56 X8 PFC .2 
X9 ACC 1 X9 ACC 18 .69 X9 ACC .01 
X10 insula 1 X10 insula 18 .64 X10 insula .015

X11

temporo-pa-
rietal-junc-

tion 
1 X11

temporo-parie-
tal-junction 18 .6 X11

temporo-
parietal-
junction 

.01 

X12

posterior-
cingulate-

cortex 
1 X12

posterior-cin-
gulate-cortex 18 .4 X12

posterior-
cingulate-

cortex 
.015

X13 1 X13 X15 X13 X16 

X14 1 X14 X17 X14 X18 

X15 1 X15 10 .91 X15 0.01
X16 1 X16 10 1.05 X16 0.01
X17 1 X17 10 .75 X17 0.01
X18 1 X18 10 .75 X18 0.01

Box 2. Role matrices for aggregation and timing characteristics

4 Simulation Results

Simulation results for an example scenario are provided here with and without MBCT,
which shows how a person can go into a complete loss of cognitive abilities (caused
by long-term stress) contrary to recovery from the cognitive loss. The results can be
obtained by providing the values given in Box 1 and Box 2 to the dedicated software as
mentioned above with the initial values of the states as shown in Table 4.

Figure 2 demonstrates the effect of long-term stress at the neural level where frequent
and long-term expression of the cortisol by HPA blunts the autonomic stress response
system. It can be seen that initially when the amygdala gets activated by some kind of
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stressful event, the hippocampus and PFC also gets activated which helps in activating
the associatedmemory and handling of the stress respectively. But as this goes longer, the
person’s hippocampus and PFC are no longer activated despite the fact that the amygdala
and the HPA are still very high.

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0

-T im e -
0

0 .1

0 .2

0 .3

0 .4
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0 .7
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al

ue
s-

Base Model
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a d re n a l-c o r te x
h ip p o c am p u s
P F C
A C C
in s u a l
te m p o ro -p a r ie ta l- ju n c t io n
P o s te r io r -c in g u la te -c o r te x

Fig. 2. Base model without therapy
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P F C
A C C
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te m p o ro -p a r ie ta l- ju n c t io n
P o s te r io r -c in g u la te -c o r te x

Fig. 3. Base model with therapy

Contrary to Fig. 2, in Fig. 3 it can be seen that although the person’s cognitive abilities
go down for some period, this doesn’t remain like this for longer. It’s because the person



566 N. Ullah and J. Treur

undergoes the proposed therapy which helps the person slowly regain his cognitive
abilities. The therapy, on one hand makes the person not get stressed so easily and on the
other hand it decreases the activation of HPA and hence expression of cortisol which has
positive plastic and metaplastic effects on the Hippocampus and PFC. Therefore, both of
these important parts of the brain start functioning as normal and regulate the negative
stress the person is facing. At the neural level, this happens because in the MBCT,
the person activates his or her other brain parts like ACC, insula, temporo-parietal-
junction and posterior-cingulate-cortex which helps the person regulate his attention,
get awareness of himself and change his perspective about himself, respectively.

In connection to Fig. 2 above, Fig. 4 shows the first- and second-order adaptation.
Cortisol-feedback shows the Hebbian learning taking place at the connection in the
base level between the HPA and hippocampus wherein impairment takes place at the
hippocampus due to the increase level of cortisol. These states in the first-order adapta-
tion level are the W-states. Similarly, the cortisol represents the second W-state which
represent the learning taking place at the connection in base level between HPA and
PFC. Moreover, the two M- and H-states represent the persistence and speed factor of
the negative plasticity here, for metaplasticity. As this figure only shows the negative
plasticity, therefore these connections only decrease, representing cognitive loss.
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H -c o r t is o l- fe e d b a c k
M -c o r t is o l
H -c o r t is o l

Fig. 4. First and second-order self-model states indicating negative plasticity and metaplasticity

Figure 5 in connection to Fig. 3 shows negative as well as positive metaplasticity.
As already explained above, initially negative plasticity is taking place because of the
excessive expression of the cortisol but when the person starts MBCT training, the
situation starts getting reversed. Initially the person reverses the learning as can be
seen that the cortisol-feedback and cortisol (the learning taking place at the HPA to
hippocampus and PFC connections respectively) starts getting increasing. While the
M- and H-states increasing slowly representing the persistence and speed factor of the



Regaining Cognitive Control: An Adaptive Computational Model 567

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0

-T im e -

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1
-V

al
ue

s-
1st & 2nd Reification Levels

c o r t is o l- fe e d b a c k
c o r t is o l
M -c o r t is o l- fe e d b a c k
H -c o r t is o l- fe e d b a c k
M -c o r t is o l
H -c o r t is o l

Fig. 5. First and second-order self-model states indicating negative and positive plasticity and
metaplasticity

learning taking place called positive metaplasticity. These changes show it effect in the
form of normal activation of the hippocampus and PFC in response to stress as discussed
in Fig. 3 above.

5 Conclusion

The introduced adaptive network model is based on the neural correlates of stress
response system and MBCT. It was designed using a multilevel adaptive network-
oriented causal modeling approach in such a way that the anatomy of stress and MBCT
induced brain parts were incorporated. The concepts of plasticity and metaplasticity
have a long history in neuroscience. The model demonstrates the processes through
simulations, showing how negative and positive metaplasticity occur with their effects
on health. These results can be made as close to available empirical data as possible.
This can also prove as a base for virtual training agent for therapies. The implementation
of these techniques in the way done in this paper through the multilevel adaptive causal
network model makes these processes easily understandable but also makes it an easy
choice for implementation in the form of a complex artificially intelligent systems to
work in a human-like manner.

During this study, it was learnt that, although quite a lot of work has been done in
these areas of neuroscience, the anatomy of these processes, specifically in case of the
aforementioned therapy are still not fully clear. Therefore, a temporal anatomy of the
brain parts activated by such therapies would be a valuable contribution. This will not
only make it easier to understand the flow of these complex processes going on in the
brain but also make its implementation feasible in a more realistic way.

Apart from the added values of the model to neuroscience research, this paper also
acknowledges the scope of causal modeling e.g., [27, 28] which has gotten even wider
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with the dynamicity brought by the multi-order adaptation [12, 29] as it has enabled this
modeling approach to model phenomenon that would otherwise be not possible. In the
future, the authors aim at developing a virtual agent system for training based on this
model where the agent would collect data from body sensors of the patient and help him
in undergoing therapies accordingly.
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