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a b s t r a c t

We argue that existing methods for the treatment of missing observations in time-
varying parameter observation-driven models lead to inconsistent inference. We provide
a formal proof of this inconsistency for a Gaussian model with time-varying mean. A
Monte Carlo simulation study supports this theoretical result and illustrates how the
inconsistency problem extends to score-driven and, more generally, to observation-
driven models, which include well-known models for conditional volatility. To overcome
the problem of inconsistent inference, we propose a novel estimation procedure based
on indirect inference. This easy-to-implement method delivers consistent inference. The
asymptotic properties of the new method are formally derived. Our proposed estimation
procedure shows a promising performance in a Monte Carlo simulation exercise as well
as in an empirical study concerning the measurement of conditional volatility from
financial returns data.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Missing observations are often encountered in empirical studies and are typically treated as a nuisance. They can occur
or several reasons. For instance, high frequency financial transactions are recorded at unequally spaced time points and
on-synchronous returns are observed when modeling multiple series (Lo and MacKinlay, 1990). Such situations can
e handled by introducing missing observations to synchronize the data (Buccheri et al., 2017; Koopman et al., 2018).
issing observations are encountered also when dealing with daily financial data. Financial markets are closed during
olidays and stock prices are not recorded during these days. However, the underlying values of the stocks may still
e changing due to external events, even if no trading takes place (Bondon and Bahamonde, 2012). Another example
here missing observations are encountered is when jointly modeling financial and macroeconomic variables that are
easured at different frequencies. Also in this case, missing observations are artificially introduced to synchronize the
ariables (Creal et al., 2014a; Delle Monache et al., 2016). Missing data can also be due to specific events such as computer
ailures, loss of records, and budget constraints. The literature on the treatment of missing observations in statistical
nference is extensive; see, for example, Pigott (2001) for a review and for many references on the subject.

Observation-driven time series models are widely employed to describe the time-variation in economic and financial
ime series. Such models feature time-varying parameters that are driven by past observed values of the time series. This is
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in contrast with parameter-driven models, where time-varying parameters are driven by stochastic processes with their
own source of error (Cox, 1981). A notable example of an observation-driven model is the generalized autoregressive
conditional heteroskedasticity (GARCH) model of Engle (1982) and Bollerslev (1986). Creal et al. (2013) and Harvey
(2013) recently introduced the class of generalized autoregressive score (GAS) models that encompasses a wide range
of observation-driven models. Among others, the GARCH model, the exponential GARCH model of Nelson (1991) and the
Poisson autoregressive model of Davis et al. (2003) are special cases of GAS models. The peculiarity of GAS models is that
time-varying parameters are driven by the score of the predictive likelihood function. The GAS approach has also delivered
several novel specifications. Examples include the fat-tailed location model of Harvey and Luati (2014), the copula model
of Salvatierra and Patton (2015) and the spatial model of Blasques et al. (2016).

The handling of missing data in observation-driven models is widely discussed in empirical studies where these models
are implemented. The most common approach employed by practitioners is to set the innovation of the observation-driven
time varying parameter to zero, that is, to set the innovation to its conditional expectation. This solution originates in
the context of score-driven or GAS models. In this case, the score innovation is set to zero when a missing observation
occurs. Statistical inference is then simply based on the maximization of the resulting pseudo likelihood function. We
refer to this method as the ‘‘setting-to-zero’’ strategy; see, for instance, Creal et al. (2014b), Koopman et al. (2018), Lucas
et al. (2016), Delle Monache et al. (2016) and Buccheri et al. (2017). The ‘‘setting-to-zero’’ approach is appealing from a
practical point of view as it is easy-to-implement and computationally not demanding, given the closed form expression
of the pseudo likelihood function. Furthermore, in analogy with the Kalman filter for parameter-driven models, this
approach can be justified by some intuitive arguments; see Lucas et al. (2016). However, there is no formal discussion
in the literature on the asymptotic properties of the method. Here we show that the ‘‘setting-to-zero’’ strategy delivers
inconsistent inference. We formally prove the inconsistency of the pseudo maximum likelihood (pseudo ML) estimator
for a GAS model defined for a Gaussian distribution with a time-varying mean. We perform simulation experiments that
show how the inconsistency problem extends to other observation-driven models, including the GARCH model and the
Student-t GAS conditional volatility (t-GAS) model of Creal et al. (2013) and Harvey (2013).

We emphasize that a straightforward solution to missing observations in observation-driven models is not available.
This is in sharp contrast to the treatment of missing observations for parameter-driven models that poses no additional
challenges from an estimation perspective: missing observations can be integrated out of the likelihood and exact
maximum likelihood estimation can be performed. Most earlier contributions on inference with missing observations has
focused on linear time series models. For example, it is well documented that for analyses based on the autoregressive
moving average (ARMA) model with Gaussian disturbances, missing observations can be handled within the Kalman filter;
see Harvey and Pierse (1984). However, we argue that no consistent procedure has been designed for observation-driven
models, only except for a special case such as the estimator of Bondon and Bahamonde (2012) for the ARCH model. Our
aim is to bridge this gap by developing an indirect inference method that delivers consistent inference in this context.

Our indirect inference method for the treatment of missing observations can be adopted for general classes of
observation-driven models, but we focus on score-driven models for simplicity of exposition. The proposed method is
easy-to-implement and delivers a general approach to statistical inference for observation-driven models with missing
observations. The intuition behind using indirect inference in this setting is the ability to replicate missing observations in
the simulation step of the indirect inference method. Therefore, under the assumption that the data are missing at random,
we can exactly replicate the generating process of the observed time series. The auxiliary model we consider is the one
obtained by setting the score innovation to zero. The asymptotic properties of the proposed estimator are formally derived.
The finite sample accuracy is studied in a Monte Carlo simulation experiment. We show that the finite sample performance
of the proposed estimator is comparable to that of the infeasible but efficient exact maximum likelihood estimator. Finally,
we compare the performance of our estimator in an empirical application with financial data. In particular, we study the
performance of alternative estimators in the context of a conditional volatility Student’s t model applied to the daily
S&P500 stock index.

The remainder of the paper is organized as follows. Section 2 presents the modeling setting and describes the ‘‘setting-
to-zero’’ approach. Section 3 shows the inconsistency for the Gaussian GAS model with time varying mean and presents
simulation-based evidence of inconsistent behavior of the pseudo MLE in the context of a Gaussian score model of the
conditional mean as well as other observation-driven models. Section 4 introduces the new estimator and establishes its
asymptotic properties. Section 5 presents a Monte Carlo simulation study to evaluate the finite sample performance of
the new estimator. Section 6 presents an empirical illustration with financial data that compares our estimator against
available alternatives in the context of the conditional volatility Student’s t model. Section 7 concludes.

2. Pseudo ML for score-driven models with missing observations

For clarity of exposition we focus the discussion on the class of GAS models. However, since the score can be regarded
as the innovation of the time varying parameter, the arguments do not rely on a score-driven parameter update. It follows
that the ‘‘setting-to-zero’’ method is applicable to the wider class of observation-driven models by rewriting the updating
equation of the time-varying parameter as the sum of a memory term and a zero-mean innovation term. Therefore, all
results discussed in this section and the following sections are applicable to observation-driven models in general.
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We start our treatment for missing observations in observation-driven models by formally introducing the ‘‘setting-
o-zero’’ method. Given a univariate time series {yt}t∈Z, the class of score-driven models or GAS models of Creal et al.
2013) and Harvey (2013) can be represented as

yt ∼ p(yt |ft; θ ), ft+1 = ω + βft + αst , t ∈ Z, (1)

where p(·|ft; θ ) is a conditional density function, ft is the time-varying parameter that is specified as an autoregressive
rocess with innovation st and θ is the vector containing all static parameters, including the coefficients ω, β and α. The

score innovation st is specified as

st = Stut , ut = ∂ log p(yt |ft; θ )/∂ ft , t ∈ Z, (2)

where ut is the score and St is a scaling factor that is typically taken as a transformation of the Fisher information;
see Creal et al. (2013) for a more detailed discussion. The formulation is straightforward and simple. We consider some
specific examples in the next section.

We assume that the time series {yt}t∈Z is subject to missing observations. In particular, in each time period t ∈ Z,
the random variable yt is observed if It = 1 and not observed if It = 0. The results in the paper assume first that the
process {It}t∈Z is stationary and ergodic, such that It = 1 with probability π and It = 0 with probability 1 − π . However,
we consider also the case of a deterministic sequence {It}t∈Z in Appendix A. Finally, we assume that the observations are
missing at random, i.e. the data generating process {yt}t∈Z is independent of {It}t∈Z.

The ‘‘setting-to-zero’’ method consists of setting the score innovation equal to zero st = 0 when the corresponding
bservation is missing, that is when It = 0. Hence the time varying parameter is available for all time points t and is
ecovered using the observed data only. The pseudo likelihood function is then obtained by using this filtered time-varying
arameter for computing the conditional log-density function. The estimation of the parameters in the model is carried
ut by maximizing the resulting pseudo log-likelihood function. More formally, the ‘‘setting-to-zero’’ method entails the
ollowing. In a first step, the filtered parameter is obtained as

f̂t+1(θ ) = ω + β f̂t (θ ) + αItst , (3)

where the filter recursion is initialized at a fixed point f̂1(θ ) ∈ R. In a second step, the average log-likelihood function is
obtained by

L̂T (θ ) = T−1
T∑

t=1

It log p(yt |f̂t (θ ); θ ), (4)

where T is the time series sample length, including the missing entries. We refer to (4) as the pseudo log-likelihood
function. Finally, the pseudo ML estimator is obtained as

θ̂T = arg sup
θ∈Θ

L̂T (θ ), (5)

where Θ is a compact set that has the true parameter vector θ0 in its interior.
The ‘‘setting-to-zero’’ approach has been considered by Creal et al. (2014b), Koopman et al. (2018), Lucas et al.

(2016), Delle Monache et al. (2016) and Buccheri et al. (2017), amongst others. It provides a practical way to treat missing
observation in the GAS framework. By considering a multivariate score-driven model, Lucas et al. (2016) present some
arguments to justify why this approach could be a reasonable way to handle missing observations. Their arguments
are based on the Expectation–Maximization algorithm, however, the asymptotic properties of the resulting pseudo ML
estimator are not discussed.

In the next section we argue that the ‘‘setting-to-zero’’ approach does not lead to the consistent estimation of θ0. The
problem is due to the fact that the pseudo likelihood (4) is not the actual likelihood of the observations and this leads to an
asymptotic bias in the parameter estimates. In general, it is not clear how the true likelihood function for the observables
can be obtained for observation-driven models. We do not know of theoretical results related to parameter estimation
within score-driven models or, more generally, within observations-driven models, when we have missing observations.
This is the case even for well known models such as the GARCH model. An exception is the very specific case of the
least squares estimator of the parameter vector in the autoregressive conditional heteroskedasticity (ARCH) model that
is explored by Bondon and Bahamonde (2012).

3. Inconsistency of the pseudo ML estimator with illustrations

We formally discuss the inconsistency of the pseudo ML estimator for a location, or local mean, score-driven model.
We present a simulation experiment that provides further evidence of the inconsistency. We consider other score-driven
models to illustrate that the inconsistency of the pseudo ML estimator is a general problem for score-driven time series
models. Two additional examples feature volatility models: the GARCH model and the conditional variance Student’s t
model.
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3.1. Local mean model

Consider the data generating process for a conditional Gaussian distribution with a time varying mean as given by

yt = µo
t + εt , εt ∼ N(0, σ 2

0 ), µo
t+1 = ω0 + β0µ

o
t + α0(yt − µo

t ), t ∈ Z, (6)

where {µo
t }t∈Z is the time-varying mean process, {εt}t∈Z is an independent and identically distributed (i.i.d) sequence of

Gaussian random variables with mean zero and variance σ 2
0 , and ω0, β0 and α0 are static coefficients. Here we assume

that the model is for a univariate series yt . A multivariate version of this model is obtained by considering yt , µo
t and εt

as (equally sized) vectors; this model is considered in the illustration of Lucas et al. (2016). The local mean model (6) is
a special case of the GAS model (1)–(2) with p(yt |ft; θ ) = N(µo

t , σ
2) and µo

t ≡ ft . The scaled score function is simply the
prediction error st = yt −µo

t ≡ εt . Since we can replace µo
τ by yτ − ετ , for τ = t, t +1, it follows almost immediately that

the updating equation for µo
t in (6) implies an autoregressive moving average model, an ARMA(1, 1) model, for yt with

autoregressive coefficient β0 and moving average coefficient α0 − β0. Therefore, |β0| < 1 ensures the strict stationarity
of the process (6).

For the developments given in this section, we simply assume that {It}t∈Z is an i.i.d. sequence of Bernoulli random
variables with success probability π . In case of model (6) for an observed sequence y1, . . . , yT , we obtain the filtered
parameter µ̂t (θ ) recursively by

µ̂t+1(θ ) = ω + βµ̂t (θ ) + αIt
[
yt − µ̂t (θ )

]
, (7)

where µ̂1(θ ) ∈ R is an arbitrary chosen initial condition for the filter. The pseudo log-likelihood function is then given by

L̂T (θ ) = −T−1
∑T

t=1 It
2

log σ 2
−

T−1

2

T∑
t=1

It
[
yt − µ̂t (θ )

]2
/ σ 2.

nder the assumption that the coefficients ω0, β0 and α0 are known, we can show that the estimator of σ 2
0 is inconsistent

s follows. The estimator of σ 2
0 is

σ̂ 2
T = (

T∑
t=1

It )−1
T∑

t=1

It (yt − µ̂t (θ0))2.

e start by noticing that µ̂t (θ0) does not converge to the true µo
t as t → ∞ because µo

t depends on the infinite
past of {yt}t∈Z and for any π ∈ (0, 1) there are infinitely many missing observations. Let {µt (θ0)}t∈Z denote the limit
sequence to which µ̂t (θ0) converges as t → ∞, we further have that σ̂ 2

T converges in probability to E[(yt − µt (θ0))2] =

σ 2
0 + E[(µo

t − µt (θ0))2]. The expectation E[(µo
t − µt (θ0))2] is strictly larger than zero and therefore σ̂ 2

T overestimates the
variance σ 2

0 . This inconsistency is not limited to the variance estimator. The next result shows the non-trivial fact that also
the dependence coefficients β0 and α0 cannot be estimated consistently when the ‘‘setting-to-zero’’ method is applied for
missing observations. Without loss of generality, we assume for the next result that ω0 and σ 2

0 are known and equal to
zero and one, respectively.

Theorem 3.1. The pseudo ML estimator θ̂T defined in (5) for the local mean GAS model (6) is not consistent for some
θ0 := (α0, β0) in the interior of some compact parameter space Θ ⊂ (0, 1)2. In particular, there exists an ϵ > 0 such that

P
(
lim inf
T→∞

∥θ̂T − θ0∥ > ϵ

)
= 1,

for some θ0 ∈ Θ and some π ∈ (0, 1).

Theorem 3.1 shows that the pseudo ML estimator of θ0 in the GAS model (6) is inconsistent. This highlights a general
problem for the treatment of missing observations in the context of GAS models. Remark 3.1 highlights that it is not
straightforward to extend the formal proof of the inconsistency result to GAS models in general and gives some insight
of why the setting-to-zero method is problematic for the whole class of GAS models.

Remark 3.1. A crucial step in showing the inconsistency result in Theorem 3.1 is to prove that the expectation of the
first derivative of the pseudo likelihood function evaluated at θ0 is different from zero. Unfortunately, the unconditional
expectation of the score for most models becomes intractable when there are missing observations. For example, in a
more general GAS model with conditional density of the form p(yt |ft ), the first derivative of pseudo log-likelihood can be
expressed as

∂ log p(yt |ft (θ ))
∂θ

=
∂ log p(yt |ft (θ ))

∂ ft (θ )
∂ ft (θ )
∂θ

.

To show consistency in case of no missing data, it is easy to show that E
(

∂ log p(yt |ft (θ0))
∂θ0

)
= 0. This is the case because

∂ ft (θ ) is measurable with respect to the sigma field generated by past observations, F = σ (y , y , . . . ), and

∂θ t−1 t−1 t−2
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Fig. 1. Kernel distribution of the pseudo ML estimator for the Gaussian local mean model. The results are obtained from 1000 Monte Carlo replications.
ifferent sample sizes are considered and π = 0.75.

(
∂ log p(yt |ft (θ0))

∂ ft (θ0)
|Ft−1

)
= 0 since the pseudo likelihood corresponds to the actual likelihood and therefore the score is a

martingale difference sequence. In the case of missing data, it can be shown that E
(

∂ log p(yt |ft (θ0))
∂ ft (θ0)

|Ft−1
)

̸= 0 with probability
one. However, this is not enough to prove E

(
∂ log p(yt |ft (θ0))

∂θ0

)
̸= 0 and the calculation of the unconditional expectation is

eeded. This unconditional expectation is in general not available in closed form and therefore it cannot be computed,
xcept for the local mean GAS model where linearity gives a closed form solution.

Fig. 1 presents the finite sample behavior of the pseudo ML estimator for different sample sizes and π = 0.75. The
simulations suggest that the estimator is indeed inconsistent. The sample distribution of the estimator is not collapsing
towards the true parameter value. The results reveal the inconsistency for the estimators of α0 and σ 2

0 . In particular, we
learn from Fig. 1 that σ 2

0 is overestimated. This is coherent with the inconsistency argument presented above. The results
in Fig. 1 also provide some evidence that α0 tends to be overestimated, which is very intuitive. Assume that we have some
sequence of consecutive missing observations, then the first observation after this sequence is highly informative about
the current level of µo

t . Therefore, in order to approximate the true µo
t accurately, the parameter α should be large to give

the new observation much weight. This intuition originates from the Kalman filter equations of the ‘‘local level model’’
with missing observations; see Durbin and Koopman (2012, section 2.7). After a sequence of missing values the filter is
updated faster. In case of the GAS local mean model, the magnitude of the step is constant and therefore we obtain a
positive bias.

3.2. GARCH model

The generalized autoregressive conditional heteroscedasticity (GARCH) model is specified for a univariate zero-mean
time series yt and is, in a slightly different fashion than usual, given by

yt =

√
htεt , ht+1 = ω0 + β0ht + α0(y2t − ht ), (8)

where {εt}t∈Z is an i.i.d sequence of normal random variables with zero mean and unit variance, and ω0, β0 and α0 are
static coefficients. The GARCH model (8) is a special case of the GAS model (1)–(2) with p(yt |ft; θ ) = N(0, ht ) and ht ≡ ft .
The scaled score function is simply the prediction error st = y2t − ht . Maximum likelihood estimation of the parameters
in the GARCH model is the default option in most empirical work. However, except for a few special cases such as the
ARCH model estimator of Bondon and Bahamonde (2012), parameter estimation with missing observations has not been
widely discussed.

Fig. 2 is indicative of how the ‘‘setting-to-zero’’ estimation method in Section 2 can be problematic. This becomes
particularly clear by observing the sampling distribution of the pseudo ML estimator for the parameter α0. The parameter
α0 tends to be overestimated. A similar intuitive explanation as for the GAS local mean model as discussed above applies
here as well. The simulations strongly suggest that the estimators of the parameters ω0 and β0 are biased.

3.3. Conditional volatility Student’s t model

For our final illustration, we consider the conditional volatility Student’s t model of Creal et al. (2013) and Harvey
(2013) for a univariate zero-mean time series yt . The model has rapidly become a widely used framework for extracting
volatility from time series of daily financial returns. It accounts for extreme observations by not only considering a
fat-tailed distribution for the observations but also through a robust updating function of the conditional variance. The
conditional volatility Student’s t model is a special case of the GAS model (1)–(2) with p(y |f ; θ ) = t(0, h , ν) and h ≡ f
t t t t t
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Fig. 2. Kernel distribution of the pseudo ML estimator for the Gaussian GARCH model. The results are obtained from 1000 Monte
Carlo replications. Different sample sizes are considered and π = 0.75.

Fig. 3. Kernel distribution for conditional volatility Student’s t model as in Fig. 2.

here t(0, ht , ν) is the Student’s t density with mean zero, variance ht and degrees of freedom ν. The resulting model
ecomes

yt =

√
htεt , εt ∼ t(0, 1, ν0), ht+1 = ω0 + β0ht + α0

[
(ν0 + 1)y2t

(ν0 − 2) + y2t h
−1
t

− ht

]
, (9)

here {εt}t∈Z is an i.i.d. sequence of Student’s t distributed random variables and ω0, β0, α0 and ν0 are static coefficients.
The same simulation experiment as above has been carried to assess the inconsistency of the pseudo ML estimator

n finite samples. Fig. 3 presents the Kernel estimates of the distributions of the pseudo ML estimates. The distributions
eem to converge towards values that are different from the corresponding true parameter values. This is particularly the
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ase for the parameters α0 and ν0. For example, the parameter α0 is clearly overestimated in the same way as for the
aussian local mean and GARCH models. The parameter ν0 appears to be underestimated by the pseudo-ML estimator.

. The indirect inference estimator and its properties

To overcome the inconsistency problem of the pseudo ML estimator for the GAS models with missing observations,
e use a composite indirect inference estimator similar to the one proposed in Varin et al. (2011) and Gourieroux
nd Monfort (2017). This indirect inference estimator averages the log-likelihoods of the auxiliary models and delivers
nbiased estimates of the parameter of interest. The idea is that we can generate data from our GAS model and introduce
issing observations for those time periods where the actual observed data is missing. In this way, under the assumption
f data missing at random, we can simulate from the true generating process with missing data. Once we have obtained
ur simulated samples, we can proceed with indirect inference and we consider the pseudo ML estimator as auxiliary
tatistics. This approach provides consistent inference because the bias of the pseudo ML estimator is present both in
he simulation and real data estimates. For our main results, we consider the assumption that the missing values process
It}t∈Z is stationary and ergodic with π = EIt > 0. However, the stationarity and ergodicity of {It}t∈Z is not strictly
equired and it is relaxed in Appendix A under higher level conditions by allowing {It}t∈Z to be a deterministic sequence.

More formally, we simulate S paths of length T from the GAS model in (1) and (2) for a given parameter value θ̄ ∈ Θ ,
hich we denote with {yi,t (θ̄ )}Tt=1, i = 1, . . . , S. We treat yi,t , for i = 1, . . . , S, as missing data if the corresponding real
bservation yt is missing. For each simulated path, we obtain the pseudo log-likelihood function as described in (4), which
e denote with L̂i,T (θ, θ̄ ). We then compute the average of these pseudo log-likelihoods as follows

L̂S,T (θ, θ̄ ) =
1
S

S∑
i=1

L̂i,T (θ, θ̄ ),

and we obtain the maximizer of L̂S,T (θ, θ̄ ) with respect to θ , that is,

θ̂S,T (θ̄ ) = arg sup
θ∈Θ

L̂S,T (θ, θ̄ ),

here Θ is a compact parameter set. The estimator θ̂S,T (θ̄ ) is not consistent to θ̄ and in general it converges to a pseudo
rue parameter vector θ∗(θ̄ ) ̸= θ̄ as T → ∞. Finally, we define the indirect inference estimator θ̃S,T as the parameter
value θ̄ that minimizes a distance between the average pseudo ML estimator θ̂S,T (θ̄ ) obtained from simulations and the
point estimate θ̂T obtained from the real data, that is,

θ̃S,T = arg inf
θ̄∈Θ̄

θ̂S,T (θ̄ ) − θ̂T

 . (10)

where Θ̄ is a compact parameter set. In practice, the minimization can be performed using the Newton–Raphson methods
that are implemented in standard computer softwares for data analysis. The choice of the distance is irrelevant because
we have exact identification and therefore there is a parameter value θ̄ that sets any distance to zero. We propose to
average the log-likelihoods instead of the more common approach of averaging parameter estimates because this leads
to a more efficient estimator from a computational point of view.

We note that the methodology of the indirect inference estimator is presented for the class of first-order GAS models,
GAS(1, 1), given in (1). However, the approach can be easily extended to GAS models of a general order (p, q),

ft+1 = ω +

p−1∑
j=0

βjft−j +

q−1∑
j=0

αjst−j.

he asymptotic properties of the estimator discussed in the rest of the section can also be used to select the order (p, q) of
he model by testing the null hypothesis that some of the coefficients αj and βj are equal to zero through a Wald-type test.
his approach to model selection is applicable for GAS models where αj = 0 and βj = 0 are not boundary points of the
arameter space, otherwise, non-standard and model-specific asymptotic results are required to derive the distribution of
he test statistic under the null. Although this excludes some models, such as the GARCH model, a wide range of models
re still covered, including location models and volatility models with exponential link functions.

.1. Consistency

We formulate sufficient conditions for the consistency and the asymptotic normality of the indirect inference estimator.
ssumption 4.1 imposes that the sample of observed data {yt}Tt=1 is generated by the GAS model in (1) and (2) with true
arameter vector θ0 ∈ Θ̄ .

ssumption 4.1. The observed data {yt}Tt=1 is a realized path from stochastic process {yt}t∈Z that satisfies the GAS’s
quations (1) and (2) at θ ∈ Θ̄ .
0
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Assumption 4.2 requires the GAS model to generate stationary and ergodic data for any θ̄ ∈ Θ̄; see Blasques et al.
(2014b) for primitive conditions that ensure the stationarity and ergodicity of GAS processes. This implies that also
the observed data {yt}Tt=1 is stationary and ergodic since θ0 ∈ Θ̄ . Assumption 4.2 further requires the independence
of observed and simulated data from the missing values process {It}t∈Z, i.e. data missing at random. We do not specify a
ata generating process for the sequence {It}t∈Z. Instead, we take {It}t∈Z as being an exogenous variable; see the discussion
n Gourieroux et al. (1993). We note that the assumption of data missing at random may be relaxed by specifying how
he GAS process {yt}t∈Z depends on the missing values process {It}t∈Z. In this way, given the missing observations, we
an still simulate from the true generating process and replicate the estimation bias of the pseudo ML estimator in the
imulation step. However, this would require the specification of a generating process for {yt}t∈Z conditional on {It}t∈Z.
n fact, the assumption of data missing at random may be seen as a specific case where no dependence between the GAS
rocess and the missing values process is considered.

ssumption 4.2. The sequence {yi,t (θ̄ )}t∈Z is stationary and ergodic for every θ̄ ∈ Θ̄ . Furthermore, the sequences
yi,t (θ̄ )}t∈Z, i = 1, . . . , S, and {yt}t∈Z are independent of the missing values process {It}t∈Z.

Assumption 4.3 imposes conditions on the filtered sequence, as defined in (3), obtained from the simulated data. We
et f̂i,t (θ, θ̄ ) denote the filter in (3) evaluated at θ ∈ Θ using a sample of data {yi,t (θ̄ )}t∈Z, which is simulated under θ̄ ∈ Θ̄ .
n particular, the filter is required to be invertible and to converge exponentially fast and almost surely (e.a.s.)1 to a strictly
tationary and ergodic limit sequence, uniformly over (θ, θ̄ ) ∈ Θ × Θ . In practice, this assumption can be checked by
eans of Theorem 3.1 of Bougerol (1993). We refer the reader to Straumann and Mikosch (2006) for an application of this

heorem to GARCH-type models and Blasques et al. (2018) for an application to GAS models, including the conditional
olatility Student’s t model in (9). We denote with ∥ · ∥A the supremum norm. For a given function f : A ↦→ R, the
upremum norm is ∥f ∥A = supx∈A |f (x)|.

ssumption 4.3. The function (θ, θ̄ ) ↦→ f̂i,t (θ, θ̄ ) is a.s. continuous in Θ×Θ̄ . Furthermore, the filter {f̂i,t (θ, θ̄ )}t∈N sequence
onverges e.a.s. and uniformly to a limit strictly stationary and ergodic sequence {fi,t (θ, θ̄ )}t∈Z,

∥f̂i,t − fi,t∥Θ×Θ̄

e.a.s.
−−→ 0 as t → ∞,

or every initialization f̂i,1(θ, θ̄ ) ∈ R.

Assumption 4.4 states that the conditional density function p(y|f ; θ ) is continuous in all arguments. This is needed to
nsure the continuity of the log-likelihood function.

ssumption 4.4. The function (y, f , θ ) ↦→ p(y|f ; θ ) is continuous in R × R × Θ .

For notational convenience, we denote the contribution to the pseudo likelihood of yi,t (θ̄ ) evaluated at f̂i,t (θ, θ̄ ) and
i,t (θ, θ̄ ) as l̂i,t (θ, θ̄ ) := log p(yi,t (θ̄ )|f̂i,t (θ, θ̄ ); θ ) and li,t (θ, θ̄ ) := log p(yi,t (θ̄ )|fi,t (θ, θ̄ ); θ ), respectively. Assumption 4.5 gives
conditions to ensure the uniform convergence of the pseudo log-likelihood function to the limit function L(θ, θ̄ ) :=

Eli,t (θ, θ̄ ). These conditions are standard in the ML and QML estimation literature of GAS and GARCH-type models; see
the assumptions of Theorem 4.1 of Blasques et al. (2018) and those of Theorem 4.1 of Straumann and Mikosch (2006) for
further details.

Assumption 4.5. There exists a stationary and ergodic sequence of positive random variables {ηi,t}t∈Z with E log+ ηi,t < ∞

such that the following inequality is satisfied for any t ≥ N , N ∈ N,

∥l̂i,t − li,t∥ < ηi,t∥f̂i,t − fi,t∥Θ×Θ̄ .

urthermore, the pseudo log-likelihood has a uniformly bounded moment, that is, E∥li,t∥Θ×Θ̄ < ∞.

Assumption 4.6, together with the compactness of Θ and the continuity of the limit pseudo log-likelihood on Θ ,
ensures the identifiable uniqueness of the pseudo-true parameter θ∗(θ̄ ) for data obtained from any parameter vector
θ̄ ∈ Θ̄ . This is a standard condition that is needed for identification of pseudo-true parameters in misspecified models,
see the assumptions of Theorem 4.3 of Blasques et al. (2018) for misspecified observation-driven models.

Assumption 4.6. For every θ̄ ∈ Θ̄ , the pseudo-true parameter θ∗(θ̄ ) ∈ int(Θ) is the unique maximizer of the limit pseudo
log-likelihood L(·, θ̄ ) in Θ .

Proposition 4.1 establishes the consistency of the auxiliary pseudo ML estimators θ̂S,T (θ̄ ) and θ̂T as T → ∞ to their
respective pseudo true parameters θ∗(θ̄ ) and θ∗(θ0) for any θ̄ ∈ Θ̄ . The proof explores the argument laid down in Blasques
et al. (2014a) and it is based on the classical results reviewed in White (1994).

1 A sequence of positive random variables {xt }t∈Z is said to converge e.a.s. to zero if there is an γ > 1 such that γ txt
a.s.
−→ 0 as t diverges,

see Straumann and Mikosch (2006).
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roposition 4.1. Let Assumptions 4.1–4.6 hold. Then θ̂S,T (θ̄ )
a.s.
−→ θ∗(θ̄ ) for every θ̄ ∈ Θ̄ and θ̂T

a.s.
−→ θ∗(θ0) as T → ∞.

The consistency of our indirect inference estimator requires more than just the pointwise convergence of the auxiliary
stimator θ̂S,T (θ̄ )

a.s.
−→ θ∗(θ̄ ) for every θ̄ ∈ Θ̄ . Assumptions 4.7–4.10 impose sufficient conditions for the functional

estimator θ̂S,T (·) to converge a.s. and uniformly in Θ̄ to the binding function θ∗(·). Assumption 4.7 imposes that p(y|f ; θ )
is smooth in (f , θ ) and that the filter f̂i,t (θ, θ̄ ) is smooth in θ . These additional differentiability requirements allow us to
work with the score and Hessian of the log-likelihood to establish the uniform convergence of our auxiliary estimator.

Assumption 4.7. The function (f , θ ) ↦→ p(y|f ; θ ) is 2 times continuously differentiable in R × Θ and θ ↦→ f̂i,t (θ, θ̄ ) is
a.s. 2 times continuously differentiable in Θ for any θ̄ ∈ Θ̄ .

Assumption 4.8 ensures that the filter derivative processes are invertible and converge exponentially fast to their
respective stationary and ergodic limits. This is a standard regularity condition which is designed to ensure that the score
and Hessian satisfy laws of large numbers and central limit theorems. In practice, these conditions can verified by an
application of Theorem 2.10 of Straumann and Mikosch (2006); see Propositions 6.1 and 6.2 of Straumann and Mikosch
(2006) for an application this theorem to a wide class of GARCH-type models. We adopt the following notation: ∇

k
θ f̂i,t (θ, θ̄ )

is the kth derivative of f̂i,t (θ, θ̄ ) with respect to θ , and ∇
(0:k)
θ f̂i,t (θ, θ̄ ) denotes the vector containing the filter f̂i,t (θ, θ̄ ) and

its derivatives of up to order k. The norm ∥ · ∥ denotes the L1 norm when applied to vectors and the matrix norm induced
by the L1 norm when applied to matrices.

Assumption 4.8. The derivative filter ∇
k
θ f̂i,t (θ, θ̄ ) converges e.a.s. and uniformly to a stationary and ergodic sequence

{∇
k
θ fi,t (θ, θ̄ )}t∈Z as t → ∞ for k = 1, 2, that is,∇ (0:2)

θ f̂i,t − ∇
(0:2)
θ fi,t


Θ×Θ̄

e.a.s.
−−→ 0 as t → ∞.

Assumption 4.9 imposes conditions to ensure the uniform convergence of the score and the Hessian of the pseudo
log-likelihood function. We let ∇θ li,t (θ, θ̄ ) denote the score vector and ∇

2
θθ li,t (θ, θ̄ ) denote the Hessian matrix of li,t (θ, θ̄ )

with respect to θ .

Assumption 4.9. There exists a stationary and ergodic sequence of positive random variables {ηi,t}t∈Z with E log+ ηi,t < ∞

such that the following inequalities are satisfied for any t ≥ N , N ∈ N,

(i) ∥∇θ l̂i,t − ∇θ li,t∥Θ×Θ̄ ≤ ηi,t
∇ (0:1)

θ f̂i,t − ∇
(0:1)
θ fi,t


Θ×Θ̄

;

(ii) ∥∇
2
θθ l̂i,t − ∇

2
θθ li,t∥Θ×Θ̄ ≤ ηi,t

∇ (0:2)
θ f̂i,t − ∇

(0:2)
θ fi,t


Θ×Θ̄

.

Furthermore, the following uniform moment conditions hold

E
∇θ li,t


Θ×Θ̄

< ∞, and E
∇2

θθ li,t


Θ×Θ̄
< ∞.

Assumption 4.10 ensures that the Hessian converges to a non-singular limit.

Assumption 4.10. The Hessian matrix E∇
2
θθ li,t (θ, θ̄ ) is non-singular for every (θ, θ̄ ) ∈ Θ × Θ̄ .

Assumption 4.7 states the fundamental identification condition for the indirect inference estimator. The assumption
that the so-called binding function θ∗ is injective is standard for indirect inference estimators but often difficult to verify
when the binding function is not in closed form; see Gourieroux et al. (1993) for a discussion.

Assumption 4.11. The binding function θ̄ ↦→ θ∗(θ̄ ) is continuous and injective in Θ̄ .

Theorem 4.1 delivers the strong consistency of the indirect inference estimator.

Theorem 4.1. Let Assumptions 4.1–4.11 hold. Then the indirect inference estimator is strongly consistent: θ̃S,T
a.s.
−→ θ0 as

T → ∞.

4.2. Asymptotic normality

Asymptotic normality of the indirect inference estimator is derived from the asymptotic normality of the auxiliary
pseudo ML estimators. The additional assumptions are designed to ensure that the auxiliary pseudo ML estimators θ̂S,T (θ̄ )
and θ̂T of the GAS model are asymptotically normally distributed. Given that the auxiliary model is misspecified, the score
of the log-likelihood will generally fail to be a martingale difference sequence. Therefore, in order to ensure asymptotic
normality of the score, we consider a central limit theorem for near epoch dependent (NED) sequences on α-mixing
sequences. We refer the reader to Chapter 6 of Potscher and Prucha (1997) for the definition of NED. Assumption 4.12
imposes that the data generating process is α-mixing and the score is NED on {(yi,t (θ0), It )}t∈Z. Furthermore, a moment
condition on the score is imposed to apply a central limit theorem for NED sequences.
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Assumption 4.12. The sequence {(yi,t (θ0), It )}t∈Z is α-mixing of size −2r/(r − 1) for some r > 2, and the score sequence
{∇θ li,t (θ∗(θ0), θ0)}t∈Z is NED on {(yi,t (θ0), It )}t∈Z of size −1. Furthermore, the following moment condition holds

E∥∇θ li,t (θ∗(θ0), θ0)∥
2+δ

< ∞ for some δ > 0.

Proposition 4.2 delivers the asymptotic normality of the auxiliary pseudo ML estimators.

Proposition 4.2. Let Assumptions 4.1–4.12 hold. Then,
√
T
(
θ̂T − θ∗(θ0)

)
d

−→ N
(
0, Ω∗(θ0)−1Σ∗(θ0)Ω∗(θ0)−1

)
,

and
√
T
(
θ̂S,T (θ0) − θ∗(θ0)

)
d

−→ N
(
0, Ω∗(θ0)−1Σ∗

S (θ0)Ω
∗(θ0)−1

)
as T → ∞,

where Ω∗(θ0) = E∇
2
θθ li,t (θ

∗(θ0), θ0) and Σ∗

S (θ0) =
1
S Σ

∗(θ0) +
S−1
S K ∗(θ0), with

Σ∗(θ0) = lim
T→∞

Var

(
1

√
T

T∑
t=2

∇θ li,t (θ∗(θ0), θ0)

)
and

K ∗(θ0) = lim
T→∞

Cov

(
1

√
T

T∑
t=2

∇θ li,t (θ∗(θ0), θ0) ,
1

√
T

T∑
t=2

∇θ lj,t (θ∗(θ0), θ0)

)
for some i ̸= j.

We note that the covariance between the scores of different simulation draws, which is given by K ∗(θ0), is, in general,
ot a matrix of zeros because the same observations are missing across the different random draws. Therefore, the scores
f different random draws are independent only conditional on {It}t∈Z.
Finally, we obtain the asymptotic normality of the indirect inference estimator θ̃S,T as T → ∞. Assumption 4.13

mposes some additional regularity conditions on θ∗(·).

ssumption 4.13. The binding function θ̄ ↦→ θ∗(θ̄ ) is continuously differentiable in Θ̄ and ∂θ∗(θ0)/∂θ̄⊤ is full rank.

Theorem 4.2 delivers the desired asymptotic normality of the indirect inference estimator as proven in Gourieroux et al.
1993). As usual, the asymptotic variance is smaller for larger S. The expression for the asymptotic variance is simpler
han usual due to exact identification.

heorem 4.2. Let Assumptions 4.1–4.13 hold and θ0 ∈ int(Θ̄). Then
√
T
(
θ̃S,T − θ0

)
d

−→ N(0,WS) as T → ∞,

here

WS :=

(
1 +

1
S

)[∂θ∗(θ0)
∂θ̄⊤

]−1

V (θ0)
[

∂θ∗(θ0)
∂θ̄⊤

⊤
]−1

(11)

where V (θ0) denotes the asymptotic variance V (θ0) := Ω∗(θ0)−1(Σ∗(θ0) − K ∗(θ0))Ω∗(θ0)−1.

The asymptotic distribution of the indirect inference estimator given in Theorem 4.2 is the unconditional distribution
f the estimator, i.e. not conditional on the missing values sequence {It}t∈Z. The asymptotic distribution conditional on
It}t∈Z is equivalent to the distribution for the case where {It}t∈Z is treated as a deterministic sequence, which is formally
iscussed in Appendix A. The main difference in the result is the form of the asymptotic covariance matrix of the indirect
nference estimator. Besides the matrices Ω∗(θ0) and Σ∗(θ0) depending on the sequence {It}t∈Z, the key difference is that
he matrix K ∗(θ0) is a matrix of zeros since li,t (θ∗(θ0), θ0) is independent of lj,t (θ∗(θ0), θ0) conditional on {It}t∈Z for any
̸= i and t ∈ Z.
We also note that the asymptotic covariance matrix of the indirect inference estimatorWS in (11) becomes proportional

o the inverse of the Fisher information as π → 1. This follows from the fact that the pseudo ML estimator coincides with
he ML estimator when there are no missing observations. Therefore, as π → 1, Ω∗(θ0) and Σ∗(θ0) converge to the Fisher
nformation matrix, K ∗(θ0) converges to zero, and ∂θ∗(θ0)

∂θ̄⊤
converges to the identity matrix. This means that the indirect

inference estimator reaches the asymptotic efficiency of ML up to the factor 1 +
1
S . The term 1

S can be made arbitrarily
mall by increasing the number of simulations.
Theorems 4.1 and 4.2 shall be employed in the next section to establish the consistency and asymptotic normality of

he indirect inference estimators of the GAS local mean model and the GARCH model.
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. Examples and simulation study

.1. Local mean model

In this section, we derive the asymptotic properties of the indirect inference estimator of the Gaussian GAS local mean
odel in (6) and we carry out a simulation study to compare its performance with pseudo ML and exact ML. First, we focus
n the asymptotic properties of the estimator. Without loss of generality, we consider the estimation of the parameters
0 and β0 with ω0 and σ 2

0 assumed to be known and equal to zero and one, respectively. We also assume that observation
s missing at random in line with the theory of Section 4. Theorem 5.1 delivers the consistency and asymptotic normality
f the indirect inference estimator. We note that it is not straightforward to ensure the uniqueness of the pseudo ML
stimator over the entire parameter space since, in fact, the pseudo ML estimator is an inconsistent estimator, which can
e interpreted as a ML estimator under model misspecification. However, as stated in Theorem 5.1 below, the asymptotic
roperties of the indirect inference estimator are valid even if θ∗(θ0) is a local maximum of the limit pseudo likelihood
unction L(·, θ0) by selecting the parameter set Θ to be a small ball around θ∗(θ0).

heorem 5.1. Let the true parameter vector θ0 = (β0, α0)⊤ be such that β0, α0 ∈ (0, 1). Furthermore, let the pseudo-true
arameter θ∗(θ0) ∈ (0, 1)2 be a local maximum of the limit function L(·, θ0) with negative definite Hessian and assume that
∗(·) is continuous and injective in a neighborhood of θ0. Then, there exist compact parameter sets Θ and Θ̄ such that the
ndirect inference estimator of the local mean model is strongly consistent,

θ̃T ,S
a.s.
−→ θ0.

ssume, additionally, that θ∗(·) is continuously differentiable in a neighborhood of θ0, the matrix ∂θ∗(θ0)/∂θ⊤ has full rank,
and {It}t∈Z is α-mixing of size −2r/(r − 1), for some r > 2. Then, the indirect inference estimator of the local mean model has
an asymptotic normal distribution,

√
T
(
θ̃S,T − θ0

)
d

−→ N(0,WS).

omparison among different estimators
Next, we present the results of a Monte Carlo experiment to evaluate the finite sample performance of the indirect

nference estimator compared to the exact ML estimator and the pseudo ML estimator. Only for this specific model, the
xact ML estimator is available when we have missing data. This is due to the fact that the local GAS mean model is in fact
nd ARMA model. More specifically, the GAS model (6), with ω0 = 0, can be rewritten as a Gaussian ARMA(1,1) model of

the form

yt = β0yt−1 + φ0εt−1 + εt ,

where φ0 = α0 − β0. Therefore, we can use the Kalman filter to consistently estimate the model. In presence of missing
observations, the consistency of the ML estimator based on the Kalman filter has been formally discussed in Jones (1980)
and Kohn and Ansley (1986). Note that this comparison is possible only for this specific model because in general there
is not a clear way to obtain the exact likelihood function for GAS models with missing data. However, it is useful to see
how our indirect inference estimator performs compared to exact ML in this setting.

Table 1 reports a finite sample comparison among the indirect inference estimator, the exact ML estimator and the
inconsistent pseudo ML estimator in terms of relative bias, mean squared error (MSE), coverage of 90% confidence intervals
and length of the intervals. The relative bias is the bias relative to the true parameter vale, which is computed as
(θ̂T − θ0)/θ0. The confidence intervals to calculate the coverage and length are derived considering the asymptotic normal
distribution of the estimators. The results are presented for sample sizes of T = 500, 1000 and 2000 observations. The
missing observations are generated from independent Bernoulli random variables where π is the probability of observing
t and 1−π is the probability of having a missing observation. We study the behavior of the estimators for several values
f π , namely π = 0.4, 0.6, 0.8 and 1. The latter case corresponds naturally to a sample without any missing observations.
he values reported are for a true parameter θ0 with β0 = 0.95, α0 = 0.3, and σ 2

0 = 1.0. The parameter ω0 is assumed to
be known and it is set equal to zero.

Table 1 reveals very clearly that the bias of the pseudo ML estimator does not converge to zero when the sample size
increases. This is particularly clear for small values of π . For instance, the parameter α has a bias of about 30% and σ 2 has
bias of about 15% when π = 0.4. Instead, the indirect inference estimator and the exact ML estimator have a negligible
ias. We also find that the impact of the bias on the MSE is more relevant for larger sample sizes. This indicates that the
enefits of the exact ML and the indirect inference estimators over the pseudo ML estimator are stronger for large sample
izes. In terms of coverage of confidence intervals, we can see that the pseudo ML estimator leads to poor confidence
ntervals. In particular, the actual coverage of confidence intervals for α is about 10% against the nominal coverage of 90%
or π = 0.4 and n = 2000. Instead, the exact ML and the indirect inference estimators deliver confidence intervals that
re very close to the 90% nominal coverage. Finally, the indirect inference estimator shows comparable performances to
he exact ML estimator. In particular, the MSE of these two estimators are very close for all the configurations considered
n the experiment. Similar results are also obtained for the coverage and length of confidence intervals. This emphasizes
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Table 1
Simulation results for the pseudo ML (PML), indirect inference (II), and exact maximum likelihood (ML). We report relative bias (Rel. bias), mean
squared error (MSE), coverage of 90% confidence intervals based on normal distribution (Coverage), and length of 90% confidence intervals (Length).
The results are obtained from 500 Monte Carlo replications with S = 10. The true parameter vector is θ0 = (0.95, 0.3, 1)⊤ .

π = 0.40 π = 0.60 π = 0.80 π = 1.00

β α σ 2 β α σ 2 β α σ 2 β α σ 2

T = 500

Rel. bias
PML −0.009 0.321 0.164 −0.006 0.172 0.078 −0.006 0.072 0.029 −0.006 −0.003 −0.005
ML −0.012 0.001 −0.006 −0.009 −0.012 −0.009 −0.009 −0.013 −0.009 −0.009 −0.009 −0.008
II −0.009 0.016 −0.008 −0.006 0.001 −0.012 −0.007 −0.004 −0.010 −0.006 −0.007 −0.007

MSE
PML 0.028 0.120 0.204 0.023 0.075 0.121 0.022 0.049 0.080 0.020 0.037 0.064
ML 0.029 0.060 0.109 0.023 0.047 0.087 0.022 0.041 0.073 0.021 0.037 0.065
II 0.025 0.064 0.118 0.020 0.051 0.091 0.019 0.044 0.076 0.018 0.039 0.067

Coverage
PML 0.898 0.620 0.644 0.904 0.770 0.778 0.898 0.862 0.870 0.886 0.894 0.894
ML 0.902 0.922 0.906 0.880 0.896 0.898 0.870 0.884 0.904 0.862 0.896 0.890
II 0.894 0.922 0.894 0.894 0.912 0.894 0.894 0.884 0.896 0.872 0.910 0.912

Length
PML 0.088 0.237 0.403 0.072 0.180 0.303 0.069 0.146 0.246 0.064 0.121 0.210
ML 0.089 0.197 0.357 0.071 0.156 0.284 0.068 0.135 0.239 0.065 0.120 0.211
II 0.078 0.209 0.386 0.063 0.169 0.296 0.059 0.143 0.248 0.055 0.127 0.220

T = 1000

Rel. bias
PML −0.004 0.320 0.166 −0.004 0.174 0.084 −0.004 0.074 0.034 −0.003 −0.001 −0.002
ML −0.005 −0.007 −0.001 −0.005 −0.011 −0.002 −0.005 −0.009 −0.003 −0.005 −0.004 −0.004
II −0.004 0.009 −0.005 −0.004 −0.002 −0.005 −0.004 −0.005 −0.004 −0.003 −0.005 −0.003

MSE
PML 0.018 0.108 0.187 0.016 0.065 0.105 0.015 0.037 0.061 0.014 0.025 0.044
ML 0.018 0.042 0.078 0.016 0.033 0.058 0.015 0.028 0.049 0.014 0.025 0.044
II 0.014 0.045 0.084 0.013 0.035 0.062 0.012 0.029 0.051 0.011 0.026 0.046

Coverage
PML 0.922 0.412 0.408 0.908 0.604 0.610 0.900 0.812 0.824 0.912 0.916 0.900
ML 0.912 0.904 0.908 0.902 0.906 0.908 0.898 0.892 0.912 0.910 0.916 0.898
II 0.918 0.902 0.912 0.888 0.908 0.898 0.892 0.886 0.914 0.902 0.904 0.912

Length
PML 0.058 0.163 0.284 0.050 0.126 0.203 0.048 0.098 0.166 0.044 0.083 0.144
ML 0.056 0.137 0.257 0.049 0.108 0.192 0.047 0.090 0.162 0.044 0.082 0.144
II 0.046 0.148 0.275 0.041 0.115 0.202 0.039 0.095 0.168 0.035 0.086 0.151

T = 2000

Rel. bias
PML −0.002 0.316 0.168 −0.001 0.173 0.084 −0.001 0.072 0.033 −0.001 −0.004 −0.003
ML −0.002 −0.016 0.003 −0.002 −0.014 −0.002 −0.002 −0.010 −0.003 −0.002 −0.006 −0.004
II −0.001 −0.000 −0.003 −0.001 −0.003 −0.006 −0.001 −0.006 −0.004 −0.001 −0.007 −0.004

MSE
PML 0.011 0.100 0.177 0.010 0.058 0.095 0.010 0.030 0.049 0.009 0.018 0.032
ML 0.011 0.028 0.052 0.010 0.023 0.042 0.010 0.020 0.036 0.009 0.018 0.032
II 0.008 0.029 0.055 0.007 0.024 0.045 0.007 0.021 0.037 0.007 0.019 0.033

Coverage
PML 0.910 0.108 0.100 0.916 0.348 0.408 0.914 0.734 0.746 0.922 0.912 0.904
ML 0.892 0.900 0.902 0.902 0.886 0.912 0.906 0.912 0.896 0.916 0.904 0.900
II 0.894 0.900 0.904 0.890 0.894 0.904 0.878 0.906 0.892 0.886 0.904 0.892

Length
PML 0.037 0.111 0.190 0.033 0.086 0.149 0.032 0.069 0.122 0.029 0.059 0.104
ML 0.035 0.091 0.171 0.032 0.075 0.139 0.031 0.064 0.118 0.029 0.058 0.104
II 0.026 0.097 0.181 0.022 0.079 0.146 0.022 0.068 0.122 0.021 0.062 0.108

the accuracy of the proposed indirect inference estimator. Indeed the advantage of the indirect inference estimator is that
it can be applied to GAS models in general while the exact ML estimator is only available in this particular setting.

Fig. 4 presents the bias of the pseudo ML, exact ML and our proposed indirect inference estimator. The plots show
bias with respect to β , α and σ 2 over a range of values of π . The advantage of our new estimator becomes more relevant
for small π , that is when the fraction of missing values is large. This seems to be especially true for the estimation of
the parameters α0 and σ 2

0 . Furthermore, Fig. 4 further confirms how the exact ML estimator and the indirect inference
estimator have a very similar performance.

5.2. GARCH model

In this section, we study the properties of the indirect inference estimator of the GARCH model in (8). Similarly as
for the local mean model, Theorem 5.2 establishes the asymptotic properties of the indirect inference estimator of the
GARCH model.

Theorem 5.2. Let the true parameter vector θ0 = (ω0, β0, α0)⊤ satisfy E log(β0 + α0(ε2
t − 1)) < 0. Furthermore, let the

pseudo-true parameter θ∗(θ0) = (ω∗

0, β
∗

0 , α
∗

0 )
⊤

∈ (0, ∞) × (0, 1)2, β∗

0 > α∗

0 , be a local maximum of the limit function L(·, θ0)
with negative definite Hessian and assume that θ∗(·) is continuous and injective in a neighborhood of θ0. Then, there exist
compact parameter sets Θ and Θ̄ such that the indirect inference estimator of the GARCH model is strongly consistent,

θ̃
a.s.
−→ θ .
T ,S 0
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Fig. 4. Median of the sampling distribution of the pseudo ML estimator, the exact ML estimator and the indirect inference estimator for different
values of the probability π . The results are obtained from 500 Monte Carlo replications and the sample size of the simulated series is T = 1000.
For, the indirect inference estimator S = 10 is considered.

Fig. 5. Distribution of the indirect inference estimator for the GARCH model. The results are obtained from 500 Monte Carlo replications and S = 10.
Different sample sizes are considered and π = 0.75.

Assume, additionally, that θ∗(·) is continuously differentiable in a neighborhood of θ0, the matrix ∂θ∗(θ0)/∂θ⊤ has full rank,
E(y4t ) < ∞, and {It}t∈Z is α-mixing of size −2r/(r − 1), for some r > 2. Then, the indirect inference estimator of the GARCH
model has an asymptotic normal distribution,

√
T
(
θ̃S,T − θ0

)
d

−→ N(0,WS).

Next, we evaluate the finite sample behavior of the indirect inference estimator of the GARCH model (8). We employ
he same simulation setting as in Section 3.2. Fig. 5 displays the distribution of the estimator for different sample sizes.
e can see that the distributions are centered around the true parameter values. This suggests that the indirect inference

stimator can successfully eliminate the bias caused by the missing data; see Fig. 2 for a comparison with the pseudo ML
stimator.
We observe clearly that the distributions are collapsing towards the true parameter values as the sample size increases.

urthermore, the distributions tend to become more symmetric and with a more normal shape for larger sample sizes.
hese results confirm strongly the reliability of the indirect inference estimator and the validity of its asymptotic
roperties. Similar findings are obtained for other models but are not reported here for space considerations.

. An empirical experiment for the S&P500 daily returns time series

To illustrate how the inconsistency problem of the pseudo ML estimator can affect inference in an empirical study and
ow the use of the indirect inference estimator alleviates the problem, we analyze daily log-differences of the Standard
nd Poor’s 500 stock index (S&P500) from January 2000 to December 2016. We adopt the conditional volatility Student’s
model (9) and carry out the pseudo ML and the indirect inference methods for parameter estimation. The method of
xact maximum likelihood is not feasible for this model when there are missing observations. The occurrence of missing
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Fig. 6. Bias of the pseudo ML estimator compared to the corresponding full sample estimator for different values of π . The gray areas represent
onfidence bounds of the bias, which are obtained from 100 random draws of the missing data. The dashed line represents a bias equal to zero.

bservations is widespread in financial returns data because markets are regularly closed during the year. On these closure
ays there are no financial transactions and hence we do not observe price changes. However, the underlying price of the
sset may still be changing during these days; see, for example, the discussions in Bondon and Bahamonde (2012).
In our empirical experiment, we aim to investigate the behavior of the two estimators when we have a growing

umber of missing observations in the sample. We first estimate the model using all available data in the sample. Then we
rtificially remove observations from the sample by drawing a Bernoulli random variable with success probability π for
ach observation. If the outcome of the draw is zero, then we consider the corresponding observation as missing. For this
esulting sample with missing data, we estimate the parameters in the model using the two methods that account for the
issing observations. We repeat this procedure 100 times for a given value of π . In this way, for a given value of π , we
btain the distribution of the estimator. We use the full sample estimates as the benchmark to evaluate the performance
f the estimates based on the samples with missing data. We consider a range of different π values and repeat the exercise
s described. Clearly, this experiment is conditional on the full sample of observed data. The variability of the estimates
ith missing data only originates from the randomness of the observations that are removed and treated as missing
hrough the Bernoulli draws.

Figs. 6 and 7 report the results of this experiment. In particular, the figures show the bias distribution of the estimators
ompared to the full sample estimators for different values of π . Fig. 6 clearly reveals that the pseudo ML estimates have
strong bias for the parameters α and ν. This is coherent with the findings provided by the simulation experiment. In
articular, the estimator of α gets further away from the corresponding full sample estimator as the probability of missing
bservations π increases. We observe this divergence clearly in Fig. 6 where the zero-line is not within the 90% variability
ounds for large values of π . A similar situation occurs for the parameter ν. As we have discussed throughout, this issue

can be addressed by the consistent indirect inference estimator as proposed in Section 3 and studied in detail in Section 4.
Fig. 7 provides evidence that the indirect inference estimation procedure does not lead to any bias for any parameter,

in particular when compared to the pseudo ML estimation results in Fig. 6. We have expected this result since the indirect
inference estimator is consistent. However, a small bias may be observed in this experiment since we are dealing with
real data and the analysis is conditional on an observed time series. Therefore, the model is possibly misspecified and may
cause a slight bias. Furthermore, we emphasize that the variability observed in the estimation is not due to the variability
of the estimation. Our analyses are based on a single time series and the randomness in the different draws is only due
to the Bernoulli missing values generator.

7. Conclusion

We have highlighted the theoretical issues that arise when missing observations are present in observation-driven time
series models and in particular in score-driven models. We have argued that the ‘‘setting-to-zero’’ method may lead to
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Fig. 7. Bias of the Indirect Inference estimator (with S = 5) compared to the corresponding full sample estimator for different values of π . The gray
areas represent confidence bounds of the bias, which are obtained from 100 random draws of the missing data. The dashed line represents zero
bias. The dashed line represents a bias equal to zero.

the inconsistency of the maximum likelihood estimator. Based on theoretical arguments and simulation experiments, we
have confirmed the inconsistency problem. We further have proposed a new estimation procedure based on the method
of indirect inference that provides a simple and general approach to obtain consistency and asymptotic normality in the
presence of missing observations for observation-driven time series models. Simulation experiments have shown that
the proposed estimator has comparable performances to the exact maximum likelihood estimator for a Gaussian score-
driven location model. Finally, an experiment with real financial data has illustrated the key importance of our results in
a practical context.

Appendix A. Deterministic sequence of missing observations

In this section, we assume that {It}t∈Z is a deterministic sequence and derive the asymptotic properties of the indirect
inference estimator under this assumption. Assuming that {It}t∈Z is a stationary and ergodic sequence may not be realistic
n some applications and therefore it is of interest to study the case where {It}t∈Z is deterministic. For instance, daily
eturns of financial assets are not observed during holidays and they can be treated as missing observations. However,
olidays do not occur randomly since they are pre-determined and therefore considering the missing observations to be
eterministic may be more appropriate.

.1. Consistency

We start formulating sufficient conditions for the consistency of the indirect inference estimator. Assumptions A.1 and
.2 impose that the GAS process is the data generating process and ensure the independence of the GAS process from the
issing values sequence {It}t∈Z. These assumptions are equivalent to Assumptions 4.1 and 4.2 in Section 4.

ssumption A.1. The observed data {yt}Tt=1 is a realized path from stochastic process {yt}t∈Z that satisfies the GAS’s
quations (1) and (2) at θ0 ∈ Θ̄ .

ssumption A.2. The sequence {yi,t (θ̄ )}t∈Z is stationary and ergodic for every θ̄ ∈ Θ̄ . Furthermore, the sequences
yi,t (θ̄ )}t∈Z, i = 1, . . . , S, and {yt}t∈Z are independent of {It}t∈Z.

Assumption A.3 ensures the uniform converge of the pseudo log-likelihood function to a continuous deterministic limit
(θ, θ̄ ). We note that L (θ, θ̄ ) depends on the missing values sequence {I } . This is different compared to the case of
I I t t∈Z
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a stationary and ergodic missing values process where the limit of the pseudo likelihood is given by the unconditional
expectation of the likelihood contributions. Assumption A.3 is a high level assumption that encompasses the implications
of Assumptions 4.3–4.5, which are employed to deliver the uniform convergence of the pseudo likelihood.

Assumption A.3. The pseudo-likelihood function (θ, θ̄ ) ↦→ L̂S,T (θ, θ̄ ) is a.s. continuous and it converges a.s. and uniformly
to a deterministic limit function LI (θ, θ̄ ), that is,

∥L̂S,T − LI∥Θ×Θ̄

a.s.
−→ 0.

Assumption A.4, which is equivalent to Assumption 4.6, ensures that the pseudo-true parameter is the unique
maximizer of the pseudo likelihood function.

Assumption A.4. For every θ̄ ∈ Θ̄ , the pseudo-true parameter θ∗

I (θ̄ ) ∈ int(Θ) is the unique maximizer of the limit pseudo
log-likelihood LI (·, θ̄ ) in Θ .

Proposition A.1 establishes the consistency of the auxiliary pseudo ML estimators θ̂S,T (θ̄ ) and θ̂T as T → ∞ to their
respective pseudo true parameters.

Proposition A.1. Let Assumptions A.1–A.4. hold. Then θ̂S,T (θ̄ )
a.s.
−→ θ∗

I (θ̄ ) for every θ̄ ∈ Θ̄ and θ̂T
a.s.
−→ θ∗

I (θ0) as T → ∞.

Assumption A.5 imposes some differentiability conditions. This assumption is equivalent to Assumption 4.7.

Assumption A.5. The function (y, f , θ ) ↦→ p(y|f ; θ ) is 2 times continuously differentiable and θ ↦→ f̂i,t (θ, θ̄ ) is a.s. 2 times
continuously differentiable for any θ̄ ∈ Θ̄ and t ∈ N.

Assumption A.6 ensures the uniform convergence of the score and Hessian of the pseudo likelihood to the score and
Hessian of the limit pseudo likelihood function. This assumption encompasses Assumptions 4.8 and 4.9 through higher
level conditions.

Assumption A.6. The score and Hessian of the pseudo log-likelihood converge a.s. and uniformly to the score and Hessian
of the limit function LI (·, θ̄ )

∥∇θ L̂S,T − ∇θLI∥Θ×Θ̄

a.s.
−→ 0, ∥∇

2
θθ L̂S,T − ∇

2
θθLI∥Θ×Θ̄

a.s.
−→ 0.

Assumption A.7 is equivalent to Assumption 4.10 and it ensures that the Hessian converges to a non-singular limit.

Assumption A.7. The Hessian matrix ∇
2
θθLI (θ, θ̄ ) is non-singular for every (θ̄ , θ ) ∈ Θ̄ × Θ .

Assumption A.5, which is equivalent to Assumption 4.7, ensures continuity and the injective nature of the binding
function.

Assumption A.8. The binding function θ̄ ↦→ θ∗

I (θ̄ ) is continuous and injective in Θ̄ .

Theorem A.1 delivers the consistency of the indirect inference estimator.

Theorem A.1. Let Assumptions A.1–A.8 hold. Then the indirect inference estimator is strongly consistent: θ̃S,T
a.s.
−→ θ0 as

T → ∞.

A.2. Asymptotic normality

Next, we focus on the asymptotic normality of the indirect inference estimator. Assumption A.9 imposes conditions on
the data generating process and on the score function to apply a central limit theorem for NED sequences on an α-mixing
process. The conditions in Assumption A.9 present some differences compared to the conditions in Assumption 4.12. In
particular, no mixing properties are required for the missing values sequence since {It}t∈Z is deterministic and therefore
the distribution of the score is conditional on the sequence {It}t∈Z.

Assumption A.9. The sequence {yi,t (θ0)}t∈Z is α-mixing of size −2r/(r − 1) for some r > 2, and the score sequence
{∇θ l̂i,t (θ∗

I (θ0), θ0)}t∈Z is NED on {yi,t (θ0)}t∈Z of size −1. Furthermore, the following conditions hold

lim
T→∞

1
√
T

T∑
t=1

E
(
∇θ l̂i,t (θ∗

I (θ0), θ0)
)

= 0,

and

sup
t∈Z

E∥∇θ l̂i,t (θ∗

I (θ0), θ0)∥
2+δ < ∞ for some δ > 0.
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Proposition A.2 delivers the asymptotic normality of the auxiliary pseudo ML estimators. We can see that the
symptotic covariance matrix of the auxiliary estimator is different from the one in Proposition 4.2. The difference is
ue to the distribution that is conditional on the missing observations since they are deterministic and therefore the
cores l̂i,t (θ∗

I (θ0), θ0) and l̂j,t (θ∗

I (θ0), θ0) are independent for i ̸= j.

roposition A.2. Let Assumptions A.1–A.9 hold. Then,
√
T
(
θ̂T − θ∗

I (θ0)
)

d
−→ N

(
0, Ω∗

I (θ0)
−1Σ∗

I (θ0)Ω
∗

I (θ0)
−1
)
,

and
√
T
(
θ̂S,T (θ0) − θ∗

I (θ0)
)

d
−→ N

(
0,

1
S
Ω∗

I (θ0)
−1Σ∗

I (θ0)Ω
∗

I (θ0)
−1
)

as T → ∞,

here Ω∗

I (θ0) = ∇
2
θθLI (θ

∗

I (θ0), θ0) and

Σ∗

I (θ0) = lim
T→∞

Var

(
1

√
T

T∑
t=2

∇θ l̂i,t (θ∗

I (θ0), θ0)

)
.

Assumption A.10 is equivalent to Assumption 4.13. This assumption imposes some regularity conditions on the binding
function.

Assumption A.10. The binding function θ̄ ↦→ θ∗

I (θ̄ ) is continuously differentiable in Θ̄ and ∂θ∗

I (θ0)/∂θ is full rank.

Finally, Theorem A.2 establishes the asymptotic normality of the indirect inference estimator. The asymptotic covari-
nce matrix of the indirect inference estimator has a simpler form than the one in Theorem 4.2. This follows from the
ifferent covariance matrix of the pseudo ML estimator as discussed above.

heorem A.2. Let Assumptions A.1–A.10 hold and θ0 ∈ int(Θ̄). Then
√
T
(
θ̃S,T − θ0

)
d

−→ N(0,W I
S ) as T → ∞,

here

W I
S :=

(
1 +

1
S

)[∂θ∗

I (θ0)
∂θ⊤

]−1

VI (θ0)
[

∂θ∗

I (θ0)
∂θ

⊤
]−1

where VI (θ0) denotes the asymptotic variance VI (θ0) := Ω∗

I (θ0)
−1Σ∗

I (θ0)Ω
∗

I (θ0)
−1.

Appendix B. Proofs of the results

B.1. Proofs of Section 3

Proof of Theorem 3.1. Let µt (θ ) denote the limit of the filtered parameter µ̂t (θ ) that is given by

µt (θ ) = α

∞∑
k=1

[
k−1∏
i=1

ξ̃t−i

]
It−kyt−k, (12)

here ξ̃t = β − αIt . Furthermore, we denote with LT the pseudo log-likelihood function evaluated at the limit filter
µt (θ ), i.e. LT (θ ) = −2−1T−1∑T

t=1 It (yt − µt (θ ))2. Finally, we define the limit of the pseudo log-likelihood L(θ ) as
(θ ) = −2−1πE[(yt − µt (θ ))2].
To prove the theorem, we first show that the pseudo likelihood function L̂T (θ ) converges a.s. and uniformly to L(θ ),

.e. supθ∈Θ |L̂T (θ ) − L(θ )|
a.s.
−→ 0. Then, we show that this uniform convergence together with Lemma B.2 implies that

im infT→∞ ∥θ̂T − θ0∥ > ϵ with probability 1.
As concerns the uniform convergence, an application of the triangle inequality yields

sup
θ∈Θ

⏐⏐⏐L̂T (θ ) − L(θ )
⏐⏐⏐ ≤ sup

θ∈Θ

⏐⏐⏐L̂T (θ ) − LT (θ )
⏐⏐⏐+ sup

θ∈Θ

⏐⏐⏐LT (θ ) − L(θ )
⏐⏐⏐. (13)

herefore, we just need to show that both terms on the right hand side of the inequality in (13) go to zero almost
urely. Regarding the first term, we have that supθ∈Θ |µ̂t (θ ) − µt (θ )| goes to zero exponentially almost surely (e.a.s.)
y Lemma B.1. Then we obtain that the following inequality is satisfied for large enough t

sup |(yt − µt (θ ))2 − (yt − µ̂t (θ ))2| ≤ ηt sup |µ̂t (θ ) − µt (θ )|, (14)

θ∈Θ θ∈Θ
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where

ηt = 2 sup
θ∈Θ

|µt (θ )| + 2|yt | + 1 ≥ 2 sup
θ∈Θ

|µ∗

t (θ )| + 2|yt |

or any µ∗
t between µt and µ̂t . Therefore, since {ηt}t∈Z is a stationary and ergodic sequence with bounded moments of

ny order and supθ∈Θ |µ̂t (θ ) − µt (θ )| goes to zero e.a.s., we conclude that the left hand side of the inequality in (14)
oes to zero almost surely by an application of Lemma 2.1 of Straumann and Mikosch (2006). It is then immediate to see
hat supθ∈Θ |(yt − µt (θ ))2 − (yt − µ̂t (θ ))2|

a.s.
−→ 0 implies the desired result, i.e. supθ∈Θ |L̂T (θ ) − LT (θ )|

a.s.
−→ 0. Finally, the

econd term on the right hand side of the inequality in (13) goes to zero almost surely by an application of the ergodic
heorem of Rao (1962) provided that E supθ∈Θ |yt − µt (θ )|2 < ∞. We note that E supθ∈Θ |yt − µt (θ )|2 < ∞ holds true
as Θ is a compact set contained in (0, 1)2 and moments of any order for µt (θ ) exist for any θ ∈ Θ .

From the uniform convergence supθ∈Θ |L̂T (θ ) − L(θ )|
a.s.
−→ 0 and Lemma B.2, we infer that there exists an ϵ > 0 such

that the following inequality is satisfied with probability 1

lim sup
n→∞

(
sup

θ∈Bϵ (θ0)
L̂T (θ ) − sup

θ∈Bcϵ (θ0)
L̂T (θ )

)
< 0, (15)

where Bϵ(θ0) = {θ ∈ Θ : ∥θ0 − θ∥ < ϵ} and Bc
ϵ(θ0) = Θ/Bϵ(θ0). From the definition of θ̂T , we know that

L̂T (θ̂T ) = supθ∈Θ L̂T (θ ) for any n ∈ N. Therefore, if we assume that lim infT→∞ ∥θ̂T − θ0∥ > ϵ with probability smaller
than 1, then the inequality in (15) must be satisfied with probability smaller than 1 since,

∥θ̂T − θ0∥ > ϵ ⇔ sup
θ∈Bϵ (θ0)

L̂T (θ ) < sup
θ∈Bcϵ (θ0)

L̂T (θ )

nd hence

P(∥θ̂T − θ0∥ > ϵ) = P
(

sup
θ∈Bϵ (θ0)

L̂T (θ ) < sup
θ∈Bcϵ (θ0)

L̂T (θ )
)

< 1.

his is a contradiction with respect to (15). Therefore, we can conclude that lim infT→∞ ∥θ̂T − θ0∥ > ϵ with probability 1.
his concludes the proof of the theorem. □

emma B.1. For any (α0, β0, π ) ∈ (0, 1)3 and any compact set Θ ⊂ (0, 1)2, we have that

sup
θ∈Θ

|µ̂t (θ ) − µt (θ )|
e.a.s.
−−→ 0, as t → ∞,

or any initialization µ̂1(θ ) ∈ R.

roof. The result can be obtained by an application of Theorem 3.1 of Bougerol (1993) to a sequence of random functions
xt (·)}t∈N defined through a Stochastic Recurrence Equation (SRE) of the form

xt+1(θ ) = φt (xt (θ ), θ ), t ∈ N, (16)

here x1(θ ) ∈ R, the map (x, θ ) ↦→ φt (x, θ ) from R×Θ into R is almost surely continuous and the sequence {φt (x, θ )}t∈Z
s stationary and ergodic for any (x, θ ) ∈ R×Θ . Bougerol’s theorem ensures that for any initialization x1(θ ) the sequence
efined by the SRE in (16) converges e.a.s. and uniformly in Θ to a unique stationary and ergodic sequence {x̃t (θ )}. The
onditions required to apply Bougerol’s result are:
i) There is an x ∈ R such that E log+

(
supθ∈Θ |φ0(x, θ )|

)
< ∞,

ii) E log+
(
supθ∈Θ Λ0(θ )

)
< ∞,

iii) E log
(
supθ∈Θ Λ0(θ )

)
< 0,

where Λt (θ ) = supx∈R |∂φt (x, θ )/∂x|.
In our case we have that the sequence {µ̂t (θ )} is defined through the SRE in (7). As a result, we have that φt (x, θ ) =

βx + αIt (yt − x). Therefore we immediately obtain that Λt (θ ) = |β − αIt |. Furthermore, the limit function x̃t (θ ) in our
case is given by µt (θ ), which is defined in (12). In the following we show that the conditions of Bougerol’s theorem are
satisfied.

First we note that there exists an x ∈ R such that E log+
(
supθ∈Θ |φ0(x, θ )|

)
< ∞ because we can set x = 0 and we

immediately obtain that

E log+

(
sup
θ∈Θ

|φ0(x, θ )|
)

≤ E
(
sup
θ∈Θ

|αItyt |
)

≤ sup
θ∈Θ

|α|E|yt | < ∞,

where the last equality is implied by the fact that supθ∈Θ |α| is finite by compactness of Θ and E|yt | is finite because yt
is a stationary ARMA(1,1) process for any (α0, β0) ∈ (0, 1)2 and thus moments of any order exist. Second, we note that
E log+

(
supθ∈Θ Λ0(θ )

)
< ∞ and E log

(
supθ∈Θ Λ0(θ )

)
< 0 since Λt (θ ) = |β −αIt | is smaller than 1 with probability 1 for

any θ ∈ Θ and therefore by compactness supθ∈Θ Λt (θ ) < 1 with probability 1. This concludes the proof of the lemma. □
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emma B.2. For some (α0, β0, π ) ∈ (0, 1)3 there exists an ϵ > 0 such that

sup
θ∈Bϵ (θ0)

L(θ ) < sup
θ∈Bcϵ (θ0)

L(θ ).

Proof. In the following, we shall show that ∂L(θ )/∂β|θ=θ0 ̸= 0 for some (α0, β0, π ) ∈ (0, 1)3. Then, given the smoothness
of the function L(θ ) in Θ and the assumption that θ0 is an interior point of Θ , we can conclude that the supremum of
L(θ ) in Θ is not contained in the closure of the set Bϵ(θ0) for small enough ϵ > 0. This immediately proves the statement
of the Lemma.

We are therefore left with showing that ∂L(θ )/∂β|θ=θ0 ̸= 0 for some (α0, β0, π ) ∈ (0, 1)3. First, we obtain a closed
form expression for L(θ ) and ∂L(θ )/∂β . Expanding the square in the expression of L(θ ), we obtain that L(θ ) = −2−1π (1+

E[µo
t − µt (θ )]2) as εt is independent of the past observations as well as the missing values process {It}t∈Z. We also note

that, expanding the recursion in (6), µo
t can be written as

µo
t = α0

∞∑
k=1

ξ k−1
0 yt−k,

where ξ0 = β0 − α0. Therefore, considering the expression of µt (θ ) in (12), we obtain that

(µo
t − µt (θ ))2 =

∞∑
k=1

∞∑
s=1

(
α2
0ξ

k+s−2
0 + α2

[
k−1∏
i=1

ξ̃t−i

][
s−1∏
i=1

ξ̃t−i

]
It−kIt−s

− αα0ξ
k−1
0

[
s−1∏
i=1

ξ̃t−i

]
It−s − αα0ξ

s−1
0

[
k−1∏
i=1

ξ̃t−i

]
It−k

)
yt−syt−k. (17)

or convenience, we split the double sum in (17) in three terms, namely the sum of elements such that k = s, k < s and
> s.
Taking into account that {It}t∈Z is an i.i.d. sequence of Bernoulli random variables and the independence between

yt}t∈Z and {It}t∈Z, we obtain that the expectation of the sum of terms in (17) such that k = s, which we denote as s1, is
iven by

s1 =

∞∑
k=1

(
α2
0ξ

2(k−1)
0 + α2πξ k−1

Z − 2αα0πξ k−1
0 ξ k−1

B

)
γ0

=

(
α2
0

1 − ξ 2
0

+
α2π

1 − ξZ
−

2αα0π

1 − ξ0ξB

)
γ0,

where ξB = E(ξ̃t ) = β − πα, ξZ = E(ξ̃ 2
t ) = π (β − α)2 + (1 − π )β2 and γk = E(ytyt−k) is given in Lemma B.3 for k ∈ N.

imilarly, the expectation of the sum of terms in (17) such that k < s, which we denote as s2, is given by

s2 =

∞∑
k=1

∞∑
s=1

(
α2
0ξ

2(k−1)+s
0 + α2πξAξ

s−1
B ξ k−1

Z

− αα0π
(
ξ k−1
0 ξ s+k−1

B + ξ s+k−1
0 ξ k−1

B

))
βs−1
0 γ̃

=
α2
0ξ0γ̃

(1 − ξ 2
0 )(1 − ξ0β0)

+
α2π2ξAγ̃

(1 − ξBβ0)(1 − ξZ )

−
αα0πξBγ̃

(1 − ξ0ξB)(1 − ξBβ0)
−

αα0πξ0γ̃

(1 − ξ0ξB)(1 − ξ0β0)
,

where ξA = β −α and γ̃ is given in Lemma B.3. Finally, it can be easily noted that the expectation of the sum of terms in
(17) such that k > s is equal to s2. As a result, we can conclude that E(µo

t − µt (θ ))2 = s1 + 2s2. We can now compute the
erivative with respect to β of s1 and s2. By elementary calculus, we obtain that the derivative of s1 evaluated at θ = θ0
s given by

ṡ1 =
∂s1
∂β

⏐⏐⏐⏐⏐
θ=θ0

=

(
2ξ o

Bα
2
0π

(1 − ξ o
Z )2

−
2α2

0ξ0π

(1 − ξ0ξ
o
B )2

)
γ0.

imilarly, the derivative of s2 evaluated at θ0 is given by

ṡ2 =
∂s2
∂β

⏐⏐⏐⏐⏐ = ṡ22 + ṡ23 + ṡ24,

θ=θ0
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where

ṡ22 =α2
0π

2γ̃

(
(1 − ξ o

Bβ0)(1 − ξ o
Z ) + ξ o

Aβ0(1 − ξ o
Z ) + 2ξ o

Aξ
o
B (1 − ξ o

Bβ0)
(1 − ξ o

Bβ0)2(1 − ξ o
Z )2

)
,

ṡ23 = − α2
0πγ̃

(
(1 − ξ o

Bβ0)(1 − ξ o
B ξ

◦

0 ) + ξ o
B ξ0(1 − ξ o

Bβ0) + ξ o
Bβ0(1 − ξ o

B ξ0)
(1 − ξ o

Bβ0)2(1 − ξ0ξ
o
B )2

)
,

ṡ24 = − α2
0πγ̃

(
ξ 2
0 (1 − ξ0β0)

(1 − ξ0β0)2(1 − ξ0ξ
o
B )2

)
,

with ξ o
A , ξ

o
B and ξ o

Z denoting ξA, ξB and ξZ evaluated at (α, β) = (α0, β0). The derivative of L(θ ) with respect to β and evalu-
ted at θ0 is therefore given by ∂L(θ )/∂β|θ=θ0= −2−1π (ṡ1+2ṡ2). Finally, we conclude the proof of the theorem by noticing
hat the derivative is different from zero for some (α0, β0, π ) ∈ (0, 1)3. For instance, it is easy to verify that the derivative
s different from zero at the point (α0, β0, π ) = (0.2, 0.95, 0.5). Other values can be used to obtain the same result. □

emma B.3. When σ 2
0 = 1 and ω0 = 0, the autocovariance function of yt , namely γk = E(ytyt−k), is given by

γk =

{
1 +

α2
0

1−β2
0
, if k = 0

βk−1
0 γ̃ , if k ≥ 1,

here γ̃ = α0 +
α2
0β0

1−β2
0
.

Proof. The proof follows immediately by noting that yt is an ARMA(1,1) that has the following MA(∞) representation

yt = α0

∞∑
i=1

β i−1
0 εt−i + εt ,

where εt ∼ N(0, 1). It is then straightforward to obtain the expression for the autocovariance function γk. □

B.2. Proofs of Section 4

Proof of Proposition 4.1. We obtain the consistency of θ̂S,T (θ̄ ), for every θ̄ ∈ Θ̄ , by appealing to Theorem 3.4 in White
(1994). In particular, we show that L̂S,T (θ, θ̄ ) converges a.s. to a limit deterministic function L(θ, θ̄ ) = Eli,t (θ, θ̄ ) uniformly
in θ ∈ Θ , for every θ̄ ∈ Θ̄ , that is,

sup
θ∈Θ

|L̂S,T (θ, θ̄ ) − L(θ, θ̄ )|
a.s.
−→ 0 ∀ θ̄ ∈ Θ̄ as T → ∞, (18)

and that θ = θ∗(θ̄ ) is the identifiably unique maximizer of the limit criterion L(θ, θ̄ ), that is,

sup
θ∈Θ : ∥θ−θ∗(θ̄ )∥>δ

L(θ, θ̄ ) < L(θ∗(θ̄ ), θ̄ ), ∀ δ > 0, θ̄ ∈ Θ̄ . (19)

The identifiable uniqueness of θ∗(θ̄ ) in (19) follows by the compactness of Θ , the uniqueness of the parameter
θ∗(θ̄ ) ∀ θ̄ ∈ Θ̄ (Assumption 4.6) and the continuity of L(·, θ̄ ) for every θ̄ ∈ Θ̄ , which is ensured by the continuity and
uniform convergence of L̂S,T (·, θ̄ ) shown below.

As concerns the uniform convergence in (18), for every θ̄ ∈ Θ̄ , the triangle inequality yields

sup
θ∈Θ

|L̂S,T (θ, θ̄ ) − L(θ, θ̄ )| ≤ sup
θ∈Θ

|L̂S,T (θ, θ̄ ) − LS,T (θ, θ̄ )| + sup
θ∈Θ

|LS,T (θ, θ̄ ) − L(θ, θ̄ )|, (20)

where LS,T (θ, θ̄ ) denotes the log-likelihood function evaluated at the limit filter {fi,t (θ, θ̄ )}. Therefore, the desired uniform
convergence follows if both terms on the right side of the inequality in (20) go to zero almost surely. As concerns the
first term, from Assumptions 4.3 and 4.5, we obtain that

sup
θ∈Θ

|L̂S,T (θ, θ̄ ) − LS,T (θ, θ̄ )| = sup
θ∈Θ

⏐⏐⏐ 1
ST

S∑
i=1

T∑
t=2

(
l̂i,t (θ, θ̄ ) − li,t (θ, θ̄ )

)⏐⏐⏐
≤

1
ST

S∑
i=1

T∑
t=2

sup
θ∈Θ

⏐⏐⏐l̂i,t (θ, θ̄ ) − li,t (θ, θ̄ )
⏐⏐⏐

≤
1
ST

S∑
i=1

T∑
t=2

ηi,t sup
θ∈Θ

⏐⏐⏐f̂i,t (θ, θ̄ ) − fi,t (θ, θ̄ )
⏐⏐⏐ a.s.
−→ 0,

where the a.s. convergence to zero follows by an application of Lemma 2.1 of Straumann and Mikosch (2006).
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As concerns the second term on the right hand side of (20), we obtain the uniform convergence

sup
θ∈Θ

|LS,T (θ, θ̄ ) − L(θ, θ̄ )|
a.s.
−→ 0,

by an application of the ergodic theorem of Rao (1962), applied to the sequence {li,t (·, θ̄ )} with elements taking values in
the Banach space of continuous functions C(Θ) equipped with supremum norm. We notice that the sequence {li,t (·, θ̄ )}
is strictly stationary and ergodic since each element is a measurable function of the strictly stationary data yi,t (θ̄ ) and the
limit filter fi,t (·, θ̄ ), for every θ̄ ∈ Θ̄ (Assumptions 4.2 and 4.3). Additionally, {li,t (·, θ̄ )} has a uniform bounded moment
for every θ̄ ∈ Θ̄ by Assumption 4.5. This enables the application of Rao (1962)’s law of large numbers and obtains the
desired result.

We can therefore conclude that θ̂S,T (θ̄ ) is strongly consistent for θ∗(θ̄ ). Furthermore, we note that the strong consistency
of θ̂T to θ∗(θ0) follows immediately since θ̂T has the same stochastic properties of θ̂S,T (θ̄ ) with S = 1 and θ̄ = θ0. This
concludes the proof of the proposition. □

Proof of Theorem 4.1. Following Theorem 3.4 in White (1994), we obtain the consistency of our indirect inference
estimator by showing that the indirect inference criterion ∥θ̂S,T (θ̄ ) − θ̂T∥ satisfies

sup
θ̄∈Θ̄

⏐⏐⏐ ∥θ̂S,T (θ̄ ) − θ̂T∥ − ∥θ∗(θ̄ ) − θ∗(θ0)∥
⏐⏐⏐ a.s.
−→ 0 as T → ∞, (21)

and that θ0 is the identifiably unique minimizer of the limit criterion

inf
θ̄∈Θ̄ : ∥θ̄−θ0∥>δ

∥θ∗(θ̄ ) − θ∗(θ0)∥ > ∥θ∗(θ0) − θ∗(θ0)∥ = 0 ∀ δ > 0. (22)

The identifiable uniqueness follows immediately from the compactness of the parameter space and the continuity and
injective nature of the binding function θ∗(·) (Assumption 4.11); see Potscher and Prucha (1997).

As concerns the uniform convergence of the criterion in (21), the reverse triangle inequality and the triangle inequality
yield

sup
θ̄∈Θ̄

⏐⏐ ∥θ̂S,T (θ̄ ) − θ̂T∥ − ∥θ∗(θ̄ ) − θ∗(θ0)∥
⏐⏐ ≤

≤ sup
θ̄∈Θ̄

∥θ̂S,T (θ̄ ) − θ̂T − θ∗(θ̄ ) + θ∗(θ0)∥ ≤ sup
θ̄∈Θ̄

∥θ̂S,T (θ̄ ) − θ∗(θ̄ )∥ + ∥θ̂T − θ∗(θ0)∥.

Therefore, the desired result follows if both terms on the right hand side of the above inequality go to zero a.s. We obtain
that the convergence of θ̂T to θ∗(θ0) follows by an application of Proposition 4.1 and the uniform convergence of θ̂S,T (θ̄ )
to θ∗(θ̄ ) follows by an application of Lemma B.4. □

Proof of Proposition 4.2. The asymptotic normality of the auxiliary statistics is obtained by appealing to Theorem 6.2
in White (1994). In particular, we obtain the asymptotic normality of θ̂ST (θ0) by verifying the following conditions:

(i) The strong consistency of the auxiliary estimator θ̂S,T (θ0)
a.s.
−→ θ∗(θ0) with θ∗(θ0) ∈ int(Θ);

(ii) Twice continuous differentiability of the pseudo log-likelihood function L̂S,T (θ, θ0) with respect to θ ;
(iii) Asymptotic normality of the score evaluated at the pair (θ∗(θ0), θ0)

√
T∇θ L̂S,T (θ∗(θ0), θ0)

d
−→ N(0, Σ∗

S (θ0));

(iv) Uniform convergence of the Hessian

sup
θ∈Θ

∇2
θθ L̂S,T (θ, θ0) − E∇

2
θθLS,T (θ, θ0)

 a.s.
−→ 0.

(v) The Hessian matrix Ω∗(θ0) = E∇
2
θθLS,T (θ

∗(θ0), θ0) is non-singular.

First we note that Condition (i) is satisfied by an application of Proposition 4.1 and Condition (ii) is satisfied by
ssumption.
As concerns condition (iii), we can re-write the score of the likelihood as

√
T∇θ L̂S,T (θ∗(θ0), θ0) =

√
T∇θ L̂S,T (θ∗(θ0), θ0) −

√
T∇θLS,T (θ∗(θ0), θ0)

+
√
T∇θLS,T (θ∗(θ0), θ0).

Therefore, the desired result can be proved by showing that a central limit theorem applies to the limit score
√
T∇θLS,T (θ∗(θ0), θ0)

d
−→ N(0, Σ∗

S (θ0)),

and showing that the remainder term vanishes almost surely
√
T∇ L̂ (θ∗(θ ), θ ) −

√
T∇ L (θ∗(θ ), θ )

a.s.
−→ 0 as T → ∞.
θ S,T 0 0 θ S,T 0 0
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We obtain that the score is asymptotically Gaussian by an application of a central limit theorem for NED processes. In
particular, we consider Theorem 10.2 of Potscher and Prucha (1997) and notice that the assumptions of the theorem are
satisfied by Assumption 4.12. Therefore, we have that

√
T∇θLS,T (θ∗(θ0), θ0) =

1
√
TS

S∑
i=1

T∑
t=2

∇θ li,t (θ∗(θ0), θ0)
d

−→ N(0, Σ∗

S (θ0)),

here the asymptotic covariance matrix of the score is Σ∗

S (θ0) =
1
S Σ

∗(θ0) +
S−1
S K ∗(θ0) with

Σ∗(θ0) = lim
T→∞

Var

(
1

√
T

T∑
t=2

∇θ li,t (θ∗(θ0), θ0)

)

and K ∗(θ0) = lim
T→∞

Cov

(
1

√
T

T∑
t=2

∇θ li,t (θ∗(θ0), θ0) ,
1

√
T

T∑
t=2

∇θ lj,t (θ∗(θ0), θ0)

)
for some i ̸= j.

Note that this expression of the covariance matrix Σ∗(θ0) is due to the fact that the scores of the pseudo log-likelihood
can be correlated. Additionally, by Assumptions 4.8 and 4.9, we obtain that√T∇θ L̂S,T (θ∗(θ0), θ0)−

√
T∇θLT (θ∗(θ0), θ0)


≤

1
√
TS

S∑
i=1

T∑
t=2

ηi,t
∇ (0:1)

θ f̂i,t (θ∗(θ0), θ0) − ∇
(0:1)
θ fi,t (θ∗(θ0), θ0)

 a.s.
−→ 0,

where the almost sure convergence to zero follows by Lemma 2.1 in Straumann and Mikosch (2006).
Next, we notice that the uniform convergence of the Hessian in Condition (iv) follows as shown in the proof of B.4.
As concerns Condition (v), we have that this condition is immediately satisfied by Assumption 4.10. Therefore, we

conclude that
√
T
(
θ̂S,T (θ0) − θ∗(θ0)

)
d

−→ N
(
0, Ω∗(θ0)−1Σ∗

S (θ0)Ω
∗(θ0)−1

)
as T → ∞.

inally, we note that the asymptotic normality of θ̂T follows immediately since θ̂T has the same stochastic properties of
ˆS,T (θ0) with S = 1. This concludes the proof of the Proposition. □

roof of Theorem 4.2. The proof of this theorem is available in Gourieroux et al. (1993). Note that the asymptotic
ormality of the auxiliary statistics is obtained in Proposition 4.2 and that, asymptotically, we have

Var
(√

T
(
θ̂T − θ̂S,T (θ0)

))
= Ω∗(θ0)−1

[
Σ∗(θ0) +

1
S
Σ∗(θ0) +

S − 1
S

K ∗(θ0) − 2K ∗(θ0)
]
Ω∗(θ0)−1

=

(
1 +

1
S

)
Ω∗(θ0)−1

(
Σ∗(θ0) − K ∗(θ0)

)
Ω∗(θ0)−1.

Finally, we note that the form of the asymptotic covariance matrix simplifies because of exact identification. □

Lemma B.4. Let Assumptions 4.1–4.11 hold. Then, the pseudo ML estimator θ̂S,T (θ̄ ) converges a.s. and uniformly to θ∗(θ̄ ), that
is,

sup
θ̄∈Θ̄

∥θ̂S,T (θ̄ ) − θ∗(θ̄ )∥
a.s.
−→ 0 as T → ∞.

Proof. First, we note that an application of the mean value theorem yields

sup
θ̄∈Θ̄

∥θ̂S,T (θ̄ ) − θ∗(θ̄ )∥ ≤ sup
θ̄∈Θ̄

∥∇θ L̂S,T (θ∗(θ̄ ), θ̄ )∥ sup
θ∈Θ

sup
θ̄∈Θ̄

(∇2
θθ L̂S,T (θ, θ̄ )

)−1
Therefore, the desired result is obtained if

sup
θ̄∈Θ̄

∥∇θ L̂S,T (θ∗(θ̄ ), θ̄ )∥
a.s.
−→ 0 as T → ∞, (23)

and

sup
θ∈Θ

sup
θ̄∈Θ̄

(∇2
θθ L̂S,T (θ, θ̄ )

)−1 a.s.
−→ c ̸= 0 as T → ∞, (24)

are satisfied.
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As concerns the convergence in (23), we obtain that

sup
θ̄∈Θ̄

∥∇θ L̂S,T (θ∗(θ̄ ), θ̄ )∥

≤ sup
θ̄∈Θ̄

∥∇θ L̂S,T (θ∗(θ̄ ), θ̄ ) − ∇θLS,T (θ∗(θ̄ ), θ̄ )∥ + sup
θ̄∈Θ̄

∥∇θLS,T (θ∗(θ̄ ), θ̄ )∥.
(25)

The second term on the right hand side of (25) vanishes a.s. by application of the ergodic theorem of Rao (1962). In
particular, E∇θLS,T (θ∗(θ̄ ), θ̄ ) = 0 for any θ̄ ∈ Θ̄ since θ∗(θ̄ ) ∈ int(Θ) is the maximizer of the function L(·, θ̄ ) in Θ
or any θ̄ ∈ Θ̄ . Therefore, the uniform moment condition on the score in Assumption 4.9 ensures the a.s. uniform
onvergence of ∇θLS,T (θ∗(θ̄ ), θ̄ ) to zero as T diverges. Furthermore, as concerns the first term on the right hand side
f (25), by Assumptions 4.8 and 4.9, we obtain that

sup
θ̄∈Θ̄

∇θ L̂S,T (θ∗(θ̄ ), θ̄ ) − ∇θLS,T (θ∗(θ̄ ), θ̄ )
 ≤

1
ST

S∑
i=1

T∑
t=2

∇θ l̂i,t − ∇θ li,t


Θ×Θ̄

≤
1
ST

S∑
i=1

T∑
t=2

ηi,t
∇ (0:1)

θ f̂i,t − ∇
(0:1)
θ fi,t


Θ×Θ̄

a.s.
−→ 0,

where the a.s. convergence to zero follows by an application of Lemma 2.1 in Straumann and Mikosch (2006).
The uniform convergence of the inverse Hessian in (24) is obtained by establishing the uniform convergence of the

Hessian to a non-singular limit E∇
2
θθ li,t (θ, θ̄ ) (Assumption 4.10), that is,

sup
θ∈Θ

sup
θ̄∈Θ̄

(∇2
θθ L̂S,T (θ, θ̄ )

)−1 a.s.
−→ c ̸= 0

⇐
∇2

θθ L̂S,T − E∇
2
θθ li,t


Θ×Θ̄

a.s.
−→ 0.

The uniform convergence above is shown as follows. First, we obtain that∇2
θθ L̂S,T − E∇

2
θθ li,t


Θ×Θ̄

≤
∇2

θθ L̂S,T − ∇
2
θθLS,T


Θ×Θ̄

+
∇2

θθLS,T − E∇
2
θθ li,t


Θ×Θ̄

. (26)

The second term on the right hand side of inequality (26) vanishes a.s. to zero by an application of the ergodic theorem
of Rao (1962), since ∇

2
θθ li,t (θ, θ̄ ) has a uniformly bounded moment by Assumption 4.9. As concerns the first term on the

right hand side of inequality (26), by Assumptions 4.8 and 4.9, we obtain that

∥∇
2
θθ L̂S,T − ∇

2
θθLS,T∥Θ×Θ̄

≤
1
ST

S∑
i=1

T∑
t=2

∇2
θθ l̂i,t − ∇

2
θθ li,t


Θ×Θ̄

≤
1
ST

S∑
i=1

T∑
t=2

ηi,t
∇ (0:2)

θ f̂i,t − ∇
(0:2)
θ fi,t


Θ×Θ̄

a.s.
−→ 0,

where the a.s. convergence to zero is obtained by an application of Lemma 2.1 in Straumann and Mikosch (2006). □

B.3. Proofs of Section 5

Proof of Theorem 5.1. The proof is derived by checking that Assumptions 4.1–4.13 are satisfied. Assumption 4.1 is trivially
satisfied as we assume that the data generating process is the Gaussian local mean process. Assumption 4.2 is satisfied
since the stationarity and exogeneity of {It}t∈Z hold by assumption and the parameter set Θ̄ can be selected as a compact
ball around the true parameter value θ0, which satisfies the stationarity condition |β0| < 1. As concerns Assumption 4.3,
we note that µ̂i,t (θ, θ̄ ) can be expressed as a SRE of continuous function in the compact set Θ̄ × Θ .

φt (x, θ, θ̄ ) = βx + αIt (yi,t (θ̄ ) − x).

Therefore, the uniform convergence result follows by an application of Theorem 3.1 of Bougerol (1993) as in the proof
of Lemma B.1 since µ̂i,t (θ, θ̄ ) is a contractive process. Assumption 4.4 immediately holds since the conditional density is
Normal. As concerns Assumption 4.5, both conditions hold as shown in the proof of Theorem 3.1. Assumption 4.6 holds
since the parameter sets Θ and Θ̄ can be chosen to be arbitrarily small compact balls around θ∗(θ0) and θ0. Therefore,
the function θ∗(·) is continuous in Θ̄ and the Hessian ∇

2
θθL(θ, θ̄ ) is negative definite for any (θ, θ̄ ) ∈ Θ × Θ̄ since

∇
2
θθL(θ

∗(θ0), θ0) is negative definite and ∇
2
θθL(·, ·) is continuous by the uniform convergence implied by Assumption 4.9,

which is shown to hold below. This ensures the uniqueness of the pseudo true parameter in Θ . The smoothness conditions
in Assumption 4.7 hold trivially given the Gaussian density function and the linear specification of ft . As concerns
Assumption 4.8, we have that the first and second derivatives of µ̂i,t (θ, θ̄ ) with respect to θ = (α, β)⊤ follow the following
SRE

∇θ µ̂i,t+1(θ, θ̄ ) =

[
It (yi,t (θ̄ ) − µ̂i,t (θ, θ̄ ))

¯

]
+ (β − αIt ) ∇θ µ̂i,t (θ, θ̄ ),
µ̂i,t (θ, θ )
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and

∇
2
θθ µ̂i,t+1(θ, θ̄ ) =

[
−It
1

]
∇θ µ̂i,t (θ, θ̄ )⊤ + ∇θ µ̂i,t (θ, θ̄ )

[
−It 1

]
+ (β − αIt ) ∇

2
θθ µ̂i,t (θ, θ̄ ).

Therefore, ∇θ µ̂i,t (θ, θ̄ ) and ∇
2
θθ µ̂i,t (θ, θ̄ ) are contractive processes and the convergence result follows by an application

of Theorem 2.10 of Straumann and Mikosch (2006) for perturbed SRE. As concerns Assumption 4.9, we notice that the
first and second derivatives of the pseudo log-likelihood are

∇θ li,t (θ, θ̄ ) =
(
yi,t (θ̄ ) − µi,t (θ, θ̄ )

)
∇θµi,t (θ, θ̄ ),

and

∇
2
θθ li,t (θ, θ̄ ) = −∇θµi,t (θ, θ̄ ) ∇θµi,t (θ, θ̄ )⊤ +

(
yi,t (θ̄ ) − µi,t (θ, θ̄ )

)
∇

2
θθµi,t (θ, θ̄ ).

The processes µi,t (θ, θ̄ ), ∇θµi,t (θ, θ̄ ) and ∇
2
θθµi,t (θ, θ̄ ) can be expressed as linear combinations of past values of yi,t (θ̄ )

and therefore they have finite moments of any order uniformly over the compact set Θ × Θ̄ since {yi,t (θ̄ )}t∈Z is a
Gaussian ARMA(1,1) process. Therefore, from the above expressions, we immediately conclude that E∥∇θ li,t∥Θ×Θ̄ and
E∥∇

2
θθ li,t∥Θ×Θ̄ are finite. Next, we show that the Lipschitz conditions (i) and (ii) are satisfied. For large enough t , we

obtain that

∥∇θ l̂i,t − ∇θ li,t∥Θ×Θ̄ ≤ (∥yi,t∥Θ̄ + ∥µi,t∥Θ×Θ̄ + 1) ∥∇θ µ̂i,t − ∇θµi,t∥Θ×Θ̄ + ∥∇θµi,t∥Θ×Θ̄ ∥µ̂i,t − µi,t∥Θ×Θ̄ .

Therefore, we conclude that (i) is satisfied. As concerns (ii), for large enough t , we obtain

∥∇
2
θθ l̂i,t − ∇

2
θθ li,t∥Θ×Θ̄ ≤(2∥∇θµi,t∥Θ×Θ̄ + 1)∥∇θ µ̂i,t − ∇θµi,t∥Θ×Θ̄ + ∥∇

2
θθµi,t∥Θ×Θ̄ ∥µ̂i,t − µi,t∥Θ×Θ̄

+ (∥yi,t∥Θ̄ + ∥µi,t∥Θ×Θ̄ + 1) ∥∇
2
θθ µ̂i,t − ∇

2
θθµi,t∥Θ×Θ̄ .

Therefore, we conclude that (ii) is satisfied. Assumption 4.10 holds since ∇
2
θθL(θ, θ̄ ) is negative definite for any (θ, θ̄ ) ∈

Θ × Θ̄ as discussed above. Assumption 4.11 holds from the statement of the theorem since Θ̄ can be defined as a small
ball around θ0.

Regarding the asymptotic normality, we are left with Assumptions 4.12 and 4.13. Assumption 4.13 holds from
the statement of the theorem. Finally, as concerns Assumption 4.12, we have that {It}t∈Z is α-mixing by assumption.
Furthermore, we note that {yi,t (θ0)}t∈Z is a stationary ARMA(1,1) process with Gaussian innovations. Therefore, {yi,t (θ0)}t∈Z
is α-mixing of size −2r/(r − 1), r > 2 (Mokkadem, 1988). Next, we note that the expression of the score is

∇θ li,t (θ∗(θ0), θ0) = −
(
yi,t (θ0) − µi,t (θ∗(θ0), θ0)

)
∇θµi,t (θ∗(θ0), θ0).

We obtain that {∇θµi,t (θ∗(θ0), θ0)}t∈Z and {µi,t (θ∗(θ0), θ0)}t∈Z are NED on {(yi,t (θ0), It )}t∈Z of size −∞ by an application
of Theorem 6.11 of Potscher and Prucha (1997) as they can be expressed as contractive processes. Therefore, we conclude
that {∇θ li,t (θ∗(θ0), θ0)}t∈Z is NED on {(yi,t (θ0), It )}t∈Z of size −∞ by an application of Theorem 17.16 of Davidson (1994).
Finally, we note that the moment condition E∥∇θ li,t (θ∗(θ0), θ0)∥2+δ < ∞, for some δ > 0, holds since the score has
uniformly bounded moments of any order as discussed above. □

Proof of Theorem 5.2. As before, the proof is derived by checking that Assumptions 4.1–4.13 are satisfied. Assump-
tions 4.1 and 4.2 are satisfied since we consider that the data generating process is the GARCH model in (8) and the strict
stationarity condition E log(β0 +α0(ε2

t − 1)) < 0 holds. Furthermore, Θ̄ can be defined to be a small compact ball around
θ0 and therefore the stationarity condition holds for any θ̄ ∈ Θ̄ . The stationarity and exogeneity of {It}t∈Z is assumed to
hold. As concerns Assumption 4.3, we note that ĥi,t (θ, θ̄ ) can be expressed through the following SRE

ĥi,t+1(θ, θ̄ ) = ω + βĥi,t (θ, θ̄ ) + αIt (y2i,t (θ̄ ) − ĥi,t (θ, θ̄ )).

Given that Θ can be defined to be a small compact ball around θ∗(θ0), we obtain that β −αIt < 1 holds a.s. and uniformly
over Θ . Therefore, {ĥi,t (θ, θ̄ )} is a contractive sequence of continuous functions taking values in the compact set Θ×Θ̄ and
the convergence result follows by an application of Theorem 3.1 of Bougerol (1993). Assumption 4.4 immediately holds
since the conditional density is Normal and hi,t (θ, θ̄ ) is uniformly bounded from below by the constant c = infθ∈Θ ω > 0.
As concerns Assumption 4.5, we obtain that

li,t (θ, θ̄ ) = −
1
2
log(2π ) −

1
2
log(hi,t (θ, θ̄ )) −

y2i,t (θ̄ )

2hi,t (θ, θ̄ )
.

First, we note that E∥li,t∥Θ×Θ̄ holds. The first moment of y2i,t is not necessarily finite. However, the term ∥y2i,t/h
2
i,t∥Θ×Θ̄

can be shown to have finite moments of any order following a similar argument as in Berkes et al. (2003) since the error
term is normally distributed. Furthermore, hi,t has a finite log moment as discussed in Straumann and Mikosch (2006).
Next, we show that the Lipschitz condition on the likelihood holds. In particular, from the mean value theorem and given
the uniform lower bound of hi,t (θ, θ̄ ), we obtain that

∥l̂i,t − li,t∥ ¯ ≤
1
∥ĥi,t − hi,t∥ ¯ +

∥y2i,t∥Θ̄
∥ĥi,t − hi,t∥ ¯ .
Θ×Θ c Θ×Θ 2c2 Θ×Θ
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ssumption 4.6 holds as discussed in the proof of Theorem 5.1. The smoothness conditions in Assumption 4.7 hold trivially
iven the Gaussian density function and the linear specification of ĥi,t (θ, θ̄ ). As concerns Assumption 4.8, we have that

the first and second derivatives of ĥi,t (θ, θ̄ ) with respect to θ = (ω, α, β)⊤ follow the following SRE

∇θ ĥi,t+1(θ, θ̄ ) =

⎡⎣ 1
It (y2i,t (θ̄ ) − ĥi,t (θ, θ̄ ))

ĥi,t (θ, θ̄ )

⎤⎦+ (β − αIt ) ∇θ ĥi,t (θ, θ̄ ),

and

∇
2
θθ ĥi,t+1(θ, θ̄ ) =

[ 0
−It
1

]
∇θ ĥi,t (θ, θ̄ )⊤ + ∇θ ĥi,t (θ, θ̄ )

[
0 −It 1

]
+ (β − αIt ) ∇

2
θθ ĥi,t (θ, θ̄ ).

herefore, ∇θ ĥi,t (θ, θ̄ ) and ∇
2
θθ ĥi,t (θ, θ̄ ) are contractive processes and the convergence result follows by an application of

heorem 2.10 of Straumann and Mikosch (2006) for perturbed SRE. As concerns Assumption 4.9, we notice that the first
nd second derivatives of the pseudo log-likelihood are

∇θ li,t (θ, θ̄ ) =

(
y2i,t (θ̄ )

hi,t (θ, θ̄ )
− 1

)
∇θhi,t (θ, θ̄ )
2hi,t (θ, θ̄ )

,

and

∇
2
θθ li,t (θ, θ̄ ) =

(
1
2

−
y2i,t (θ̄ )

hi,t (θ, θ̄ )

)
∇θhi,t (θ, θ̄ ) ∇θhi,t (θ, θ̄ )⊤

h2
i,t (θ, θ̄ )

+

(
y2i,t (θ̄ )

hi,t (θ, θ̄ )
− 1

)
∇

2
θθhi,t (θ, θ̄ )
2hi,t (θ, θ̄ )

.

herefore, the following upper bounds are satisfied

∥∇θ li,t∥Θ×Θ̄ ≤
1
2

( y2i,thi,t


Θ×Θ̄

+ 1

)∇θhi,t

hi,t


Θ×Θ̄

.

and

∥∇
2
θθ li,t∥Θ×Θ̄ ≤

( y2i,thi,t


Θ×Θ̄

+
1
2

)∇θhi,t

hi,t

2
Θ×Θ̄

+
1
2

( y2i,thi,t


Θ×Θ̄

+ 1

)∇
2
θθhi,t

hi,t


Θ×Θ̄

.

From the above expressions, we obtain that E∥∇θ li,t∥Θ×Θ̄ < ∞ and E∥∇θ li,t∥Θ×Θ̄ < ∞ hold since ∥y2i,t/hi,t∥Θ×Θ̄ ,∇θhi,t/hi,t


Θ×Θ̄
, and

∇2
θθhi,t/hi,t


Θ×Θ̄

have finite moments of any order following a similar argument as in Berkes
et al. (2003).

Next, we show that the Lipschitz conditions (i) and (ii) are satisfied. For large enough t , we obtain that

∥∇θ l̂i,t − ∇θ li,t∥Θ×Θ̄ ≤(∥∇θhi,t∥Θ×Θ̄ + 1)

( yi,t
2ĥ2

i,t

−
yi,t
2h2

i,t


Θ×Θ̄

+

 1

2ĥi,t
−

1
2hi,t


Θ×Θ̄

)

+

(
∥y2i,t∥Θ̄

2c2
+

1
2c

)
∥∇θ ĥi,t − ∇θhi,t∥Θ×Θ̄

≤(∥∇θhi,t∥Θ×Θ̄ + 1)

(
∥y2i,t∥Θ̄

c3
+

1
2c2

)
∥ĥi,t − hi,t∥Θ×Θ̄

+

(
∥y2i,t∥Θ̄

2c2
+

1
2c

)
∥∇θ ĥi,t − ∇θhi,t∥Θ×Θ̄ ,

and

∥∇
2
θθ l̂i,t − ∇

2
θθ li,t∥Θ×Θ̄ ≤(∥∇θhi,t∥

2
Θ×Θ̄

+ 1)

(
3∥y2i,t∥Θ̄

c4
+

1
2c2

)
∥ĥi,t − hi,t∥Θ×Θ̄

+ 2(∥∇θhi,t∥Θ×Θ̄ + 1)

(
∥y2i,t∥Θ̄

c3
+

1
2c

)
∥∇θ ĥi,t − ∇θhi,t∥Θ×Θ̄

+ (∥∇2
θθhi,t∥Θ×Θ̄ + 1)

(
∥y2i,t∥Θ̄

c3
+

1
2c2

)
∥ĥi,t − hi,t∥Θ×Θ̄

+

(
∥y2i,t∥Θ̄

2c2
+

1
2c

)
∥∇θ ĥi,t − ∇

2
θθhi,t∥Θ×Θ̄ ,
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Therefore, we conclude that (i) and (ii) are satisfied since ∥∇θhi,t∥Θ×Θ̄ , ∥∇2
θθhi,t∥Θ×Θ̄ , and ∥y2i,t∥Θ̄ have finite log-moments

as discussed in Straumann and Mikosch (2006) for the AGARCH model. Assumption 4.10 holds since ∇
2
θθL(θ, θ̄ ) is negative

definite for any (θ, θ̄ ) ∈ Θ × Θ̄ as discussed above. Assumption 4.11 holds from the statement of the theorem since Θ̄

can be a small ball around θ0.
Regarding the asymptotic normality, we are left with Assumptions 4.12 and 4.13. Assumption 4.13 holds from the

statement of the theorem. Finally, as concerns Assumption 4.12, we have that {It}t∈Z is α-mixing by assumption. Further-
more, we note that {yi,t (θ0)}t∈Z is a stationary GARCH(1,1) process with Gaussian innovations. Therefore, {yi,t (θ0)}t∈Z is
-mixing of size −2r/(r − 1), r > 2 (Francq and Zakoïan, 2006). Next, we note that the expression of the score is

∇θ li,t (θ∗(θ0), θ0) =

(
y2i,t (θ0)

hi,t (θ∗(θ0), θ0)
− 1

)
∇θhi,t (θ∗(θ0), θ0)
2hi,t (θ∗(θ0), θ0)

.

As before, we obtain that {∇θhi,t (θ∗(θ0), θ0)}t∈Z and {hi,t (θ∗(θ0), θ0)}t∈Z are NED on {(yi,t (θ0), It )}t∈Z of size −∞ by an
application of Theorem 6.11 of Potscher and Prucha (1997) as they can be expressed as contractive processes and they
have a finite second moment. In particular, a finite second moment is ensured by the assumption that E(y4t ) < ∞ (and
ence E(y4i,t (θ0)) < ∞) since ∇θhi,t (θ∗(θ0), θ0) and hi,t (θ∗(θ0), θ0) can be expressed as linear combinations of past values

of y2i,t (θ0). Therefore, we conclude that {∇θ li,t (θ∗(θ0), θ0)}t∈Z is NED on {(yi,t (θ0), It )}t∈Z of size −∞ by an application of
heorem 17.16 of Davidson (1994). Finally, we note that the moment condition E∥∇θ li,t (θ∗(θ0), θ0)∥2+δ < ∞, for some

δ > 0, holds since the score has uniformly bounded moments of any order as discussed above. □

B.4. Proofs of Appendix A

Proof of Proposition A.1. The proof is equivalent to the proof of Proposition 4.1. In particular, the uniform convergence
n (18) follows immediately from Assumption A.3. The identifiable uniqueness in (19) follows by the compactness of Θ ,
he uniqueness of θ∗(θ̄ ) ∀ θ̄ ∈ Θ̄ in Assumption A.4, and the continuity of the limit pseudo log-likelihood LI (·, θ̄ ). □

roof of Theorem A.1. The proof is essentially equivalent to the proof of Theorem 4.1. Following the same argument as
n the proof of Theorem 4.1, we obtain the uniform convergence in (21) form the a.s. convergence of θ̂T to θ∗(θ0) (Propo-
ition A.1) and the uniform a.s. convergence of θ̂S,T (θ̄ ) to θ∗(θ̄ ) (Lemma B.5). Furthermore, the identifiable uniqueness in
22) is obtained from the compactness of Θ̄ , continuity and injectiveness of θ∗(·) ensured by Assumption A.8. □

Proof of Proposition A.2. The proof is obtained by showing that Conditions (i)–(v) in the proof of Proposition 4.2
are satisfied. Condition (i) is satisfied by Proposition A.1 and Condition (ii) is satisfied by Assumption A.5. As concerns
Condition (iii), we obtain the asymptotic normality of the score by an application of Theorem 10.2 of Potscher and Prucha
(1997) for NED sequences. In particular, we have that

√
T∇θ L̂S,T (θ∗(θ0), θ0) =

1
√
TS

S∑
i=1

T∑
t=2

(
∇θ l̂i,t (θ∗(θ0), θ0) − E

(
∇θ l̂i,t (θ∗(θ0), θ0)

))
+

1
√
TS

S∑
i=1

T∑
t=2

E
(
∇θ l̂i,t (θ∗(θ0), θ0)

)
.

The second term in the above equation converges to zero as T → ∞ by Assumption A.9. Instead, the first term converges
in distribution to the normal by an application Theorem 10.2 of Potscher and Prucha (1997) as the assumptions of the
theorem are satisfied by Assumption A.9. Therefore, we obtain that

√
T∇θ L̂S,T (θ∗(θ0), θ0)

d
−→ N

(
0,

1
S
Σ∗

I (θ0)
)

,

where

Σ∗

I (θ0) = lim
T→∞

Var

(
1

√
T

T∑
t=2

∇θ l̂i,t (θ∗(θ0), θ0)

)
.

The expression of the score covariance matrix is more simple than the proof of Proposition 4.2 since ∇θ l̂i,t (θ∗(θ0), θ0)
is independent of ∇θ l̂j,t (θ∗(θ0), θ0) for any i ̸= j. Condition (iv) follows from the uniform convergence of the Hessian in
Assumption A.6 and Condition (v) is satisfied by Assumption A.7. □

Proof of Theorem A.2. Given the asymptotic normality of the auxiliary statistic in Proposition A.2, the proof follows as
discussed in the proof of Theorem 4.2. □
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L
emma B.5. Let Assumptions A.1–A.8 hold. Then, the pseudo ML estimator θ̂S,T (θ̄ ) converges a.s. and uniformly to θ∗

I (θ̄ ), that
is,

sup
θ̄∈Θ̄

∥θ̂S,T (θ̄ ) − θ∗

I (θ̄ )∥
a.s.
−→ 0 as T → ∞.

Proof. The desired uniform convergence of the auxiliary estimator is obtained as in the proof of Lemma B.4 by showing
that (23) and (24) are satisfied. As concerns (23), we notice that ∇θLI (θ∗

I (θ̄ ), θ̄ ) = 0 for any θ̄ ∈ Θ̄ since LI (·, θ̄ ) is a smooth
function and θ∗

I (θ̄ ) ∈ int(Θ) is its maximizer over the parameter set Θ (Assumption A.4). Therefore, (23) holds since

sup
θ̄∈Θ̄

∥∇θ L̂S,T (θ∗

I (θ̄ ), θ̄ )∥ = sup
θ̄∈Θ̄

∥∇θ L̂S,T (θ∗

I (θ̄ ), θ̄ ) − ∇θLI (θ∗

I (θ̄ ), θ̄ )∥
a.s.
−→ 0

by Assumption A.6. Finally, we obtain that (24) is satisfied from the uniform convergence of the Hessian in Assumption A.6
together with the non-singularity of its limit in Assumption A.7. □
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