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Abstract—In HTTP Adaptive Streaming, video content is
conventionally encoded by adapting its spatial resolution and
quantization level to best match the prevailing network state
and display characteristics. It is well known that the traditional
solution, of using a fixed bitrate ladder, does not result in the
highest quality of experience for the user. Hence, in this paper,
we consider a content-driven approach for estimating the bitrate
ladder, based on spatio-temporal features extracted from the
uncompressed content. The method implements a content-driven
interpolation. It uses the extracted features to train a machine
learning model to infer the curvature points of the Rate-VMAF
curves in order to guide a set of initial encodings. We employ the
VMAF quality metric as a means of perceptually conditioning the
estimation. When compared to exhaustive encoding that produces
the reference ladder, the estimated ladder is composed by 74.3%
of identical Rate-VMAF points with the reference ladder. The
proposed method offers a significant reduction of the number of
encodes required, 77.4%, at a small average Bjøntegaard Delta
Rate cost, 1.12%.

I. INTRODUCTION

The importance of visual communications in our daily
activities and interactions has increased dramatically in recent
years, not least due to restrictions imposed by the global
COVID-19 pandemic. We are all creating and consuming in-
creased volumes of video data with video streaming companies
reporting major increases in video downloads shortly after
WHO declared COVID-19 as a pandemic [1].

HTTP Adaptive Streaming (HAS) is a process employed
by most video services to address dynamically changing
network conditions. In Dynamic Adaptive Streaming over
HTTP (DASH) [2], video content is encoded by varying spatial
resolution and quantization level in order to adapt to the
changing state of a heterogeneous network and to differing
display device specifications. For example, if a streaming
client monitors a change in the rate of an incoming video
chunk that cannot support a smooth (without re-buffering)
play-out, it will signal the need to switch to a stream at a lower
bitrate. To this end, the creation of a set of video encodings at
different bitrates is required at the server. This set of encodings
are normally represented using a bitrate ladder. The traditional
HAS solution uses a fixed bitrate ladder (a set of fixed bitrate-
resolution pairs) but this approach cannot ensure a high quality
of experience for all types of video content.

An improvement over this fixed solution is to introduce
differentiation based on content genre, e.g. [3]. For example,
higher bitrates can be used for sports content with rapid motion
and fast scene changes. Previous solutions, however, were not

tailored to video content characteristics, resulting in noticeable
visual artifacts.

Recently, content-customised solutions have been reported
and adopted by industry, such as those used by Netflix [4]–[7].
The key task is to invest in pre-processing where each video
title is split into shorter clips or chunks, usually associated
with shots. Each short video chunk is encoded using optimized
parameters, i.e. resolution, quantization level, intra-period,
etc., with the aim of building the Pareto Front (PF) across all
Rate-Quality curves. Then a set of target bitrates is used to find
the best encoded bitstreams. The quality metric used for this
in the Netflix case is Video Multi-method Assessment Fusion
(VMAF) [8]. Given the extensive parameter space (compres-
sion levels, spatial and temporal resolution, codec type etc.)
and taking into account the fact that this process must be
repeated for each video chunk, the amount of computation
needed is massive. As a consequence, the industry heavily
relies on cloud computing services, and this comes at a high
cost in financial, time and compute terms.

Many other approaches that provide content-driven customi-
sation have been proposed recently. Most of these methods
first conduct a complexity analysis. An approach reported
by Bitmovin [9], [10], performs a complexity analysis on
each incoming video and inputs that into a machine-learning
model to adjust the encoding profile to match the content.
CAMBRIA [11], estimates the encoding complexity by run-
ning a fast constant rate encoding [11]. In [12], trial encodes
are used to collect coding statistics at low resolutions and
these are utilized within a probabilistic framework to improve
encoding decisions at higher resolutions. MUX [13] intro-
duced a deep-learning based approach that takes, as input,
the vectorized video frames and predicts the bitrate ladder.
Another interesting approach that takes into account both
quality constraints and bitrate network statistics was proposed
by Brightcove [14], [15]. The quality metric used in this
case was the Structural Similarity Index Measure (SSIM) and
bitrate constraints were based on probabilistic models. Finally,
recently iSize [16] proposed the use of pre-encodes within
a deep learning framework to decide on the optimal set of
encoding parameters and resolution at a block level.

While all of the above solutions are significant and have
contributed in the enhancement of video services, it is not
possible to make direct detailed comparisons as they are
proprietary. In our previous work [17], we predicted the
intersection points of the PSNR-Rate curves. Then, in [18],
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(a) log(R)-VMAF PFs.
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Fig. 1: Rate-VMAF curves and Pareto fronts of the considered dataset across
four spatial resolutions: 2160p, 1080p, 720p, and 540p.

we extended the method to the estimation of the bitrate ladder
by using encodings at the intersection points to estimate
the Pareto Front (PF) parameters, resolution and quantization
parameters, at the target bit rates.

In this paper, we propose a new content-driven method
that offers an improved bitrate ladder estimation based on
VMAF. VMAF has been shown to exhibit a better correlation
with perceptual quality than PSNR; hence the resulting bitrate
ladders should deliver perceptually improved video streams.
The method makes a feature-based prediction of the highest
curvature points of the Rate-VMAF curves to guide a small
set of initial encodings close to the area of interest. The
results show significant improvement in terms of the number
of required computations for only a small mean Bjøntegaard
Delta Rate (BD-Rate) [19] cost.

The remainder of this paper is structured as follows.
Section II describes the dataset and the Rate-VMAF curve
characteristics. In Section III, the the definition of the reference
bitrate ladder is provided. The proposed framework and the
evaluation results are elaborated in Sections IV-V. Finally,
conclusions are summarised in Section VI.

II. RATE-VMAF CURVES AND CHARACTERISTICS

A. Description of the Dataset

We employed the same dataset of 100 publicly available
UHD video sequences as in our previous work [17], [20], [21].
The sequences have a native resolution of 3840×2160, the
chroma format is 4:2:0, the bit depth is 10, and the frame
rate 60 fps. Each sequence contains a single scene (no scene
cuts) including a variety of different objects/scenes/regions of
interest, camera motions, colours, and spatial activity. In this
paper, we consider {2160p, 1080p, 720p, 540p} as the set
of test resolutions used to develop and validate our methods.
We use the Lanczos-3 filter [22] for spatial down/up-sampling
throughout.

B. Rate-VMAF Curves across Resolutions and the Pareto
Front

Rate-VMAF curves exhibit characteristics that are different
to those produced by other quality metrics. For consistency
with previous work and ease of visualization, we convert
these first to the log(Rate) domain. In Fig. 1, we illustrate the
resulting Pareto surfaces for our dataset across the four spatial
resolutions. It is clear that working in the log(Rate) domain
is beneficial as the curves become smoother. Besides this, the
saturation of VMAF at high bitrates and high resolutions is
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Fig. 2: Knee points and reference VMAF bitrate ladder for all dataset.

evident. This characteristic is content dependent and can be
exploited when building a bitrate ladder.

C. Intersection Points of Rate-VMAF Curves

An important characteristic of the Pareto Front (PF), used
for constructing the bitrate ladder, is the set of points where
resolution switches, i.e. the intersection points of the Rate-
VMAF curves. It is more practical to define these intersection
points as pairs of QP values, called cross-over QPs [18],(
QPhigh

s , QP low
s−1
)
, with s ∈ S resolutions of the intersecting

curves of the same video sequence. level ∈ {high, low}
defines the range of QPs. The resolution and level cannot be
the same for both QPs in a pair. For example, in Fig. 1, the
pair (QPhigh

1080p, QP
low
720 ) represents the 1080p intersection with

the 720p curve.

D. Knee Points of Rate-VMAF Curves

An important characteristic of a Rate-VMAF curve is the
point of highest curvature or “knee” point, K. This gives
an indication of when the rate of improvement of the video
quality will start decreasing, as shown in Fig. 1(b). We use the
Kneedle algorithm, as described in [23], to compute the knee
points of the curves across the resolutions. This algorithm is
based on the notion that the points of maximum curvature in a
dataset are approximately the set of points in a curve that are
local maxima, if the curve is rotated clockwise by an angle
defined by the line that connects the lowest and highest values
in the dataset.

As shown in Fig. 2, the distributions of the knee QPs for the
different sequences are quite tight around their mean values:
30.00±1.60 for 2160p, 24.99±1.72 for 1080p, 24.87±1.50 for
720p., and 23.08±1.52 for 540p. It is also important to note
that although the knee points of the higher resolutions are
usually part of the PF, the knee points of the lower resolutions
are typically not part of it. This can be observed in the example
of Fig. 1 (b).

III. THE VMAF BITRATE LADDER

We first perform exhaustive encodings across resolutions for
a wide range of QP values to construct the optimal log(Rate)-
VMAF Pareto Front (which will serve as our reference) and
then determine the intersection points of the log(Rate)-VMAF
curves between different spatial resolutions. These intersection



points mark the limits of the bitrate range for which encoding
at the given resolution yields the best quality 1.

A. Definition

The initial step in constructing the bitrate ladder selects
the target bitrates that will represent the rungs, i.e. RL =
{RL,1, RL,2, . . . , RL,|L|}, where |L| is the cardinality of RL
and RL,1 < RL,2 < . . . < RL,|L|. The VMAF bitrate ladder
is fully defined as a set of tuples L that comprise bitrate values
RL, the associated set of VMAF values VL, a set of QP values
QPL, and a set of resolutions SL, i.e.

L := {〈RL,i, VL,i, QPL,i, SL,i〉}|L|i , (1)

with RL,1 < RL,2 < . . . < RL,|L|, VL,1 ≤ VL,2 ≤ . . . ≤
VL,|L|, SL,1 ≤ SL,2 ≤ . . . ≤ SL,|L|. The above constraints
ensure the monotonicity of the set of parameters RL, VL,
and SL. For the set QPL, monotonicity is assumed for QPL,i

values of the same resolution.

B. Building the Reference Ladder

In order to construct the bitrate ladder, we sample the Pareto
front using the set of target bitrates RL. From the resulting
points, we check whether it is meaningful to retain all ladder
rungs if we cannot significantly improve quality. Therefore,
we monitor the slope of the sampled Rate-VMAF points so

that:
dVL,i

dRL
> ε when VL,i > Vhigh, where ε ∈ R, ε→ 0 and

Vhigh = 97. As a consequence of the above constraint, the
length of the ladder might vary. The use of variable ladder
lengths was suggested before in [14] and is dependent on
content features and their relation to perceptual quality.

We considered the [150kbps,25Mbps] bitrate range for the
ladder and that each new bitrate rung is twice that of the
previous one, i.e. RL,i = 2RL,i−1. As can be seen in
Fig. 2, the eight rungs on the ladder are clearly visible and
are shifted to a greater or lesser extent according to the
sequence. As VMAF is bounded by a maximum value of
100, the points become increasingly dense at higher VMAF
values and higher bitrates. For about half (49%) of the tested
sequences, there are fewer than eight rungs on the ladder -
typically associated with sequences that can reach to a visual
quality equivalent to the original (according to VMAF). These
could be static sequences, with low amounts of structural or
textural information that require lower bitrates for high quality
reconstruction.

IV. PROPOSED METHOD

Previous work [17], [18] showed that the best performing
method in terms of BD-Rate cost was the interpolation-base
method. The method proposed in this paper is based on
encoding using only a subset of QP values per resolution. The
selection of the subset is content-driven and is related to the
knee point of the curve. After encoding, piece-wise cubic Her-
mite interpolation [24] is applied to for the interim QPs. Based

1When encoding at a lower resolution, all metrics are computed on the
upscaled version: all sequences are first downscaled, then encoded, decoded
and, finally, upscaled to the native resolution prior to metric computation.
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Fig. 3: Predicted Knee Points against the ground truth. Selected features used
for prediction: F1-2, F4-5, F7, F9-10, F12, F15-17.

on these values, the PF is extracted. This method produces a
suboptimal solution, whose accuracy depends on the number
of encodes performed per resolution. The added benefit of this
method is that it significantly reduces the number of encodings
required compared to exhaustively encoding at all QPs.

In this work, we propose a Content-driven Interpolation-
based Ladder (CIL) estimation method. This method uses
content features to estimate the knee of the curve at each
resolution for each sequence. Spatio-temporal features are
extracted first to predict the knee QPs. We followed a se-
quential prediction of the knee QPs starting from the highest
resolution down to the lowest. At each step, we applied
feature selection, and particularly recursive feature [25]. Next
we trained and tested several machine-learning regression
methods, including Support Vector Machines with different
kernels and Random Forests, finding that Gaussian Processes
(GP), with a 5/2 Matérn covariance kernel [26], performed
best for this work. To avoid overfitting, we deployed a ten-fold
random cross-validation process. The results from the ten-fold
cross-validation are shown in Fig. 3. Despite the fact that R2,
LCC, and SRCC values are not as very high, the MAE is small
(<0.79), which is adequate to yield good results for the bitrate
ladder estimation, as shown in Section V.

Next, the knees are used to subsample the QP range that falls
within the PF. As observed for the higher resolutions, the knee
points have a high probability of belonging to the PF, while
this is less probable for the lower resolutions, we determine
the initial encodes by evenly spacing a number n ∈ N of QPs
within the following ranges:

QPj,s ∈ [Kj,s + ts, QPmax], (2)

where j denotes the sequence, ts ∈ Z is an offset, and s ∈
{2160p, 1080p, 720p, 540p}.

After encoding on the QPs above, piece-wise cubic Hermite
interpolation is applied to find the Rate-VMAF values for the
interim QPs. The bitrate ladder is constructed based on the
encodings using the estimated QPs at the target bitrates.



V. PREDICTING THE BITRATE LADDER

The HEVC reference software (version HM 16.20) was
employed in this study using its Random Access mode, a 64-
frame Intra Period and a Group of Pictures (GoP) length of 16
frames [27], [28]. After encoding, decoding, and upscaling the
spatial resolution to 2160p, we computed VMAF and bitrate at
a GoP level that enabled a larger coverage of the Rate-VMAF
space.

A. Content Features

From the vast variety of low-level content features, we em-
ploy those spatio-temporal features that have been successfully
used in our previous related work [17], [18]:
• Gray Level Co-occurrence Matrix (GLCM) [29] mean de-

scriptors across frames: contrast F1.meanGLCMcon; corre-
lation F2.meanGLCMcor; homogeneity F3.meanGLCMhom;
energy F4.meanGLCMenr; entropy F5.meanGLCMent.

• Temporal Coherence (TC) [30] with its interframe statistics:
mean F6.meanTCmean; standard deviation F7.meanTCstd;
skewness F8.meanTCskw; kurtosis F9.meanTCkur; and en-
tropy F10.meanTCentr, all expressed as a mean across
frames.

• Interframe Normalised Cross-Correlation (NCC) [31]
statistics: mean F11.meanNCCmean; standard deviation
F12.meanNCCstd; skewness F13.meanNCCskw; kurtosis
F14.meanNCCkur; and entropy F15.meanNCTCentr, all ex-
pressed as a mean across frames.

• Mean Squared Error of the spatial Rescaling (RsMSE) of the
first frame [20]: F16.RsMSE1080p (from 2160p to 1080p),
F17.RsMSE720p (from 2160p to 720p).

B. Compared Methods

Because there are no publicly available implementations
of the proprietary solutions described in Section I, we have
considered and tested the methods described below.

1) Reference Ladder (RL): This exhaustive search approach
was used to construct our reference bitrate ladder as ex-
plained earlier. All sequences were encoded at QP values
within {15, 16, . . . , 45} range. The reference bitrate ladder was
constructed as explained in Section III-B.

2) Naive Interpolation-based Ladder (NIL): This method is
based on encoding using only seven QP values per resolution,
as in [18]. After encoding, a piece-wise cubic Hermite inter-
polation [24] is used to estimate the Rate-VMAF values for
the interim QPs. Based on these estimated points, the ladder is
constructed by encoding at the closest QP to the target bitrates.

3) Content-driven Interpolation-based Ladder (CIL): This
is the proposed method as described above. To determine the
offset ts values, the ranges of the distributions of cross-over
QPs were combined with the distributions of the knee points.
The presented results are for t2160p = t1080p = −4, t720p = 6,
and t540p = 10. Furthermore, we explored the impact of the
different number of initial encodes required per resolution n ∈
{4, 5, 6, 7} and named accordingly the versions, CIL-n. We
only considered up to 7 encodes in order to directly compare
to NIL that uses seven initial encodes per resolution.

4) Feature-based Predicted Ladder (FL): The same spatio-
temporal features as in CIL case are used. Similarly, feature
selection, training and sequential prediction of the cross-over
points per resolution takes place. GPs are also employed here
with a ten-fold cross-validation. Then encodings at the cross-
over QPs and on additional points are used to define linear
models that help estimating the QP at the target bitrate. Further
to the encodes at the six cross-over QPs, we require two
additional in order to determine the unknown parameters of
the linear model at each resolution. Particularly, we require
one more encode for the 2160p and one for the 540p. The QP
value selection for the extra encodes for each sequence j is
decided as below:

QPs =

Q̂P
level

j,s − δ if Q̂P
level

j,s ≥ QPm

Q̂P
level

j,s + δ, otherwise
(3)

where δ, QPm ∈ N, s ∈ {2160p, 540p}, and level ∈
{low, high}. The δs have been selected based on the distribu-
tions of ground truth cross-over QPs. In the presented results,
QPm = 30, δ = 5 for 2160p and QPm = 38, δ = 2 for 540p.

C. Evaluation of the Predicted Ladders

We tested on a bitrate range typical for video streaming
for the considered resolutions, from 150kbps to 25Mbps.
We evaluated the proposed methods by computing the BD
metrics (mean and mean absolute deviation (mad)2 of BD-
Rate) against RL, the maximum number of encodes required
per method, and the percentage of the estimated ladder points
that are identical to RL points, RL-hits.

Fig. 4 illustrates the distributions of BD-Rates for the
three tested methods in (a)-(c) and the complexity - accuracy
tradeoff in (d). As can be seen in (d), for the same number of
initial encodes, CIL-7, slightly improves the mean BD-Rate
(0.13%). As the differences between the CIL versions 5-7
are trivial, it is clear that CIL-5 results in the best accuracy-
complexity tradeoff, as it reduces by 22% the required encodes
compared to NIL. Moreover, FL can further decrease the
complexity down to only eight initial encodes at the cost of
0.46% BD-Rate loss. However, by comparing the histograms,
the FL distribution tail is heavier than the other two methods.
Compared to RL, NIL reduces the maximum number of
required encodes by 71% with 75.1% RL-hits, CIL-5 by 77.4%
with 74.3% RL-hits, and FL by 87.1% with 36% RL-hits.
Taking into account these statistics, we conclude that CIL-5
is the recommended method for an accurate and cost-effective
ladder estimation.

In Fig. 5, we show a few examples of the resulting bitrate
ladders. As can be seen, in most cases the performances of CIL
and NIL are very similar. Although FL builds in most cases a
bitrate ladder with PF points, these points are shifted, as also
indicated by the RL-hits figure. On average, NIL and CIL are
more successful in building ladders with points identical to
RL points.

2We selected the mean absolute deviation (mad) instead of standard
deviation because the BD-Rate distributions are not normal.



(a) NIL vs RL method - BD-Rate:
mean 1.1955%, mad 1.6892%.

(b) CIL-5 vs RL method - BD-Rate:
mean 1.1214%, mad 1.7017%.

(c) FL vs RL method - BD-Rate:
mean 1.6846%, mad 3.2778%.
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Fig. 5: Predicted ladders for a selection of sequences that represent the
distribution of BD-Rates in Fig. 4.

VI. CONCLUSION

In this paper we proposed a content-driven method that
can predict the bitrate ladder for adaptive streaming with
significantly reduced complexity. CIL exploits spatio-temporal
features extracted from uncompressed video to predict the
Rate-VMAF curvature, in order to guide an interpolation based
method towards the range of QP values that reside on the
PF. The results showed a significant reduction of complexity,
77.4% at a small BD-Rate cost, 1.12%, when compared to
the optimal reference ladder, while achieving to build a ladder
with 74.3% RL-hits. Concluding, CIL with five initial encodes
per resolution offers the best complexity-accuracy tradeoff and
is therefore the recommended method for large-scale systems.
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